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ASYMPTOTIC STABILITY IN THE LARGE OF A CLASS OF
SINGLE-LOOP FEEDBACK SYSTEMS*

R. A. BAKER AND C. A. DESOER:
The purpose of this paper is to obtain some sufficient conditions for

asymptotic stability in the large of a large class of systems. The basic
idea is due to O’Shea [1]. We consider a system whose block diagram repre-
sentation is shown in Fig. 1. Our results extend those of O’Shea in several
directions"

(a) The linear time-invariant subsystem, denoted by G in Fig. 1, is
allowed to belong to a much broader class. By describing G by a convolu-
tion operator we allow in the class not only systems described by differen-
tial equations but also systems discussed by difference differential equations
[2, p. 189], [3]. Also allowed are systems whose internal dynamics require
partial differential equations, say, because of diffusion process or wave
propagation.

(b) The conditions on the nonlinearity are less restrictive.
(c) The results are stated more sharply in terms of the disturbance 7.
The input-output relation of the linear time-invariant subsystem is

() (t) Jo g(t -)e(-) d-,

_
O.

In the following, all the time functions are defined for >= 0, and we
shall use the symbol to denote the convolution of such functions. Thus
(1) is written as

o’e-" g,e.

The input-output relation of the nonlinearity is

() c(t) [(t) ].

The specific assumptions which apply throughout are the following:

(N1) : R -- R, (0) 0, where R denotes the set of 11
real numbers.
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(N2)

(N3)

(N4)

For some finitek, i(a) , [ka[ for all 0- 0.

0-<_(al) (a2) _< l for all al,0- except ata.
0"1 0"2

If() 0 for some 0, then there is act > 0 such that
(a) 0 for all

(G1) g . L2(0, ).

(G2)

where

(G3)

(El)

(E2)

Thc distributional derivative 0 of g is of the form

(t(t) (It(t) -t- _, a,(t t,),

(d Lt(O, ), la, < .
Lt(O, oo),

is differentiable and L(0, ).

Observe that (G2) and (G3) imply that g is bounded on [0, and that
g(t) 0 as . The same holds for 7. Call

sup (t) l, gM sup g(t) 1.
t_o t_o

Throughout the paper we add the subscript M: to the name of a functio
to denote the sup of the absolute value of that function; the subscript M
suggests the idea of "maximum." In some manipulations to follow, it is
useful to consider the functions g, e, , and c to be defined for all t, all of
them being identical to zero for <: 0. We use to denote Fourier trans-
forms; e.g.,

O(i) I g(t)e-’* dt.

We use II il to denote L, norms; e.g.,

11 11 ln(t) dr.

The system shown in Fig. 1 obeys the equation

(3) r(t) n(t) fo g(t- t’)4,[z(t’)l dt’,

or, in abbreviated notation,

,(t) c)(t),

> O,

where we use (2).
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Fro. 1. Feedbacl system under consideration

We come now to the main result of the paper.
THEOREM. Consider the system shown in Fig. 1. Suppose that assumptions

(N1) to (N4), (G1) to (G3), (El) and (E2) hold. Let y be any real-valued
function which has a Fourier transform ) such that y(t) 0 for < O,
y(t) <-: 0 for >- 0 and ]] y < 1. Under these conditions, iffor some a > O,

(4) Re{J1 + ioa + )(io)][(i0) + 1/]} 0 for all (-, ),
then

(i) sup tao In(t) < ,
(ii) z(t) 0 as ,
(iii) as I1 v 11 + 0, the corresponding has the property that

supt,0 (t)! 0.
Note 1. By (N3), the output c hs the sme properties.
Note 2. If is identically zero, the conclusions re immediate conse-

quences of (El) nd (E2). From now on, is ssumed not identically
zro.
The proof of this theorem is somewhat involved. In order to simplify it

we quote lemm (see [5]-[7]).
LEMMA. LetxandybeinL(--, ).Let, foreacht R, (x(t),y(t)) ,

where is a monotonically increasing relation (i.e., , R implies
[() ()]( ) 0) then for all r R,

If, in addition, is odd (i.e., (, 7) implies (-, -7) ), then the
inequality above holds with absolute value signs on both integrands.

Proof of the theorem. I. The system shown in Fig. 1 is characterized by
(3). The given function is continuous and bounded, g is bounded and, by
(N3), satisfies a Lipschitz condition; then solving (3) by iteration we can
apply the standard arguments to show that the resulting sequence con-
verges uniformly on every bounded interval, and that (3) has a unique
solution which is continuous. For brevity, let L be the class of all measur-
able functions which are bounded on every bounded interval. Thus z L
clearly, c L and e L.

II. Let T be an arbitrary positive number. Let nu z. y,
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c. c -t- c , y, and,
x -t- x y. Then

in general, given any function x, we define Xm

(5)

c,(t))c(t) t
I

i
r (r(t)- c(ff))c(t)dt i -t-- o" (t)c(t) dt,

where all integrals are finite since y L1, a L, and c L,. Now let
the subscript T denote the truncation of a functio to the interval [0, T]:
thus, fr(t) f(t) oI [0, T], andfr(t) 0 elsewhere. Considering the second
integral in (5), we define

() R(-) [ ) c(t) t,
.o

and observe that by Fubini’s theorem,

(6) a (t)c(t) dt y(-)R(-) d-.

Observe that, for each t, the real rmmbers cr(t) aud at(t) c.(t)/k re
monotonically related: ildeed, denoting cr(ti) by c ad zr(ti) by , we
have

where the inequality follows from (N3). Consequently, by Lerama 1,
R(r) R(0); and since y -< 0, (6) gives

(6a) i u()() d >=

Thus, the left-hand side integral of (5) is larger than or equal to (1
I1Y ).R(0) => 0. In other words, for each T > 0, there is a finite b(T)

>__ (1 IlYlI) > 0suchthat

(7) fo [,(t) c.!t)c(t) dt b(T)R(O) >= O.

III. From the block diagram, a a -t- v; hence,

(8)
fo o-(t) -t- a(t) c.(t), c(t) dt

,(t) + (t) c,(t) c(t) [,(t) + i(t)]c(t) gt.
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In order to show by Fourier methods that the first iltegral of the right-
hand side of (8) is nonpositive, observe that if oe =-g.cr and
e -- cr, then, on [0, T], , m , nd . Similarly,
c may be replaced by cr. Now c L, hence cr L L. With g L,
this implies a L ;hence, since 0 nd y L, L and L (see
[4]). Therefore the first integral in (8) is the product of two L-functions.
Using Prsewl’s theorem, nd noting that odd functions of contribute
nothing to the integral, we obtain

., c t). c( t) dt:(t) + (t)

* ( [ 1} 6r()r*(i)d0,2 Re [++()] #(i)+
where the inequality follows by (4). Thus (8) implies that, for all T > 0,

f
T

(9)
Jo

z(t) + a(t) c(t) dt [v(t) + a(t)]c(t) tit.

This is the fundamental inequality.
IV. Using (7) in (9), we conclude that, for all T > 0,

T p T

(10) a Jo (t)c(t) dt Jo [v(t)+ a(t)]c(t) dt.

Let CrM supt cr(t)[. Since , v + ]] Y [ ]] v [, we conclude
that

where M denotes ghe braekeg of he righ-hand side of ghe inequaligy. Call

() 4() d; hen, wigh > 0, (11) implies ha for al.1 T > 0,

() [()1 [(o)1 +c-1.
The slope condition (Ng) on 4 implies ha () [4(z)]/2k; hence for
all T > 0,

This inequality implies gha c recalling gha c is continuous his is
easily shown by contradiction. In fae,

(1,_) sup c(t) (M-) + [(0) 1/ + M-.
Sinee (0) 0 by (1), as n + 11 o boh and [(0)] geud go

ero and so does supra, c() .
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V. Let us show that

f0
is bounded. By (ha), this integral is R(0). If we let CM sups>__0 C(t) !,
then (7), (9) and 11 give

b(T) ((t) c(t) dt CMM + a[q(0)].

Observing that is monotonic md that a(0) v(0), we obtain

]lc -1.
Hence,

f0 ((t)- c(t) dt < 2CMM(1- llylI) -1-]--

Since the iategrand is nonnegative by (N3) and since the right-had side
is independent of T, we hve

(16) a(t) c(t) dt 2CMM(1 --ll]lI) -1,

Note that as v [ + o, the bound o the right-handed side of (16)
tends to zero, because both CM 0 ad M 0.

VI. To complete the proof we must consider the two possible behaviors
of the nonlinear characteristic ia the neighborhood of the origin.

Case 1. () Oimpliesa 0. Wekaowthat a a W vndthat
v 0 as . Since h -0 * c, where 0 L and c L, it follows
that L hence is uniformly continuous ou [0, ). If a did not
tend to 0 as , then a does not go to zero; using the uniform conti-
nuity of a we can easily show that the are under the fuactio

(17) ((t) [(t)])k [(t)]

would then be infinite [8]. This contradicts (16). Hence a 0 as .
This, together with Lo, implies that a L. Thus (i) and (ii) are
established, and (iii) follows by contradiction" if I v ]1 + [[ 0 and
sup0 a(t) does not go to zero, then, because of the uniform continuity
of a, the bound oa the integral in (16) could not go to zero.

Case 2. () 0 for all a [-a, a] with a > 0, > 0. Using the

Note that in the proof of [8, Lemmu 1, p. ,] only the uniform continuity of f is
needed.
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monooniciCy of nd inequality (16), we obtiu

2cMM(1- lIyl[)- > [ (t)- c(t) dt

(8)
> c-() g + () .

Here ghe superseripgs + and are used in heir usual sense:

c+(t) sup {c(t), 01, c-(t) sup{--c(t), 01.
Hence c L. But lredy we know c L, hence c L. Now
z -g c, hence , where , L. Consequently, L. Now
by the RicmnmLebesgue lemm, (t) - 0 s , hence a(t) 0 s. Now, s + l[ 0, (lSD implies that c 0. But

(t) z c l,

d cousequetly, sup t0 (t) 0 n.d so does sup ta0 a(t) [. Therefore
(i), (ii) nd (iii) hve been established.
CorolLary. If , the characteristic of the nonlinearity, is an odd function,

then the theorem still holds without the requirement that y( t) 0 for O.
Proof. By the lemm, since is odd, R(0) R(r) for ll r. The

previous ssumptioa that y(t) 0 ws used only in the derivation of (7)
from (6). Under the present coditions,

he,me, the previous equt,io.t (6) still holds. The remainder of the proof
requires no modifications.
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NECESSARY CONDITIONS FOR CONTROL PROBLEMS WITH
VARIABLE TIME LAGS*

H. T. BANKS

Introduction. In [5] Kharatishvili extended Pontryagiu’s proof of the
maximum principle to obtain a poiutwise maximum principle for a class
of nonlinear control problems involving system equations with constant
lags in the state variables. The class of admissible controls consisted of
piecewise continuous control functions. Friedman [3] also considered a
hereditary control problem to which he applied Pontryagin’s methods to
obtain necessary conditions. In a recent book [4] Oguztoreli showed tha
the results of several recent papers on control problems with systems of
ordinary differential equations could be extended to obtain corresponding
results for systems involving delays.

Gamkrelidze [1] (see also Neustadt [2]) gave a very elegant proof of a
maximum principle in integral form which includes Pontryagin’s pointwise
maximum principle as a special case. In this paper we consider a general
nonlinear system with variable time dependent lags. A maximum principle
in integral form is obtained for a class of Lebesgue measurable control
functions. Transversality conditions are also given for variable initial
functions. The proofs are generalizations of Gamkrelidze’s methods in-
volving quasi-convex families of functions.
Throughout this paper, by a solution to a differential equation we shall

mean an absolutely continuous (A. C.) function which satisfies the equa-
tion almost, everywhere with respect to Lebesgue measure. Unless it is
specifically stated otherwise, by a measurable function we shall mean a
Lebesgue measurable function. Vector matrix notation will be used. Follow-
ing common usage we shall not distinguish between a vector and its trans-
pose when it is clear which we mean. The notation A] will denote the
Euclidean norm of A in whatever space A lies. For example, if A is a
matrix (a), then [A [ (a)2. If g is a vector function depending
on the vector x, g will denote the Jacobian matrix with elements Og/Ox.
By a nontrivial vector function we shall mean one which is not identically
zero. Finally, the scalar will denote time and 2 will denote the derivative
of x with respect to t.

1. Preliminary results. Let F F(x(.), t) be an n-vector functional
defined on C[ao, t] X [to, t], where a0 < to. By the notation F(x(- ), t) we

* Received by the editors June 30, 1967, and in revised form October 27, 1967.
f Division of Applied Mathematics, Brown University, Providence, Rhode Island

02912. This research was supported by a National Science Foundation Graduate
Fellowship at the Division of Mathematical Sciences, Purdue University, Indiana.
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men that at eeh t, Y depends on nd on the vlues x(s), ao <- s <= t,
where x C[ao, t], x n n-vector.

Suppose that F is mesurble in nd continuous in x on C[ao, t] for
lmost ll fixed in [to, t]. Assume there exists n m L(to, t) such that
IF(x(’), t) <= n(t)l[x lit for (x, t) C[ao, t] X [to, t], where

sup {Ix(s)[’s [a0, t]}.
THEOREM 1. Let F satisfy the above assumptions and let C[ao, to].

Then

2(t) F(x(.), t) on [to, t],
(I.I)

x(t) 4(t) on [a0, to]

has a solution on [to, t].
THEOUE 2. Let D(t) be an n-vector function, D L(to, t). In addition

to the assumptions of Theorem 1, suppose there exists p L(to, t) such that
F satisfies

IF(x(.), t) F(y( ), t) <= p(t)]] x y

for each (x, t) and (y, t) in C[ao, t] X [to, t]. Then the solution to

2(t) F(x(. ), t) -4- D(t) on [t0,t:],
(..2)

x( ( on [a0,t0]

exists and is unique.
The proofs of Theorems 1 and 2 arc straightforward extensions of

standard proofs due to CarathSodory and will not be given here.
As an example to which Theorems 1 and 2 are applicable, consider the

system

2(t) g(t, s)x(s) ds oa [to,

x(t) (t) on In0, to],

where 4 C[ao, to], g L([t0, h] X [a0, hi). It is easy to show that this
system satisfies the hypotheses of the theorems and hence the existence
of a unique solution on [to, t] is guaranteed. This system is a simple ex-
ample of an integrodifferentil equation. Such equations are important in
the study of physical systems involving hereditary processes, such as mag-
netie hysteresis and elastic torsion, and have been discussed in detail by
Volterra [9]. Another example where Theorems 1 and 2 are applicable and
which is of interest to us in. this paper will be discussed next.
Throughout this paper, we shall assume that 0(t) is a nonnegative real-

valued C function defined o.u R satisfying d <= O(t) -<- d < 1 on R.
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We define (t) 0(t). Then is an A. C. strictly increasing function
with (t) 1- ti(t) => 1- d. > 0 nd (t)= 1- ti(t) _-< 1- d.
Hence is C with bounded derivative. Since co is strictly increasing, we

--1have that r co exists. In fct, it follows from the inverse mpping
theorem that r is C. Furthermore, since r((t)) t, we hve
(dr/ds)(dco/dt) 1, which implies that (s) > 0. Moreover, (s) 1/(t)
>_- 1/( 1 d) > 0 and (s) _-< 1/(1 d) < . Hence r - is a strictly
increasing A. C. function. It is, in fact, C with a bounded derivative.
Also, co and r - are C functions with derivatives bounded away from
zero.
Under the above assumptions, the next two corollaries follow from

applications and modifications of Theorem 1 and Theorem 2.
COROLLRY 2.1. Let A and B be n X n measurable matrices and C be a

measurable n-vector satisfying A(t)] -< re(t), [B(t) <= re(t), C(t)
<= m(t), where m Ll(to, h). Let co(t) O(t), coo co(to). Assume is
continuous on [coo, to]. Then

2(t) A(t)x(t) -t- B(t)x((t)) -t- C(t) on [to,

x( ( on [.,o, to]

has a unique solution on [to,
yCOOLLAn. 2.2..Let A and B be as in Corollary 2.1. Suppose to be

continuous on [co(), ]. Let r co Then the advanced syslem

?(s) A(s)y(s) - B(s)y(r(s)) on

y(s) O(s) on

has a solution on [to, ].
We next prove a lemma which will be needed it studyiag lagged equa-

tions.
LEMMt 1. Suppose co is C on [to, tl] with co(t) >- > 0 for [to ,hi.

Let f be measurable on [co(t0), co(t1)]. Then f o co is measurable on [to, h].
Proof. From the hypotheses on co, we have co exists as a 1-1 C func-

tion on [co(t0), co(h)]. Also, f measurable on [co(t0), co( h)] implies there exists
a sequence {g} of continuous functions on [co(to), o(tl)] such that
converges to f a.e. on [co(t0), co(t)]. Let E be the subset of [co(to), co(h)]
such that g(s) -- f(s) for s in E, where t(E) co(t1) co(to). Let
F co-i(E). Then F [to, tl] and/(F) tt to, since the A. C. function

--1
co takes sets of measure zero into sets of measure zero. Now let F.
Then there exists s E such that s co(t). But s E implies g,(s) -- f(s).
Hence, g(co(t)) -- f(co(t)) for F or g co -- fo co a.e. on [to, ti]. But
g,, co is measurable. Therefore f o co is measurable on [to,
Now let 01, .-., 0 be real-valued C functions on R satisfying the
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same hypotheses as 0 above. Define o(t) O(t) and r(t) o-l(t),
j 1, 2, ..-, . Assume that

0(t) __< 0(t) --< =< 0,(t)

so that o(t) =< o._(t) and r(t) r._(t). We also assume that there exist
no increasing function o nd positive integers/cl, k, ,/c, such th

o.(t) o’(t), j 1, 2, u,

where o o o o o o (/c times).1
TinOnEa 3. Let A, B j 1, 2, u, be n n measurable matrices and

C be a measurable n-vector satisfying A(s)[ _-< re(s), B(s)l <= re(s),
C(s)l _-< m(s),wherem L(to,t).Letto < <-_ t.Letoandr o- be

as defined above. Define x(s) to be the characteristic function of [to, w.(t)]
(or [o(t), to]). Let h(s, t) be a matrix solution to

(s,t) =0, s > t,

A(t, t) I,

0A (s, t) + A(s, t)A(s) + x(s)h(r(s) t)B(r.(s))(s) 0
(1.3) Os 5=1

for s [t0,t].

Then the vector solution x to

2(s) A(s)x(s) q- B(s)x(o(s)) %-C(s)

for s [to, t],

for s [o,(t0), to],

(1.4)

x(s) ,(s)

where C[o(to), to], is given by

x(t) A(to, t)(to) + h(s, t)C(s) ds

i=1 i(t0)
A(r.(s), t)Bj(r(s) )$(s)(s) ds

for > to.
Proof. Let A(s, t) be solution to (1.3). That such solution exists

follows from an easy extension of Corollary 2.2. Multiplying the first equ-

The author is indebted to the referee for pointing out that without this last as-
sumption, the control problem with lags to be discussed below can be reduced to a
control problem involving ordinary differential equations.
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tion in (1.4) by A( s, t) nd integrating over s from to to gives

t(, )() t(, )()() + t(, )() d

+ A(s, t)B(s)x((s)) ds.

Since A(s, t) is A. C. i s, we c integrate by prts in the term o the lef
side of the equation obtaining

h(s, t)2(s) ds x(t) A(to t)x(to) Oh (s, t)x(s) ds.

Consider (, )B()z(()) d. Legging r () or ri(r) in his

integral gives

ft A(s, t)Bi(s)x((s) ds A(r(r), t)B(r(r))x(r)(r) dr

Combining ghese resulgs and ghe fae hag () (s) on [(), ], we
obtain

()

he germ in brackets vanishes almos everywhere on [, ] since (, ) saris-
ties (1.a). Nenee we have ghe desired resulgs.

o conclude his section, we prove a lemma of du Bois-aymond ype.
La 2. Le [, b] R. e M() > 0 be arbirr bfized

i 1(, ). Dee D(M) : is A. C. on [a, hi, O()l N M(), and
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P

Suppose f Ll(a, b). Then J.. fgdt <= 0 for each g D(M)b

implies f( t) 0 a.e. on [a, b].

Proof. Suppose f L(a, b) and f fg dt <- 0 for g D(M)b. Define

F(t) f(s) ds. Then/7 is A. C. on [a, b] and /O(t)g(t) dt -<_ 0 for

g D(M)b. Since both F and g are A. C., we may integrate by parts ob-

taining F()0(t dt >- 0 since g(b) f’() 0. This las inequality

implies F(t) 0 on (, b). Suppose not. Then ghere exist in (a, b) and
ti > 0 such that F(t) > 0 on (t0 ti, to -t- ). (The proof for F(t0) < 0 is
similar.) We choose a particular g in D( M)b as follows:

g(t) 0 for >- to+
for t (to- ,t0-t- t}) (with i1 =< M),

O(t) =0 for t=<to- .
fab fttThen for this g we have FO dt FO dt < O, whichis a contradiction.

Hence, F(t) 0 on (a, b). This implies f(s) 0 a.e. on In, hi.

2. Formulation of problem and statement of necessary conditions.
Suppose to is fixed in R1. Let (x, x-l), j (yj,1 YJ-),
j 1, 2,..., , (g,-.., g’-), and u (u,..., u). Let
Y (, ); that is, Y is a -vector, each component of which is an
(n 1)-vector. Given a set S in -R the notation S X S will mean
S X S X X S ( -t- 1 times). Let I be bounded open interval in R
containing Icon(t0), to]. Put I’ I {t’t > to}. Let ( be an open convex
region in R--. (Although the notation 0 usually means the closure of G, in
this paper this is not so unless specifically stated.) Suppose that T is a
given C differentiable manifold in R:’-1. We assume that T has dimension
< 2n 1 and that T X X I’. Points in T will be written (0, , t).
Let Rv be a given subset of R’. Suppose that g g(x,’ , ,y,,u,t)-

g(4, I?, u, t), i 0, 1, n 1, are defined on X X Rv X I’
with range in R. Further, let each g be C in 2, I? and Borel measurable in
u, t. Let U be a mapping defined on I.

U:t I-.U(t) R R.
Put t [u’u is measurable on I, u(t) U(t) for each t I}. Let

(gO, ). We make the further assumption on the g’s that"
For every compact and u , there exists an L(I’) ( de-
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pending on X, u) such that

I(, ?, u(t), t)l --< (t),
(, ?, u(t), t)l =< (t),

(, z, u(t), t)l <- (t), j 1,..., ,,
for each (, ) . X . and each I’.
Let be the class of A. C. (n 1)-vector functions on [(to), to] into

G. That is, ( 5"5 AC ([(to), to], G)}.
PROIIElg. Minimize

J[, u, e, td (e(t), e((t) ), ..., (,(t) ), u(t), t) dt

over ( X t2 X R-1 )< I’ subject to
(a) (t) ((t), :(o(t)), :((t)), u(t), t) for [to, t],

2(t) 5(t) for t [o(t0),to],
(b) (2(to), 2(h), h) T.
A solution ,*, u*, *, h*) to the above problem will be called an optimal

solution and the corresponding solutior * of (a) will be called au optimal
trajectory. We now state necessary conditions for an optimal solution.
TEOnE 4. Let *, u*, *, t*) be an optimal solution. In addition to the

previous assumptions, suppose that h* is a regular (Lebesgue) point for
*(t) (*(t), *((t) ), *((t) ), u*(t), t). Then there exists a
nontrivial A. C. n-vector function ( t) ( t) ( t) ( t) ( t).., b’-(t)) defined on [to, t*] satisfying"

(i) (t) const. =< 0,
(t) - (t)*(t) "4- =lxi(t)(r(t))*.(r(t))(t) 0 on
[to, tl*], where x is the characteristic function for [to, oi(tl*)].

(ii) f’ (t) O*( t) dt
t

tl*
>- (t).O(e*(t),e*((t)),. ,*((t)),u(t),t) dtforallu a,

to

(iii) -o (r_(t) ~*)g_(r_(t) )_(t) 0 a. e. on [o_1_(t0), o_(to)]
for j 1, 2, ,, where oo( t) t.

(iv) The 2n 1)-dimensional vector (-(to), b( t*), -(t*) .*( t*))
is orthogonal to the tangent plane to T at *( to), 2*( t*), t*).

(v) (t) (o, (t)) is nonzero on [o(tl*), tl*]. can have zeros in
[to, o(t*)]. If, however, we have

(a) O(t) > O_(t) >... > O(t) > 0 on [to, h’l,
(b) -*g(t) is nonsingular for [to, t*], j 1, 2, v,

then o 0 and hence is nonzero on [to, h*].
The proof of Theorem 4, which will follow from Theorem 5, will be given
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in 5. First, however, let us snake a few remarks about the problem and
theorem discussed above.

Remark, 1. The conditions that u(t) U(t) (see definition of ft) are
simply a way of putting constraints on the control functions. For example,
if U(t) {u RV:[ul <= o(t)}, then U(t) is the ball of radius p(t) inR
(where p is some given function) and the constraints on u(t) are
p(t) -lu(t)l _-> 0.
Remark 2. T as defined above is a manifold consisting of possible initial

state values (0) and possible terminM state and time values ( ,h).
Statemen (iv) of Theorem 4 is just the well-known transversality con-
dition. As it will be seen in the following proofs, the assumption that h* be
a regular point of is needed only to prove (iv).
Remark 3. Statement (ii) of Theorem 4 is the mximum principle in in-

tegral form. Under the additional assumptions tha (a) U(t) U, a fixed
subset of Rv, for each I, and (b) (gO, 9) is continuous in all of its
arguments, one cn show that statement (ii) implies a Pontryagin type
maximum principle, i.e., a pointwise maximum principle (see [5]).

In 3 and 4 we shall formulate a general extremal problem similar to
that of Garnkrelidze and give necessary conditions (Theorem 5) for solu-
tions to be extremals.

3. Formulation of an extremal problem. In 3 and 4, x, y, yl, y,, z
will denote n-vectors. The u-vector (yl, y,) will be denoted by Y. Let
to be fixed in R and let I and I be the subsets of R as defined in 2. Let
G be an open convex region in Rn. We shall denote by F a family of n-vector
functions f( x, Y, t) f(x, yl, y,, t) detined on G X G X I’. For any
integer k, we define P {a’a (al, a), a => 0, a= 1}.
DEFINITION 3.1. The family F is quasi-convex if"
1. f(x, Y, t) is C in x, Y for fixed I’. f(x, Y, t) is measurable on 1’ for

fixed x, Y.
2. For any f F and any compact convex X contained in G, there is an

integrable function m (depending on X, f) such that If(x, Y, t)l <-_ re(t),
]f(x, Y, t)l <-_ m.(t), and [f,,(x, Y, t)i <= m(t), j 1,..., u, for all
(x, Y) . X X and all t 1’.

3. For every compact, convex X contained in G and finite collectio.
f, f., f in F and > 0, there exists for ech a P an f, F (de-
pending on X, the f, e) such that 9(x, Y, t; a) __,[af(x, Y, t)

f,(x, Y, t) satisfies:
(i) There exists an r L(I’), depending on X and the f, such that

[g(x, Y,t;a)l < (t), Ig (x, Y,t;a)l < (t), and igu(x, Y,t; =)1
< (t), j 1, 2,..., , for all (x, Y) E X X X", a E P, and
t I’.
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(ii) g(x, Y,t;a) dt < efor all(x, Y) X X, a6P, and

, in I’.
(iii) If {a} is a sequence inP such that a --. & 6 pr0, then {g(x, Y, t; a)}

I’converges in measure on as a function of to g(x, Y, t; ) for all
(x,Y)XXX’.

Define 4’4 AC ([,(to), to], G) I. For f F and consider
the solution to

2(t) =f(x(t),x((t)),...,x(,(t)),t) for > to,
(3.1)

x(t) (t) for [,(t0), to].

Let z(t), to _-< =< , be solution to (3.1) correspoding to (f, 4) F .
Define q (z(to), z(-), -). Then q R+. Define Q the set of all
such q for solutions of (3.1) for (f, b) F X . Let N be given C mani-
fold in R+ with boundary ON. For q let Nr(q) be the tngent
hlf-plne to N t q and let Mr(q) be the tnget plane to M t q.
DEFro. A solution z(t), to <= <= ’, to (3.1) corresponding to

(f, ) F X is clled n F, N, extremal if
(i) qzM,
(ii) there exists neighborhood V of qz such that

VQNc$[.

THEOREM 5. Suppose F is quasi-convex. Let x( to <= tl be an F, N,
extremal corresponding to (, b) F X . Suppose t is a regular point for
(t) )(x(t), x(co(t)), x(o(t)), t). Then there exists a nontrivial
A. C. n-vector function ( t) defined on [/0, tl] satisj:ying the following"

(i)(t) --(t)](t)-- =x(t)(r(t))]..(r(t))(t) 0
on [to, t], where is the characteristic function for [to, o.(tl)]

(ii) ()..(z(),z(ol()), z(o()), ) d

(iii) _,-2_o(r_,(t)).,_(r_())i_(t) 0 a. e. on [cO+l_i(go),
for j= 1,2, ,u.

(iv) The (2n -t- 1)-dimensional vector (-(0), (), -()’,()) i
orhoonal o M a q (z(o), Z(l), 1)o. Proof of Theorem 5. In this section we shall give the proof of Theorem

5. However, o simplify he notation, we shall eonsider h.e ease with a single
lag (i.e., , 1.) o() 0() itt mos of he proof below. We shall drop
the subscripts on 01, o, gl and call them 0, o, , respectively. In Definition
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3.1, for example, we then replace f(x, Y, t) by f(x, y, t). It will be clear that
the same arguments given below will work with only slight modifications
for the case where > 1, finite. We shall return to the case of multiple
lags only when it becomes necessary (i.e., when the arguments for the case
g > I are substantially different from those for 1). Before beginning the
proof of Theorem 5, we first prove a lemma that will be needed.
Let m* be a nonnegative real-valued function defined on I with

m* L_(I).
DEFINITION 4.1. A family F is m*-quasiconvex if it satisfies the condi-

tions in Definition 3.1 with 3(ii) replaced by

(ii’) g(x(), x(o()), ; o) d < e for every P, r., r I’, and
anyA. C. z(), :I X, wih I() N m*() a. e. on I.
L .1. F ui-convez implie *m -u-coeve for ever nonneaive

m* L(I).
Note that the coaverse of Lemm 4.1 is not true.
Proof. Suppose F is quasi-convex. Let X be u given compact convcx sub-

set of G; let {fd *= ia F and e > 0 be given. Let m be any nonnegativc

funegion, m* (I). Then here exists > 0 such ghag m ) d

<e/(8,)forNI,(N) <,wtlereisgheL(l’)funeiottde-

pending on X, {fd in sgagemen a(i) of Definigion .1.
Since 0 is A. C. on I’, ghere exisgs > 0 such ghat ]0() 0() < ,

whenever t, s I’, It s] < . Let s0, s, s, be a partition P* of I’
with s < s+ such that ]s+ s < rain {, :}. Let x(t) be any
A. C. mapping on I into X satisfying 2(t) m*(t) a.c. on I. Then for

[si, si+d we have

x(t)-x(s)= (s) ds 5 n*(s) d< S

Since x(co(t)) is A. C. in. (x is A. C., is A. C. strictly increasing), we
have for [si si+l],

and letting a (s), we obtain
( t)

fs
t-o( t)

<= m*(a) d( m*() da
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since It s < /i min {il, ti2} and tT(t) 0(s,)l " 1.
From the quasi-convexity of F we get the existence of anf F for each

a pk such that g(x, y, t; a) = afi(x, y, t) f,(x, y, t) satisfies
3(ii) of Definition 3.1 with e replaced by e/2(p - 2). Let rl, r. be any two
points of I’. Adding these two points to P* and reindexing where necessary,
we get a partition So =< sl -<_ <= s+2 of I’ containing r, r2 and such that
s+- s< fori= 0,1,...,p-t- 1.
Then we have

But

f g(x(t), x(co(t) ), t; a) dt

f8+, g(x(t), x(oo(t) ), t; a) dt

f8’+’ g(x(t), x((t) ), l; a) dt

<__ e(x(,), x((s,) ), t; ) dt
iO

{g(x(t), x(co(t)), t; a) g(x(&), x((s.)), t; a)} dt

By 3(ii) of Definition 3.1 we obtain

Also,

g(x(si), x((s,) ), t; ) dt < e/2(p - 2)

forech i= 0,1,...,p-t- 1.
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Combining these two estimates with (4.1) and (4.2) one obtains

’2

g(x(t), x(o(t)), t; a) dt < e/2(p + 2) - e/2 e,

which proves the lemma.
To prove Theorem 5, let x(t), to =< -<_ tl, be the F, N, 4 extremal of

the theorem corresponding to (], q) F X 9. That is,

2(t) ](x(t), x((t)), t) for [to, t],
(4..3)

x(t) (t) for [00, to].

Let X be fixed compact convex subset of G chosen so that each x(t),
0 -<_ -<_ tl, is interior point of X, i.e., x(t) X. Denote by [F] the
closed convex hull of F and by [F] the set of elements of the formf ],
where f IF]. Note that [F] ] [F ]] is a convex set. Let
f =af represent an arbitrary element of IF] ] (i.e., a P,
/fl ia F). Let be the L.(I’) function of 3(i) in the definition of quasi-
convexity for X and f, fk,
Let m L(I) be such that

If(x, y, t)l <-_ m(t),

If.x(x, y, t)] <-_ re(t),

lf(x, % t)l <= re(t),

for all(x,y) X XXandt I’.

l](x, y, t)[ <= re(t),

l](x, .v, t)l <= n(t),

I],(x, , t)l <= n(t),

i 1,2,...,k,

Since F is quasi-convex, it follows from the definition and Lemm 4.1
that given. , 0 -<_ -_<- 1, there exists g(x, y, t) defined o G X G X I’ such
that"

(4.4) (] + etif + g,) F;

e(x, u, t)i < (t),

(4.5) a(, y, t)! < (t),

(x, , t)l < (t)

for all(x,y) X X Xandt I’;
’2

(4.6) g,(z(t), z(co(t) ), t) dt < e

for every solution z(t) of

i( t) i( z( t) ,z( o( t) ,t) -t- ef( z( t) ,z( o( t) ,t) -t- g( z( t) ,z( o( t) ,t)
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that is sufficiently near x(t) (so that z(t), z((t) X) and all [rl, r2] c I’
on which z(t), z( (t) are defined. (We shall show later that such solutions
actually exist.)

Hereafter, we assume that for each tif ([F] --/) and each e, 0 =< e =< 1,
such a g,(x, y, t) has been chosen.
Let M be an arbitrary but fixed positive function in Ll(o, to). Define

D(M) to be the subset of A. C. n-vector functions tiq on [oo, to] into R
satisfying ti6(t)l =< M(t) a.e. on [o, to]. The topology in D(M) will be
taken as the one induced by the sup norm in AC ([oo, to], R"); that is,

ti4, sup {l ti4,(t)l:t [o.,o, to]}. Thus,

D(M) { AC ([oo, to], R’)" ti(],(t)i -_< M(t) a.e. on [o, to]}.

Note that D(M) is a convex subset of AC ([o, to], R).
Recall that 6 ,, hence 6(t), [o, to], is in G. Therefore, for a given

ti D(M) we have (6 + e) for e sufficiently small. In fact, since
x(t), eo =< -< h, is in X, we have 6(t), o =< =< to, inX. Thus given
ti D(M), (t) + eti(t), o:o <- <- to, is in X for e sufficiently small.
We now "perturb" system (4.3). Let tit R, tiC D(M), f ([F] ])

be arbitrary. Then consider, for 0 -< e -< 1, the system

(4.7)

z(oo(t), t) + t)
+ g(z(t, ), z(o:(t), ), t) for > to,

z( t, e) $( t) -- eti( t) for [oo, to].

Note that it follows easily from previous definitions that there exists
m L(I) such that [i(t, e) <- m*(t) for solutions sufficiently close to
x(t).
LEM 4.2. Let x( t) be the solution to

5( t) ]( x( t) x( co( t) t) for [to, t],

x( t) 5( t) for [oo, to].

Let tit R be given and let X be a compact convex set containing x( t),
o <- <- t in its interior. Suppose Y(x, y, t) and Z(x, y, t; ) are defined
for (x, y) X X X, I’, 0 <= e <- 1, and satisfy (4.5) for some
Let Z satisfy (4.6) with g, and f replaced by Z and Y. Let A D(M).

If for each , 0 <-_ o <= 1, the solution z( t, ) to

i(t, ) ](z(t, e), z((t), ), t) + eY(z(t, ), z(o(t), ), t)

+ Z(z(t, t; for > to,

z(t, e) x(t) --b eA(t) for [o:o, to],

exists on [to, r] and is interior to X on [o:0, r], then there exists > 0 such
that for each e, 0 <- e < . <- o z( t, ) exists on [to, t -t- e tit I], and is in X.



22 H.T. BANKS

Proof. Since x(t), to =< =< t, is in X, it follows from slight modifications
of Theorems 2.1 and 2.8 in [4] that given t R, there exists co’ > 0
such that x(t) may be extended to [to, t + eo’[ t I] with x(t), to , =< t
-+- eo’[ t [, in X. Let e min co, co’}, where eo is as stated in the hypotheses
of the lemma. Then for each e, 0 =< e < e, we have z(t, e) exists on [to, r]
and is in X.
For [to, r] we have

Hence,

z(t, ) x(t) eh(to) -t- {](z(s,e),z(o(s), ), s)

+ Y(z(s, ), z((s), ), s) ds

+ Z(z(s, ), z((s), ), s; ) ds.

[(t, ) z(t)[ __< X(to)[ + m(,’)ll z(,,) ()1
(4.s)

+ z((), ) x(())]} d + (s) ds + .
Let p() sup {[z(s, e) x(s)]’o s r}. Then (4.8) becomes

z(t, e) x(t) A(to)l + p(e) 2m(s) ds + e (s) ds + e

+ ()z(t) + (t) + ,
where sup {IA(s)[’wo s to} nd (t) 0 for < to, (t)

(s) dsfort to,withN m +.
Since z(t, e) x(t) + cA(t) for [wo, to] nd since - is nondecresing,

this lst estimate lso holds for z(w(t), e) x(w(t) whenever [to, r,].
Using these estimates in (4.8) gives

z(t, ) z(t) I(to) + (t) +

+ m()21 + o()2() + 2() + 1 d

e ]A{1 + 2(t)} + e{2(t) + [2(t)]/2}

+ { + 2(t)} + ()[2(t)]/2.
Again, this estimate lso holds for z((t),e) x((t)) whenever
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[to, r]. Using these gin in (4.8) yields

[z(t, e) x(t) =< A 1 + 221(t) -t- [22t(t)]/2}
-t- e/2(t) -t-[2f/(t)]2/2 + [2(t) ]3/3 !} -t- e2[1 -t- 2(t) -t-[2(t)]/2}

It follows that

(4..9)

-t- p(e)[2(t)]3/3 !.__
Ce

M (t)

for all integers lc 1, 2, .... For each fixed e, we let k -, oo in (4.9) which
gives for [to, r],

(4.1o) lz(t, e) -x(t)l<= {(1 -t-IIA]]) +
whenever r h + e] t ], where B (h + e It
Now define C {x(t)’w0 5 h + e t ]} and let d distance (C, OX).

Then d > 0. Choose e e such that 0 < < e implies {e(1
+ e} e2" < d/2. Note that is uniform in A and t as long as A, t range
over bounded sets.

It follows that for 0 N < e, z(t, e) exists on [t0, h + e t ]] where it is
in X. Suppose not. Then there exists 0 < e < e, such that z(t, e*)
exists on [to r,] with z(r,, OX and r, h + e]t [. From (4.10)
we have z(t, e*) x(t) < d/2 for to r,,. In particular, z(r,,

x(r,,) < 4/2. But distance(x(r,,), OZ) g since r,, h,
h + et . This implies distance(z(r,,, e ), OX) d/2 which is

contradiction.
LEMM 4.3. For e > 0 suciently small the solution z(t, e) to (4.7) exists

on [to, h et] and has the form
(4.11) z(t, e) x(t) + ez(t) + o(e),

where z satisfies the linear variational (differential-difference) equation

(t) (x(t), x((t) ), t)z(t) + L(x(t), x((t)), t)z((t)

(4.12) + f(x(t), x(o(t)), t) for [to, h + et],

z(t) (t) for e [o, to].

Proof. Consider first the equation

(t, ) ](y(t, ), y((t), ), t) + f(u(t, ), ((t), ), t)

for > to,

y(t,e) (t) +e(t) for t [o,to],

for 0 e 1. From Theorem 2.15 in [4], there exists eo > 0 such that for



4 II. T, IIANKB

each e, 0 _-< < co, the solution y(t, ) exists and is inX on [to, r]. Applying
Lemma 4.2 with Y 6f, Z 0, and A 6, we obtain that there exists
e. > 0-such that for 0 =< e < e2, y(t, e) exists on [to, tl q- e216t I1 and is in
X. Put W(x, y, t; 3") ](x, y, t) nt- 3"6f(x, y, t), where x and y are n-vectors,
and and 3" are scalars. Then if x(t, to, 4, 3") is the solution to

2(t) W(x(t), x(o(t)), t; 3") for > to,

x(t) (t) for [o0, to],

we have y(t, e) x(t, to, + e60, e) and x(t) x(t, to, , 0). Note that
W is C in 3’ and has the same smoothness w.r.t,. (x, y, t) as the members
of F.

Consider next

.v(t, ) z(t) x(t, to, + 4,, ) x(t, to, 4, o)

(4.13) Ix(t, to, -t- e, e) x(t, to, , e)}

+ {x(t, to, 4, ) x(t, to, , o)1.

From extensions of well-known theorems (see [7, Chap. 9]) it follows that
x is G,teaux differentiable w.r.t. and dx[t, to, q- s64, 3"; 6] is continuous
in t, s, 3", where d is the Gteaux derivative of x w.r.t. in the direction, of
6. Furthermore, as a function of t, z(t) d[t, to, q, 3"; 6] satisfies

i(t) DW[x(t, to, , 3"), x(o(t), to, , 3"), t;

(4.14) for > to,
z(t) 64)(t) for G [o0, to],

where DW is the Fr6ehet differential of W w.r.t, x (considering W(x(t),
x(o(t)), t; 3") as a functional in x on C[o0, h + 2 lt I]).

Hence, considering the first term in (4.13) we obtain

x(t, to, -t- di4), e) x(t, to, , e)

{,x[t, to, , ; ] + o()/ dx[t, to, 4, ,; 4] + o().

From the continuity of dx it follows that the term o(e) is uniform in on
[to, h / = t I]. That dx is homogeneous of degree one in 64) follows from
the definition of Gteaux derivative. In fae, examining (4.14) one sees
that dx[t, to, (, 3"; 64)] is actually linear in 64). Thus ig follows that if 64) were
not fixed but allowed to range over [64)1, ..., 64)z] D(M), the convex
hull of a finite collection of elements in D(M), then the term o(e) above
would be uniform in 64) in this set.
Now

,dx[t, to, ,, e; 61 ed[t, to, , 0; 6] -t- e{dx[t, to, , ,;
dx[t, to,
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where the second term is again uniformly o(e) for in [to, tl + el tit I] and

Thus we obtain

(4.15) x(t, to, ( -t-" di4), e) x(t, to, , ) edx[t, to, , 0; i4)] -- o(e),

where as a function of t, x(t) dx[t, to, , 0; i4)] satisfies

’2(t) DW[x(t), x((t)), t; 0" tix] for [to, tl -t-" e2 it I],
(4.16)

x(t) 4(t) for [o, to].

Returning to (4.13) we next consider the term (t, to, Jp, ) x(t, to, (, 0).
Again from extensions of well-known theorems (see [7]), we get that
Ox(t, to, , )/0, exists (in fact, is continuous in tand e) and satisfies (as
a function of t) at e 0,

OW2(t) DW[x(t), x((t)), t; O" x] + (x(t), x((t)), t; O)

(4.1.7) for [to, t + e2 It I]

fix(t) 0 :for [o,to].

Thus we have
Ox(4.18) x(t, to,h,e) x(t, to p, O) e- (t, to p, O) -- o(e),

where o(e) is uniform in on [to, t
In fact, if one considers the previous discussions with f not fixed, but

ranging over the convex hull of a finite collection in [F]- ], i.e.,
f [f, f], then one can show that the terms o(e) are uniform
w.r.t. f in this set.
Combining (4.13), (4.15) and (4.18) we have

y(t,e) -x(t) dx[t, to,, 0;] + (t, to,,0) + o(e)

z(t) + o(),
where z(t) satisfies

ow (x(t) z((t))t;o)(t) DW[x(t), ((t)), t; 0: z] +
for [to, t + e t[],

z(t) t4)(t) for [oo, to].

It is easy to show that

DW[x( t) x(( t) ), t; O" 7]

](x(t), x((t)), t)v(t) + i(x(t), x((t)), t)((t))
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and

O._W (x(t) x((t)) t;O)= f(x(t) x(o(t)) t).
05"

Thus we have that there exists e. > 0 such that for each e, 0 =< e <
y(t, e) exists on [to, tl + e2 t i], isin X, and has the form (4.11) where
satisfies (4.12) and o(e) is uniform in on [to, tl + . t ]] and in i4),
as described above.
For 0 =< e =< 1, we consider next the equation

(t, e) ](z(t, e) z(oo(t),e ), t) -t" e6f(z(t, e),z(co(t), e), t)

A- g(z(t, e), z(o(t), ), t) for > to,

z(t, e) (t) A- e6(t) for [oo, tol"
Again, by Theorem 2.15 in [4], there exists 0 > 0 such that for each
0 <___ e < 0, the solution z(t, e) exists and is in X on [to, r]. Applying
Lemma 4.2 with Y 6f, Z g, and A tO, we get that there exists
ea > 0 such that for each e, 0 <= e < ca, z(t, e) exists on [to, t "4- ea]t
and is in X. We take ea -< 2. Next, for any [to, t + e3 6t ]], consider,
for0 <= e< ca,

z(t, ) y(t, ) {](z(s,e),z(o(s),e), s) ](y(s, ), y(o(s),e), s)} ds

+ e {6f(z(s, e), z(o(s), e), s) 6f(y(s, e), y(w(s),e), s)} ds

+ ((, ), (o(), ), ) .
The last erm above is o(e) uniformly in and in , if, as long as
is in some bounded seg and f [fl, f] (see ghe diseussior following
this proof). Hence we have

Iz(t,e) y(t,e)! <= {m(s)lz(s,e) y(s,e)i -k-m(s)lz(w(s),e) y(w(s),e)l} ds

Thus, for [, h -i- el I], we have

(4.19)
-f- iz(w(s), e) --y(w(s), e)i} ds-at- o().
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Recall that re(t) depends on f, f, ..., f, , where 8f
Hence if 8f [Sf, ..., 8f.,,] for 8f, ..., 8f fixed, then re(t) will be in-
dependent of the particular 8f in this set. Also recall that z(t,
on [o, to]. Put o() sup {[z(s, e) y(s, ) ’to s t + 8} and

() re(s) ds for > o, () 0 for N o. Then (4.19) becomes

z( t, e) y( t, e) (1 + 2e)p( e)2( t) + o(

for [to, t + e[ t ].
Since is nondecreasing and z y on [wo, t0], the above estimate also

holds for ]z(w(t),e) y((t), e)[whenevert [to, t + e t ]]. Sub-
stitution of these estimates in (4.19) yields

Again his estimate holds for (e(), e) ((), e) and he erm o(
is uniform as described previously. epeaed application of hese arguments
gives

fork 1,2, ,and all,in [, + e I]. Sinee,() N ,(tt
where D is a eonsgang, for in a bounded seg, ig follows
(, e) o(e) for [,, h + eal ], where he o(, and f as described above.
Combitfing ghis wigh ghe previous results for y(, ) gives ghe desired

results and eomplees he proof of emma
Remr. If is allowed go vary over some bounded subse of R, hen

ghe o(e) erm is also uniform in .
Suppose hag f, ..., f are fixed elements of [F]

exisgfi F,j 1,2, ...,k, andveeors = (, ..., ) P,
i 1, 2, ..., m, sueh ha f if . For
in P leg

By the quasi-convexity of F and Lemma 4.1 we have"
For every fixed e, 0 e 1, and fl P, there exists g(x, y, t;

defined on G X G X I’, C in x, y, and measurable in t, such that
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t; t )t <
0g. (x, y, t; ) <(t)

Og (x, y, t; [) < (t)

for every ff I’ and all (x, y) in X X X, where LI(I’) and
depends on X, fl, -.., f, ..

’.3. g(z(t), z((l)), ; ) d < e forevery solution z() of

-I- ef -I- g, suffieiently near x() and. every interval [r, r] I’
on which (), (0() are defined.

4:. If/B’} is a sequence in P’ such ha i -- P’ as j -- , then
I’{,(z, g, ; i)} converges in measure on to (x, , ; ) for every

fixed(x,) X Xand,0_<_ e_<- 1.
For any given funegions f, ..., f, in IF] , we assume that in

choosing he g, (for every f [F] and e in [0, 1]) such that (4:.4:),
(4.5) and (4:.6) hold, we choose the function ,(z, , ; ) as described
above whenever if is in [if, ..., f,].
Now consider again he proofs of Lemmas 4.2 and 4.a for (, 4, f) in

N B [4, "’", 4] [f, "’", f,], where B is a bounded, subset
of R. Studying Theorem 2.15 in [4] and Lemma 4., one sees gha ghe

solution to (4.7) exisgs and is in X on [,, r] for 0 _<- e < -, where
and r depend on E, bug not on the individual members (i, 4, if) in E.
Furghermore, in ghe proof of Lemma 4.2, the function 2() depends on E
and not (, 4, f) N. I-Ienee the proofs of Lemmas 4:.2 and 4.g can be
carried out uniformly in (, 4, f) E. From this i follows tha the
erm o(e) in (4:.11) is uniform in and in (, 4, f) on E, when E is as
described above.
For in I’, let 3_(, ) be a matrix solution to

A(,) 0 for > ,
h(t, t) I,

0A (s, t) q- A(s, t)](x(s) x(co(s)) s) 0 for s [o(t) t],

oh (s, t) + A(s,
0’3

+ A(r(s), t)f(x(r(s)), x(s), r(s))i’(s) 0 for s [to, co(t)].
--1Note that it follows from Lemma 1 and the hypotheses on and r o

that the coefficients in (4.20) are measurable. Existence of a solution to
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(4.20), which is an advanced differential-difference system, is guaranteed
by Corollary 2.2.
Applying Theorem 3, we get that the solution iiz(t) of (4.12) has the

form

(4.21)
A(r(s), t)],,(x(r(s) ), x(s), r(s) )i(s)?(s) ds

-{- A(t0, t)tiO(t0) T ftt A(s, t)f(x(s), x(a(s) ), s) ds

for > to. From (4.11), which holds on [to, t -t- et], we obtain

(4.22)

Now
tTt

x(t + t) x(t) + ](x(t), x(,(t)), t)t

x(tl) .-}- ](x(h), x((t)), t)t "k- o(e)

x(t) + ]t + o()

since t is a regular point for ](x(t), x(w(t)), t). Note that the o(e) term
is independent of t, 6, f and is uniform in t in a bounded subset of R.
From (4.12) it follows from standard theorems on dependence of solutions
on initial data and parameters that z is uniformly continuous in and
f whenever (, f) [, ..., 6t] X [f, ".-, f]. Hence z(t + et)

z(h) 0 as e 0 uniformly for (t, , $]) in B X [, t]
X [f, f], where B is a bounded subset of R1. Therefore,

ez(t -- et) ez(h) -t- e{6z(t + et) iz(tl)} ez(t) + o(),

where the term o(e) is again uniform in (it, iO, if) as described above.
Hence, (4.22) becomes

(4.23) z(t -t- t, ) x(t) -t- e{z(t) -t- itl} -t- o(e).

Since the right side of the first equation in (4.7) is in F and since
-t- die for e sufficiently small, we have that qz (z(to, e),z(t
dit, e), t - etit) is in Q. Furthermore,

q (,(to) -t- eh( to), x( h -- e{ z -t- t]} -- o( ), t +
(x(to), x(h), t) -t- e(6(t0), tz -t- t}l, it) -{- o(e);

thus we see that

(4.24) q q, -t- e(6z(to), ,z(tx) -t- 6t], 6t) + o(e),

where 6z(t0) 64)(t0), 6z is given by (4.21), and} =/(x(t), x(co(tl)), t).
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Now consider the convex set A =- R D(M) (IF] ]), i.e.,

A {(tit, ti, tif)’tit R, ti D(M), tif [F] ]}.
If til, ti} and till, tifm} are finite subsets of D(M) and IF]
then we define a subset of A as follows"

RA({}, {L.}) -= [ ,..., ] [], ..., f]
{(tit, ti4,, tif)’tit R, ti4) [ti4, ,..’, tiq],

Then A.({ti$i}l *, {tifj}l’) is a convex subset of A which can be iden.tified
with R X P* pro. Thus, in the future when referring to a topology on
A({ti$}, {ttfj} ), we shall mean the topology induced by the Euclidean
topology in R+*+m under the abovementioned identification.
From previous remarks, we have that given tit, ti$, tif) in A, there exists

e0 > 0 such that the solution to (4.7) exists for 0 =< e <- e0 and is such that
(4.24) holds. This gives us a mapping from A to R+1 depending on e

defined by

(4.25) h(tit, ti, f) (q %)/e L(t, ti, tif) + A(bt, ti, tif, e),

where L(tit, tiC, tif) tiz0, tiz + tit], tit) and A -+ 0 as e -+ 0. Note that
L is linear and independent of e.

LEMM 4.4. For every compact C A({tii}, tifi}’)thereexistsaneo > 0
such that for each fixed e, 0 <= < e0, the mapping h given in (4.25) is

defined and continuous on C.
Proof. Given C A({ i}, {if} ), C compact, there exists e0 > 0 such

that for each fixed e, 0 -<_ e < e0, the solution z(t, e) of

i =.-t--etifA-g for tG [to, tA-
(4.26)

z (A- eti for t [coo,to],

exists and is in X for each (tit, ti, if) in C. (This follows from Lemmas
4.2 and 4.3 and the remarks following these lemmas.)

So let e be fixed, 0 < e < e0. Let z(t,e) z(t) and z(t,e) z(t)
be solutions of (4.26) corresponding to (tit, ti4, tiff) and (tit, ti4, tiff) in C.
Then from (4.24) we have

q q + (tiq)(to), tiz(tx) -- tit]l, tit) -4- o(e)

for i 1, 2. Since h(t, , f) h(tit, ti, tiff) q q
we may make the following observation: From the way in which the
solutions depend on tit, tit, to show h continuous on C it is sufficient to
show that solutions of (4.26) corresponding to tit, ti, tifl) and
with tit fixed, can be made arbitrarily close by taking (tit, ti, till) and
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(tit, ti, tif2) sufficiently close in C. That is, if

where f =a a (a,..., a) P, j 1, 2, ..., m,
then it is sufficient to show that for fixed and fixed t,

z(t, e; t, ’, ff) -- z(t, e; t, r, f)
uniformly on [t0, t + et] as v , 7 fl, for t, ’, ff) nd t, r, f)
in C.
To show this, let z(t) z(t, e) and y(t) y(t, e) be solutions correspond-

ing to (t, r, f) nd (t, ’, ff), where (, fl) and (v, 7) are in ,
some compact subset of P X P. Then z(t), 0 t et, and y(t),
w0 t et, are in X. For t0 r t et we huve

z() y() lr(t0)

+ (f(z(t), z(w(t)), t) f(y(t), y(w(t)), t)l dt
to

I(r).
i=l

Now

I(’)l {f(z(t), z((t)), t) f(y(t), y(w(t)), t)} dt

-< m(t){I z(t) y(t)l / z((t)) y(co(t))l} dt,
t0

where m is an Llfunction depending on X, ], and fl, fk. Furthermore,
it is not hard to show that there exist constants K1 nd K2 such. that

"t- g m(t){I z(t) y(t)] + z(,,(t)) y(w(t))l} dt.

Next consider

113(’)[ {g(z(t), z((t)), t; [) g(y(t), y((t)), t; )} dt
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For fixed (x, y) in X X X and e in [0, 1], we have g,( x, y, t; )
--+ g,(x, y, t; ) in measure as a function of on I’ if -- in P. From this
and the fact that each g, is dominated by an integrable function, we obtain

f g,(x, y, t; ) g(x, y, t; ) dtlira 0

for E* c I’, E* of finite mesure. Thus, for ech fixed (x, y) X X
and 0 < e < 1 and r [t0, t + et], we have

lim (, , ; ) (, , ; 7)1 d 0.

In proof similar to that of Lemm 4.1, one cn show that this implies

lim (((), (()), ; ) ((), ((()), ; ) d 0

for ny solution (t) of (4.) which is suciently near x(t).
Hence, in prticulr, the bove holds wih (t) replaced by z(t). Thus,

I()1 l.(z(),(()), ;) -.((),(()), ; )! d

,(z(t), z((t)), t; ) ,(z(t), e((t)), t; )i at
t

where depends on X and A, "’", f, ]. herefore,

where N(, ) 0 as B.
Combining ghese esimages on I, I and I yields from (4.27),

+ m(t){t z(t) y(t)[ + z((t)) y((t))i} dt

+ K ] l+ g m(t){i z(t) y(t)[

+ z((t)) y((t))l} dt



PROBLEMS WITH VARIABLE TIME LAGS 33

(t) {I z(t) u(t)

-k- z(w(t) y(co(t) )i} dt

for any r [to, t -t-
This my be written

(4.28)
z(r) y(r)l <= H(3, ) + o’(t){I z(t) y(t)l

+ Iz(w(t)) y((t))} dt +K,[- nl,

where H(, ) 0 s y and is a nonaegtive integrble func-

tion. Leing ()

8Ilp [ () ()I’ [, 1 + 1/, we have ghag (4.28) beeomes

This estimate also holds for
Usig these in (4.28) and repeting the procedure as in other proofs

ia this paper, one finds

[z(r) y(r)] {tI(, ) + K I v I}e:z() + p{2P(r)}+/(K + 1)!

for K 1, 2, This estimate holds for any r [t0, t + t]. Since there
exists a constant B such that 2(r) B on this interval, it follows that
[z() y(){ 0 s , w , uniformly on [t0, t + e6t], which
completes the proof of Lemmu 4.4.
Note that h is not necessarily continuous in e since z(t, e), the solution

of (4.7), is not.
It is easy to see that the mapping L, the linear prt of h, which is

independent of e, is continuous on A({6}, {6f} Furthermore, for
fixed (6t, 6, 6f), we had that A(6t, 6, 6f, e) 0 as 0. From previous
remarks it follows that A( 6t, 6, 6f, e) 0 as 0 uniformly in 6t, 6, 6f)
on any given compact subset of A({6O.}, {6))}). Also, for fixed e suf-
ficiently small, A is continuous on such subsets.
Now let K L(A). (K is the set of first order terms from the end-

points of perturbed solutions.) Since A is convex and L is linear, we get
that K is a convex subset of R"+ which contains the origin (corre-
sponding to (6t, 6, 6f) (0, 0, 0) in A).

In reference to the manifold N with boundary M given ia Theorem 5,
we shall denote by Nr and Mr, respectively, the sets Nr(q) and Mr(q).
Then Mr is the edge of Nr. Consider next the subse of R:"+ given by
Nr q {p R"+’p p* q, where p* Nr}, which is half-
plane with its edge through the origin.
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Then we have under consideration two convex subsets of Rn+l, namely,
K and Nr q, which both contain the origin.
LEMMA 4.5. The sets K and Nr q. can be separated by a hyperplane

through the origin.
Proof. Since N is a C manifold, there is a homeomorphism h* from a

neighborhood U of q in Nr onto a neighborhood of q in N of the form
h*(y) y + A*(y), where A*(y)/I y q - 0 as y -- q in U. Now
suppose the lemm flse. Then the carrier planes of K nd Nr q re
in general position (i.e., the union of the crrier planes is not contained
in ny hyperplne), nd there is point q’ which is relative interior point
of both Nr q ad K. Let Ua, be neighborhood of q’ with compact
closure , in the carrier of Nr q such that , c (N- qx) , the in-
terior of Nr q. Let m dimension K, 0 -<_ m =< 2n -4- 1. Then there
exists a simplex K, of dimension m such that q’ Km and Km c K. Let
pl, p,, p+l be the vertices of K, i.e., K [pl, p+l]. Since
p K, there exist A,, (Sty, 8, tiff), i 1, 2,...,rod- 1,
such that L(,) pi. Putting Sm [’1, ’m+l] we have that Sm is an
m-simplex, S c A tii} +1, tifd +1). S is compact and Km L (S)
by the linearity of L. We assume the functions g corresponding to
tif [tif1, 8f+] arc chosen in the manner indicated previously. Then
from Lemm 4.4 it follows that h, restricted to S, is defined and con-
tinuous for fixed e > 0, e sufficiently smull. Furthermore, for e sufficiently
small, q -4- eq, c Uq. Hence, for fixed > 0 sufficiently small, we cgn

define a continuous mapping on S S X q, into R:+ by

(s, q; ) h(s) _1 h*(q -4- eq) -t- _1 q

L(s) q zc A(s, e) 1_ A*(q, - eq)

for s S, q q,; or v(z; e) =5() - (, e), where (s, q),
L () L(s) q, and (, e) A(s, e) A*(q + eq)/e.
From the properties of A nd A*, it follows that (, e) --. 0 as -- 0 uni-

formly on S.
Since the carriers of K and N. qx are in general position and since

q’ L(S,) [’lUq,, the image ors S X q, underI() L(s) q
contains a sphere B about the origin in R+. That is, Bo or. L(S).
From the linearity of/ we have that the kernel of L is a linear manifold

and hence it follows that there is a compact convex subset S* S such that
L restricted to S* is a homeomorphism from S* onto L(S*) and such that
/(S*) eontains a sphere B, in R:+. We denote this restriction by _*.
We then consider r(z, e) on S* and show that for each fixed sufficiently

small, there exists S* c S such that r(z, e) 0.
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On S*, r(a, e) =/,*(a) + 5(, e). Choose el >0 such that e < el implies
[5(, e)[ < o’ for a S. Define for p /,(S*) and e < e, fixed, the con-
tinuous mapping H of/,(S*) into R2+’ by [I(p) r(/7,*-(p), e) q- p.
Then

IH,(p)[ I-r(./,*-(p), e) -t- L*(/-*-I(p))I I-2x(L*-"(p), e)l < p’,
so that H maps the convex compact
well-known theorem (Sehauder-Tyehonoff), H, has a fixed point. That is,
there exists/5 L(S*) such that g,(p)
which gives r(, e) 0, where L*-1(/5)

_
S*. Hence, for e > 0 suf-

ficientl small, there exist s S,, and q /2q, (depending on e) such that

r(s,q;e) 0

or

L(s) nt- A(s, e) q -t- 1_ A*(q, -t- eq).

Hence, there exists q Q such that (see (4.25))

q q, 1 A*q -I- (q + eq)

or

q q -t- eq -t- A*(q + q)

h*(q + q).

Recall that q 0q, (N-- q) so that q -4- eq Nr. Since h* is a ho-
meomorphism, there exists q, Q fl N, q, arbitrarily close to q, which
contradicts the fact that x is air F, N, extremal. Therefore, K and Nr
q can be separated.
Thus, there exists a hyperplane r of dimension 2n through 0 such that K

is contained in one of the closed half-spaces defined by F and Nr q is
contained in the other.
Let r/be a nonzero normal vector to r such that

(4.29) n.p -< 0 <_- n.w

forp Kandw Nr- q.
It is easily seen that Mr q r. For let ( Mr q. Since Mr q
Nr q, we have /. >- 0. But Mr q is a plane through the origin.

Hence, - Mr- q, and so v’(-() ->- 0. Thus, . 0 when
( Mr q and therefore, 17 or Mr q r.
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This gives orthogonal to Mr q or y orthogonal to M at q.
Let (bo, bl, al) be the normal in R+, where b0, b are n-vectors and

a is a scalar. From the definitions of K and 7, it follows that

bo.Zo bl.(z ) at 0

for all p (Zo, z W t, ) K. This may be written (see 4.21)

bo.(to) + b. A(r(s), tl)f(x(r(s) ), x(s), r(s) )(s)(s) ds

for arbigrary , ,
are arbigrary and independeng of each ogher, (.gO) gives

{b0 + bth(t0, t)}.(t0)
(4.31)

+ bh(r(s), h)](x(r(s)), x(s), r(s))(s)(s) ds 0

for arbitrary D(M)

(4.32) a + b. 0,

(.aa) b(, t)j((), z(()), ) d o

for arbitrary f IF] ].
At this point, we return to the case of lags (t) O(t),

j 1, 2, . As was pointed out previously, 11 of the preceding argu-
ments can be carried out for multiple lags. Statement (4.32) remains the
same. The inequality (4.33) becomes

(.a) b(, )g((), (()), ..., z(()), ) o

for arbigrary g IF] . However, now A(, ) sagisfies ghe system (1.a)
(see heorem a) wigh

and
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Also, tiz(t) satisfies (see Lemma 4.3) the equation

() ]()z() + ()z(,())
’--1

+ f(x(t),x((t)),-..,x((t)),t) for t [t0,t + e] t]],

z(t) (t) for [(to), to].

Hence, using Theorem 3, we see that statement (4.31) becomes (using the
pproprite representation for z in place of (4.21))

{bo + bh(to, 6)} .(to)
(.35) f.+ bA(r(s), t)](r(s))(s)(s) ds 0

= (to)

for all D(M), where now D(M) {6 AC([(to), to], R):
a6(t)l M(t) a.e. on [(t0), td}. Now define

(4.36) (s) bA(s, t), s [to, t].

Then (4.35) becomes

bo + (to)} .(to)

for all D(M). his gives

(4.a) (r())f(r())4()() d N 0
(to)

for all 6 D(M) with O(to) 0. Taking D(M) with O(t) 0
on [_(t0), to] and applying Lemma 2 of 1, this gives

(4.39) (r(s))],(r(s))(s) o

almost everywhere on [(to),
_

(to) ].
Taking 6 D(M) with 6(t) 0 on [_(to), td and applying Lemma 2

again and using (4.38) and (4.39)), we obtain

(r(s))],(r(s))(s) + t(r_(s))]_(r_(s))_(s) 0

a.e. on [_(to), _(to)].
Continuing this procedure gives statement (iii) of Theorem 5. It follows

that (4.37) reduces to

{bo -t-- (to)}.4(to) -< 0
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for t D(M), which implies

(4.40) b0 -t- (t0) 0.

Condition (ii) of Theorem 5 follows immediately from (4.34) by choosing

f f -/ for any f F. Since bl is constant, it follows from the equation
for A that satisfies (i) of Theorem 5. Furthermore, (tl) 0. For
(t) 0 implies bA(t, t) bl 0, which gives al 0 and b0 0 from

(4.32) and (4.40). This implies v (b0, b, al) 0, which is a contra-
diction. Hence b is nontrivial. (In fact, (t) 0 for in [1(tl), tl] since

A(t, tl) is nonsingular on this interval. Even if 1(tl) tl, we have
(t) 0; hence by continuity of , b(t) 0 on [a, t] for some a < tl.
Hence, the condition (ii) of Theorem 5 is nontrivial.)

]?inally, from (4.40) we have (t0) -b0. Also, A(tl, t) I gives
(t) 51. And from (4.32) we get a -bl./1 -b(tl).l. Thus, we

have (-(to), (t), -(tl).f) (b0,51, al) v is orthogonal to at

%, which is condition (iv) of Theorem 5. This completes the proof of the
theorem.

5. Control problems as extremal problems. In this section we show that
the control problem formulated in 2 can be considered as an extremal
problem as given in 3. Theorem 4 will then follow from Theorem 5.
Assume that we have the control problem as formulated in 2. Recall

that T is a C manifold in ( I’, 4, 1, ., . are (n 1)-di-
mensional vectors, and .(4, 1, u, t) .(4, :1, , u, t), where u
is an v-vector.
Let 5 be the class of elements of the form ((, u, 2, tl), where
(i) ua, 6 .,
(ii) tR1,t > to,
(iii) : [to, t] - ( R"-a is a solution to

(t) O((t), (o1(t)), (,(t)), u(t), t) for [to,
(5.1)

2(t) $(t) for [o(to), to]

satisfying (2(t0), 2(tl), t) T.
The problem then becomes" Find (* * * *u, 4, tl )5 such that

J[* u* 4" t*] < J[, u, 2, t] for all ($, u, 2, tl) . That is, minimize J
over .

Let ($*, u*, 4", tl*) be a solution to this problem. Put

[x*(t))x*(t) - ’2*(t) (to) <__ <__ t*,
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where

Define

where

o$

_
Ux (t) - (*(),*(o()), , (o()), (),) a
for [to,t1*],

o$
x (t) =-- 0 for [o(to), to].

(x, Y, ,, t) {a(’ ?’ ’ t))\(, ?, u, t)

x= (x,z) R0-G,
y. (y0, .) R X ,
Y (yl,"" ,y).

Then the system (5.1) becomes the n-system

.j 1,2,...,v,

2(t) ((x(t),x(co(t)), ,x(co(t)),u(t),t) for >- to,
(.2)

x(t) (t) for [(to), to],

where (0, 4). Defining I, {. (o, 4), , , o
A C ([o(to), to], R1)}, we have 4, implies 6 A C ([o,(to), to], G). By

the ubove definition, we have is an n-vector function defined or

GXGXRvXI.
iDefine F {f(x, Y, t):f(x, Y, t) (x, Y, u(t), t), u - tl}. It follows

from the Borel measurability of in u, that each f in F is measurable
on I’.
Let R’+ be considered as the space of parameters (n, v, o, , ) where

no, o, are scalars and , are (n 1)-vectors. Then define N R+1 to
be all (o, , o, , ) with (, , r) near (2*(to), 2*(t*), t*) satisfying

(, , ) T, v= 0, o =< xO,(t,).
l)cfie M to be the above set with the last inequality replaced by equality.

CThen N is a manifold with boundary
Under the above definitions and assumptions we have he following

lemmu.
LEPTA 5.1. X* is an F, N, extremal.
Proof. We have

qx" X*( tO) X:( tl$) ti $)

(x*(to), *(to), x* (t,*), *(t*), t*).
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Clearly, qo M. Furthermore, there is a neighborhood V of q. such that
Q l N l V c 2lr, where Q is the set of all endpoints q corresponding to
solutions of (5.2) for u ft, . Suppose not. Then in any neighborhood
of qx. there exists q, Q such that q, is in the interior of N. That is, there

),with( ,u,x,tl’) ,suchthatexists (’, u, x, t’), where x (x’, 2’ ’ -’

x’ is a solution of (5.2) corresponding to u’ ft, 4)’ with (x’(to),
’(x t’), t’) in the interior of N. This implies that x’(t’) < x*(tl*), which

implies ($*, u*, 2", tl*) is not minimizing over 5, contradiction.
Thus x* is an F, N, q, extremal.
To obtain Theorem 4 from Theorem 5, it remains only to show that

F defined above is quasi-convex. Taking f(z, t) f(x, Y, t)
(x, Y, u(t), t), where u and z (x, Y) is iI the compact convex

metric space Z X X X, and applying lemma of Gamkrelidze (see [1,
Lemma 4.1]), it is not hard to show that F is qusi-coIvcx.

Thus, we hve Theorem 5 holds with x* the F, N, extrcmal on [to, t_*]
corresponding to (f*, *) in F q, where

f*(x, Y, t) (l(X, Y, u*(t), t),

4,* (0, g,*).

We show now that Theorem 4 follows from Theorem 5. Taking (t) from
Theorem 5 and calling it (t) ((t), (t), ..., -(t)), we see that
0 0 since O/Ox O/Oy 0. Hence (t) const. It also follows
from (i) in Theorem 5 that (t), -(t) satisfy the equations in (i) of
Theorem 4. Statement (ii) of Theorem 4 follows immediately from (ii) of
Theorem 5. Furthermore, since O/Oy 0, j 1, ,, (iii) of Theorem
4 follows from (iii) of Theorem 5. Under the above definitions, (iv) of
Theorem 5 becomes:

(5.3) (-(to), ,(t*), -,(t,*).0,*)
is orthogonal to M at

q. (x*(to), x*(t*), t*) (0, 2*(to), x*(t*), 2*(t*), t*),
where o, b
From the definition, of N and M, it is clear that whenever (vr, ., r,) is

any tangent vector to T at (a?*(t0), 2*(t**), t**) in R=’-*, then vector
(0, nr, 0, (r, rr) will be tangentto r at (0, 2*(t0), x*(t**), 2"(t1"), t**).
This taken with (5.3) gives that -(to), }(t**), -(t**).**) is orthogonal
to any (nr, (r, rr) tangent to T at (2*(t0), a*(tl*), tl*) which is (iv) of
Theorem 4.
To show that 0 =< 0, wc recall that (t) blA(t,t**), where

r (b0, b, a,) was the normal to the separating hyperplane r in the proof
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of Theorem 5. Since A(t*, t*) I, we get o o(h, b, where
bl (bll, bin).

Recall also that was chosen so that

(5.4) . _>_ o
for all w in Nr q, From the definition of N in our application, we see
that the curve (x*(to), x*(t*) , *(tl*), tl*), 0 =< a < , is inN, and
starts at q**. Hence, (x*(t0), x*(tl*) 1, *(tl*), tl*) is in Nr or
(0, 1, 0n--l, 0) is in Nr q**. Using this nd (5.4) gives bl1( 1) _>- 0
orb11 o =< 0.
To study the zeros of (t) on [to, tl*], we recall that (t) 0 on

[1(t1"), tl*] and that satisfies an advanced differential-difference equa-
tion on [to, l(t*)]. Now consider the example (where y (yl, y2)):

(t) y(t + 1), t [--1, 0],

y(t) (1-t- t, 0), t [0,1].

This has solution y(t) (1 + 2t -- t/2, 0) for-1 =< _<- 0, which has
zero in (-1, 0) at -2 + V/. Hence, for linear systems, initial func-
tions that vanish nowhere do not necessarily give nowhere vanishing so-
lutions to advanced equations. Furthermore, if we consider the above
system with initial function x(t) (0, -1 t) on [0, 1], we then get
solution x(t) (0, -1 + 2t + t/2) on [-1, 0]. Thus we cn make the
following stutement about "fundamental matrix" solutions: There are
simple examples of linear adwnced systems such that lineurly independent
initial functions do not give linearly independent solutions. In particular,
A(s, t*) can be nonsingular on [(tl*), t*] and yet be singular at points in
[to, 01(h*)]. Thus it is possible that has zeros in [to, (tl*)] even though

is nonzero on [l(t*), t*]. (As was pointed out in 4, even if l(t*)
we have 0 on [a, tl*] for some a tl*. This guarantees that the con.-
ditioa (ii) of Theorem 4 is nontrivial.)
We complete the proof of statement (v) of Theorem 4 by proving the

lemma below. This will also complete the proof of Theorem 4.
LEMMA 5.2. Suppose
(i) O,(t) > O,_l(t) > > 01(t) > 0 on [to, t*],
(ii) O(2*(t), 2*(w(t)), ..-, ,*(o,(t)), u*(t), t) is nonsingular for

[to, t*], j a, 2,... ,.
Then o 0 and hence is nonzero on [to, t*].

Proof. We give the proof for the case u 2. The same type of arguments
will also prove the lemma for cases u > 2. (The arguments for 1 are
even simpler than those given below.) So assume u 2. Denote by 9(s)
the matrix functions 9 2"(s), * w(s) ), 2" o(s) ), u*(s), s), j 1, 2.
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Since (i) holds, we have

so that

,.(t) < o(t) < t,

r(t) > r(t) > t.

Since rl and r2 are continuous, there exists a ti > 0 such that r2(r)
rl(r) > i. Hence, for any -, the interval [r, r(o(-))] [r(o(r)),

r(ol(r) has length > tt. From (iii) of Theorem 4 we have

(5.5)

and

(r.(s))(l,.(r(s))i,(s) =0 a.e. on [(to),o0,(to)]

(5.6)
+ (r.(s))7(r(s))i’2(s) 0 a.e. on [ol(to), to].

We hve also that stisfies

(5.7) (t) -t- (p(t)(t) 0 on [o1(t*), tl*],
(t) /

(5.s)
+,(r(t))(Il(r(t))i"(t =0 on [w2(t*),oo(t*)],

(5.9) (t) + (t)(t) -k- (r(t))(l(r(t))i’(t)

+(r(t))(r(t))i’(t) =0 on [to,o(t*)].
Recall that (t) (k, (t) 0 on [wl(tl*), t*]. To prove the lemma, we
suppose tha o 0 ad show that this implies (t) has zeros in [o(t*), t*],
which gives a contradiction.
Assume o 0. From (5.5) we then get 7p(r2(s))9.o(r(s))i’(s) 0

almost everywhere on [o(to), o(to)]. Recall that (s) > 0. Using this and
the nonsingularity of 7 gives (r(s)) 0 almost everywhere, hence
everywhere, on Icon(to), o(to)]. This implies (s) 0 on.[to, r(oo(to))].

Consider the two following cases.
Case 1. r(to) <= r2(o,(to)). Then (s) 0 on [to, rl(/o)] or b(r(s)) 0

on. [o(to), to]. Using this in (5.6) gives (r2(s) 0 on [o(to), to] or (s) 0
m [r(w(to)), r(to)]. Hence, (s) 0 on [to, r(to)].
Case 2. r(to) > r(o(to)). Then (s) 0 on [to, r( col( to) )] implies

p(r(s)) 0 on [o(to), orw(to)] Icon(to), to]. Using this in (5.6) gives
(r.(s)) 0 on [o(to), lrw(to)] or (s) 0 on [r2w(to), roolrw(to)].
Thus, (s) 0 on [to, reoro(to)]. If r(to) > r2coro(to) >= r(to), thenone
can use the arguments in Case 1 to get (s) 0 on [to, r(to)]. If rolro_(to)
< r,(to), then repeating the above arguments one finds (s) 0 on [to,
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r2olr2olr2oa(to)]. Repeating this a finite number of times, one eventually has
(s) 0 on an interval containing [to, rl(to)] so that the arguments in Case
1 give (s) 0 on to, r2(to)].
Hence, in either case, we have (s) 0 on [to, r2(to)].
If r(to) >_- o(8"), we have a contradiction.
If o(tl*) > r2(to) > (t*), then we have (s) 0 on [o(t*), a]

c [o(8"), o1(t1")]. Using (5.8) gives k(r(s))(l(r(t))i(t) 0 a.e. on
[(8"), a] which implies (s) 0 on [r2(tl*), r(a)]. If r(a) > o1(8")
we get a contradiction. If r(a) -_< (t*), we repeat the above argument and
get (s) 0 on [rrlo(tl*), rlr(a)]. After a finite number of such steps we
get (s) vanishing at points in [o(tl*), 8"], which is a contradiction. (Note
that given a, rr r(a) > oa(8*) after a finite number of times. Also, if
(t) > i and a b e, then r(a) r(b) >- so that [rr rco.(t*),
rr r(a)] has positive length after a finite number of steps.)

If r(to) =< o(8"), then (s) 0 on [to, r(to)] implies (using (5.9))

(5.10) b( rl( 8) )O91( rl( s) )izl( 8 -- /( r( s) )(]( r( s) )i2( s) 0

a.e. on [to, r(to)]. Since r(to) < r(to), we have (s) 0 on [r(to), r(to)]
which implies k(r(s))= 0 on [to cor2( to) ]. Using (5.10) this gives
(r(s)) 0 on [to, oar(to)] which implies (s) 0 on [r(to), r:cor(to)].
Repeating this argument a finite number of times gives (s) 0 on a sub-
iterval of [o(t*), o(t*)]. Then the arguments for the case r.(to) > o(tl*)
can be used to get vanishing at points in [o(8"), t*], which is again a
contradiction.
Thus, under assumptions (i) and (ii) of the lemma, o 0 and hence

(s) (, (s) is nonzero on [to, t*].
6. Systems with a lag in the control. Although lags in the controls were

not considered in the previous sections, we shall consider such problems
now. However, we shall assume that the control system is linear in the
controls. Then Theorem 5 will be applicable. To simplify notation, we
again restrict our considerations to a single lag (t) 0(t) in the state
variable.

Let (t) satisfy the conditions put on 0 in 1. Put (t) (t)
and let I be a bounded open interval containing [a0, to], where a0

min co(to), )(to) }.
Consider the system

(6.1)
c(t) ((2(t), 2(oo(t)), t) -- fi(t)u(t) -t- [(t)u((t)),
(t) $(t) on [oo,to],

t>to,

where is an (n 1)-vector, u is an v-vector and $ , with as defined
in 2. We take the C manifold T as defined in 2. For 1 < p < and f
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any k-vector we define
k

The vector function f will be sid o be in 1) if

Let U() R for ech E I. Define

{u L,(I)’u() R, u ,,," l}.
We assume is C ia x, y and measurable in t, and is dominated along with
its partials by an m L(I). The (n 1) X v matrices and are in
Lq(I), where 1/q + lip 1.

Let

J {g(e(t), e((t)), t) W A(t)u(t) W B(t)u(X(t))} dr,

where gO is a scalar function, A, B are 1 X v vectors, satisfying the same
hypotheses as y, , , respectively.
Then the problem is to minimize J over (, u, t) in X X I’ subject

to equations (6.1) and ((to), (t), t) T. Suppose (5", u*, t*) is a
solution with corresponding trajectory *.

Set

,() {o(,(),,(()),) + A"(s)*() + B()*(X(e))} d for

*()=0 for

Let

Define

F {f(x, y, t):f(x, y, t) (x, y,t) + (t)u(t) - (t)u(k(t)), u }

and

{(o, 5). ; , o AC([o to]R)}.

The sets N and M are defined exactly as in 5. Then, as before, one can
show that x* (x*, *) is an F, N, extremal. Furthermore, F is quasi-con-
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vex. (It is convex, hence one may take g 0 in statement 3 of Definition
3.1. Statements 1 and 2 are satisfied from the hypotheses on , ,/, and
u.) Thus, Theorem 5 is applicable and Theorem 5(ii) gives

t’*k(t){(t)u*(t) + ](t)u*(X(t))} dt
to

for all u . This can be written

(p(t){fi(t)u(t) -t- f(t)u(,(t)) dt

Letting p(s) in the second integral above where o we hve

(t)(t){u*(t) u(t)} dt

t

(to)

for 11 u ft.
Next define

(t*)

+ (o(s))/(o()){u*(s) u(s) }() ds _>_ o
),(to)

for u ft. We assume in the following discussion that k(t*) > to. Obvious
changes en be made to erry out the sme arguments if ,(tx*) to.
Then the above my be written

(p(p(t))(p(t))k(t){u*(t) u(t)} dt

{ff(t)(t) -+- (p(t))(p(t))b(t)}{u*(t) u(t)} dt

(p(t)(t){u*(t) --u(t)} dt >=. 0

(k(t)B’(p(t))’(p(t)) for [X(to), to),
Jb(t)B’(p(t))’(p(t)) + ’(t)(,’(t) for t [to, (,*)],K(t) ]’(t)p’(t) for (h(tl , tl*],
[o for t I-- [h(to), tl*],

where denotes the transpose. Then K Lq(I). (We assume that

/, g Ilg O. If ghis ingegral is ero, i is elear gha he maximum win-

tl*
(p(t)(t){u*(t) u(t)} dt

tl*

+ (t)B(t) {u*(,(t)) u((t))} dt O.
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eiple will give no information. Note that it is possible to put additional

hypotheses on the problem to insure that Jl 11K IIq 0. For example,

assuming that A (t) has full rank would be sufficient.)
From the definition of K, we see that the maximum principle becomes

K(t) .u*(t) dt f K(t).u(t) dt

for 11 u .
Now define (t) by

sgn K(t)lK(t)l-(6.3) (t) l[p i 1,’’" V.

Then L(I) and .f. II" 1, so that .
TOEM 6. u* ( .e. on I.
Pro@ From the mximum principle we hve

E Ki(t)(t)dt E Ki(t)u’*(t)dt

{E

where we have used the HSlder inequality for sums and for integrals.
An easy calculation shows that

E K(t)(t) dt

so that equality holds throughout the above inequalities. In particular,
equality holds in the HSlder inequality for sums. It follows that
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a.e. on I. But

implies

.e. oa I, i 1, ..., o. It follows from the mxum principle ad the
fe that KY(t)a(t) 0 oa I th sgn u*(t) sgn a(t) .e. oa I which
completes the proof.
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INSTABILITY OF PERIODICALLY TIME-VARYING LINEAR
CONTROL SYSTEMS*

THEODORE A. BICKART
1. Introduction. Consider the control system of Fig. 1. As indicated, the

signals q and r are related by the differential equation

dr
a b+

:o ,:0 -and the algebraic equation

q k(t)[s(t)

It is assumed that n <= d, ao, a, ..., a and b0, b, ..., b, are reaI
constants, a 0, b r 0, and s(t) and k(t) are n-times differentiable
for _>-_ t. Then, it is kaow [11 that for >= to there exists a unique
d-times differentiable function r(t) which satisfies the system equations
above and the initial conditions dr/dt It--to p, i O, 1, ..., d 1.
Further, it is seen that q(t) is an n-times differentiable function. Thus,
the first set of conditions in the following useful theorem [2] are satisfied.
TnoM. Let ao, a a and bo, b b, be real constants such

that a rs 0 and b,, O. Let q( t) be an n-times differentiable complex-valued
function of defined on [to, o ). Let p(t) satisfy =0 a(dp/dt) q for

[to, ). Then p(t) is (n A- d)-times differentiable on [to,
and r ffi0 b(d p/dt satisfies

dr dq
a b

for [to, ). Suppose further that =o aX’ and o b,h’ are relatively
prime polynomials in h. Let o, p, "", - be complex cstants. Then
there exist unique complex cstants o - such that, if d/dt, i O, 1, d 1, then dr/dt t=to p, i 0, 1, d 1.

Therefore, with the added assumption that =o aX and o bX are
relatively pe, this theorem implies that the system of Fig. 1 is equiva-
lent to that of Fig. 2 in the sense: Let s(t) and p, i 0, 1, d 1,
be given; rhea the , i 0, 1, d 1, exist such that the response
of the system of Fig. 2 is identical to the response of the system of Fig. 1.
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b
0

i
dt

i
i=O

i dtm

FIG. 1. Time-varying control system with rational function filter

Further, the uniqueness of the constants , i O, 1, d 1, guaran-
tees that there is a unique p(t) such that

r bi
dip

i=0 dt

where p satisfies the differential equation
d_, [a 4 ](t)b] dip lc(t)s(t)
i-O

with b 0, i n 4- 1, n 4- 2, ..., d.
Next, assume that It(t) is periodic of period f/’ and that a 4- k(t)b > O.

Then, it is known that the set of fundamental solutions to the differential
equation for r and the set of fundamental solutions to the differential equa-
tion for p are of the Floquct form [1, pp. 60-62]. ]n each case, the character-
istic exponents are determined modulo j 2r/T. Thus, with the preceding
results, it is evident that the characteristic exponents associated with
both fundamental sets are equal modulo j 2r/T. It is also evident that,
if p (or r) contains a nonzero term with the multiplicative factor eI[x]l,
where X is a characteristic exponent, then r (or p) contains a nonzero
term with the same multiplicative factor.
Now, the system Will be called stable if r(t) -- 0 as - oo when s(t) 0

for >= to, to sn arbitrary real constant, and when the p, i 0, 1,
d 1, are arbitrary complex constants. The system will be called un-
stable if it is not stable. The foregoing discussion justifies the statement"
The system is stable ifp(t) -0ast- oo whens(t) 0fort >= to, to
an arbitrary real constant, and when the i, i 0, 1, ..., d 1, are
arbitrary complex constants, and the system is unstable if p(t) -+, 0 as

--, oo when s(t) 0 for >= to, to real constant, and for some set of
complex constants ., i 0, 1, d 1.
Sandberg [2] has established set of sufficiency conditions which guar-

antee that the system of Fig. 2 is stable when lc(t) is periodic. It is also
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i=O
i

dt
m iobi dt:L r

FIo. 2. Time-varying control system

of some interest to establish sufficiency conditions which guarantee that the
system is unstable when k(t) is periodic; such a set of conditions are pre-
sented in. 2.

2. Principal result. Consider the differential equatiol
d

(1) [a, + /c(t)b] d’p
i=o - O.

In all that follows it is ssumed that:
(A1) the a and b, i 0, 1, d, are real constants with a # 0;
(A2) is a real variable;
(A3) /(t) is a real-valued, piecewise continuous, periodic function of

period T, where T is a real, positive constant;
(A4) [a + k(t)b] > 0 fort [0, T].
Let ) d, where (R denotes the real line, be the set of points at which

k(t) is discontinuous. Any complex-valued function which is (d 1)-times
continuously differentiuble on
solution of (1).
In that which follows it is convenient to use the following definitions. Let
(D1) be u real variable,
(D2) 0 2r/T,
(D3) k0 be any construct such that [a +/c0b] > 0,
(D4) (t) /c(t) k0,
(D5) K sup

tE [-]1
d

b(j)’
i=0 with j /-1(D6) H(0)= d

(D7) O(91Z)= sup sup H(moo + v) Ilc
I1 <= T (.mE?Jr(,

m6 [-]
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where is a subset of the set of integers and the supremum over the
empty set is interpreted as zero. The primary result reported in this paper
is the following theorem.
THEOREM. If there exists a ko such that
(H1) =o [ai + lobi]s 0 for Re[s] 0,
(H2) one or more zeros of =o [a tob]s have positive real part, and
(H3) there exists an S such that 0( < 1,

then at least one solution of (1) does not approach zero as ---> .
It is of interest to note that in the corresponding stability theorem,

given by Sandberg, (H2) is replaced by"
(H2*) no zeros of =o [a - kob]s have positive real part,

and the conclusion is replaced by"
then all solutions of (1) approach zero as --> .

The proof for the above instability theorem was derived, with only a
few changes, from that given by Sandberg for his stability theorem..

Proof. Consider
dix[a, + kob + (t)b,] 0

i-----0

for [0, 1].
By (A4), (D3) and (D4), [a + kob + l(t)b] > 0 for all (t, t) [0, T]

X [0, 1]. Thus, for ny [0, 1] the solution space of (2) is spanned
by a set of solutions of the Floquet form. Further, it is known [3, p. 21.]
that the characteristic exponents re continuous functions of in [0, 1].
The proof will be by contradiction. Thus, suppose M1 solutions of (2)

for 1 approach zerr as -- . Then, for 1 each of the characteristic
exponents must have negative real part. By (H2), one or more of the
characteristic exponents hve positive real. part for t 0. Note that by
(H1) no characteristic exponents have zero real prt for 0. Therefore,
a t0 (0, 1) must exist such that (2) possesses a solutioa of the form
y(t)et, where is a reM constant, y(t) is a complex-vMued functioa of
period T, nd y(t) 0 on [0, T]. Observe that, without loss of generality,
it may be assumed that Ii -< v/T. The proof by contradiction will be
ccomplished by showing that y(t) 0 on [0, T] or ll & (0, 1) nd

--< /T, ad, hence, that all solutions of (2) for 1 do not approach
zero as -- .Because y(t)et is a solution of (2), it is (d 1)-times continuously
differentiable on . Further, by (2) and (A4), it has a bounded, continuous
dth derivative on ). This implies y(t) is continuous and piecewise
smooth. Hence, y(t) possesses a Fourier series which converges pointwise,
as well as in the mean. Thus, set

m
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where

y., - y(t)e-’mt dr.

Then, siace y(t)e is a solutiou of (2) for

(3) x(t) _. y,e(’n+)

and

ym[j(moo + ,)]e(m+)t(4)
dt ,.eq

fori 1,2, ...,d.
Note. The differentiation term-by-term is valid, since x(t) y(t)e is

a solution of (2) and any solution of (2) is (d 1)-times continuously
differentiable on (R and has a bounded, continuous dth derivative on
(R D.
Put

By (2),

(5)

Also, by (3) and (4),

Let

(6) u

d

A() [at-t- k0 bi](jo)i,
i-----0

d

B()
i=O

d

u ) [at + o b,]

d dx(t) b,,

u + o(t)v o.

u(t) _. A(moo + ,)y.e

ei(m,o+)t

u(t)e--("+")t dt A(mo -+- u)y.,



INSTABILITY OF LINEAR CONTROL SYSTEMS 53

lf
r

(7) .. v(t)e-(’+) dt= B(mo -t- )y,.

Then, examination of (6) and (7) discloses

B mo -4- ’)
v., u. A(mo + ,)

which by (D6) becomes

Vm U, H(mo -t- ’).

Consider the following identity"

I fo(8)

mEgE mE [--]
u, H(mo ’t- u)[’.

Note that

_,[u,, H(mwo + u)]2 _<_< supH(mo. + )1 E u,,,
EI)IT, mEi)E mEJE

(9)
o sup [tt(mo + ) K 1 "jo ’

since, by (5) and (D5),
T

E I, < f l(t) dt
mE

1]. ’ I.<= o f( t)( t) dt

<o K 1 fo
r

[Iv(t) dr.

(t) Z
mg

fc,. (t)e-’’t dt.

Let

where

Iv(t) t

Then, using (5), it is easily shown that

u -o ,- v
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and

(10)

Therefore,

()

_<_ o- {(t) dt

u,,, H(mo0 + v ] -< t}0

Now, by (8) with (9) and (11.),

(12)
lf0

Iv(t) dt.

{H(o +,,)l
E [-r]

Iv(t) [ dt <= o"( ,ezsup H(m0 + ,)IK- tI moo -- , )12 l fo
r

I t} 1

Iv(t)

Iv(t) } dr.

3. Auxiliary result. A result of somewhat greater practical value than
the theorem will be presented as a corollary to the theorem. In the corollary,
conditions predicting instability for a class of systems will be given. Now,
consider the following corollary.
COROLLARY. Let a and be real constants such that a <= lc(t) <= fl and let

G( o) =o b(jo)/=o a(jo) . If
(H4) ’=o [a + 1/2(a + )b]s Ofor Re[s] 0,
(H5) one or more zeros of =o [a A- 1/2(a A- fl) b]s have positive real

part, and
(H6) inf G(a,)- -t- 1/2(a 4- )[> -( a),

then at least one solution of (1) does not approach zero as

Now, by (H3) and the fact that t0 < 1, 00(8) < 1 and, hence,

Iv(t) dt O. Itfollowsby (10) thatu,, 0forallm g. Since

A(o) 0 for all realo by (H1), then, by (6), it is elearthat Ym 0
for all m g. Since y(t)eivt must have the properties of a solution of (2)
for 0, y(t) Oon [0, T] for all0 (0, 1) and I1 _-< r/T. This
completes the proof of the theorem.

fo ’Iv(t) } dt <<- o0(9"1) Iv(t) dt.

Taking the supremum of the right-hand side of (12) with respect to
v =< rr/T yields, upon taking note of (DT),
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Proof. Since assumption (A4) is now interpreted as valid for all/(t)
such that a <= It(t) <= , take ]Co -(a q- ). Note that, the condition on
]Co in (D3) is satisfied. Now,

1
()-1+ 1/2( + );

therefore, (H6) implies

Since

supe [H()[ I.l-<__lrsup {sup.e [H(mo0+ v)[}
and K =< 1/2( a), it is clear that (R)(6) < 1 and (H3) is stisfied. Next,
(H4) and (HS) imply H1 and (H2), respectively. Hence, by the theorem,
the corollary is proven vMid.
n he corresponding corollary on stability, gNen by Sndberg, (HS)

is replaced by:
(H5*) no zeros of =0 [ai + ( + fl)b]s have posilive real part,

and the conclusion is replaced by"
then all solutions of (1) approach zero as .

It is of interest to note that it has been shown [2] that selecting
k0 (a + ) is optimal (in sense defined in [2]).

Lastly, it is obvious that (H6) implies the curve G()- be bounded
away from the disk, centered at the point (-(a + ), 0) in the complex
plane, of radius }(fl a). In prticulur, (H6) implies G()-+ (a + fl) 0 for ny w , and, hence, (H6) implies (H4).

4. Concluding remarks. Consider the system of Fig. 1 under the as-
sumptions of 1. Then the corollary may be used to determine if the system
of Fig. 1 is unstable.

Let Z denote the number of zeros of ’=0 his with positive real part
and let 0(s) [---0 bisi]/[__=o as]. Note that 0(j0) G(o). Then,
the control system analyst interprets (HS) thus: The inverse Nyquist
diagram [4, pp. 340-342] of the filter with rational transfer function 0(s)
must encircle the point (--(a + ), 0), in the complex plane, (1 Z)
or more times in the clockwise direction. Further, the inverse Nyquist
diagram coincides with G(o)-I whenever G(o)-l < therefore,
(H4), (HS) and (H6) are satisfied if the inverse Nyquist diagram is
bounded away from the disk and encircles the disk 1 Z or more times
in the clockwise direction.
Now, let P be the number of zeros of =o as with positive real part.
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Then, another interpretation of (H5) is: The Nyquist diagram [4, pp.
324-333] of the filter with rational transfer function (s) must encircle
the point 2/(a -t- ), 0), in the complex plane, 1 P or more times
in the clockwise direction. Without loss of generality it may be assumed
that is positive. Now, for > 0, it is easily shown that the statement"

for a > 0, the Nyquist diagram is bounded away from the disk, centered
at (-1/2(1In - 1/), 0) in the complex plane, of radius 1/2(1/a 1/),

for a O, the Nyquist diagram is bounded and contained in the half-
plane for which the real part is greater than- 1/, and

for a < 0, the Nyquist diagram is contained in the interior of the disk,
centered at (-1/2(1/a -t- 1/), 0) in the complex plane, of radius

is equivalent to the statement"

the inverse Nyquist diagram is bounded away from the disk, centered
at (---(a + ), 0) in the complex plane, of radius 1/2( ).

Thus, if (It6) is satisfied, it is clear that the Nyquist diagram encircles
the point 2/(a + ), 0) zero times when a -<- 0. Hence, if (H5) is to
be validated when a -< 0, then P must be greater than or equal to one--
the open loop system must be unstable. Note that using Sandberg’s corol-
lary on stability, it may be shown, for a -< 0, that the system is stable if
(H6) is satisfied and the open loop system is stable.

If the system is unstable, the number of characteristic exponents with
positive real part can be determined easily. Recall that the theorem proof
focused on showing that no nonzero solution of (2) has an imaginary
characteristic exponent for [0, 1]. Consequently, the number-of char-
acteristic exponents with positive real part is the same for all i [0, 1]
and, in particular, for 0 and 1. Now, the number of characteristic
exponents with positive real part for 0 is equal to the number of zeros
of ’=o [a - lcob,]s with positive real part. The latter is easily determined.

Let N- > -Z be the number of times the inverse Nyquist diagram
associated with 0(s) encircles the poin.t (-/co, 0) in the complex plane
in the clockwise direction. Then, =o [a + lcob]s has N- -t- Z zeros
with positive real part. Next, let N/ > -P be the number of times the
Nyquist diagram associated with O(s) encircles the point (-l/k0,0) in
the clockwise direction. Then, =o [a + lob]s has hr+ -t- P zeros with
positive real part.

Since the system equation (1) is the same as (2) with t 1, it may
be concluded by the above comments that the system has N- -t- Z
N+ -t- P characteristic exponents with positive real part.
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The last observation to be made is: The hypotheses of the corollary
are independent of T and the proofs of the corollary and of its uilderlying
theorem are independent of the value of T. This gives substance to the
speculation that the conclusions of the corollary are valid when /c(t) is
not periodic. This fact has been substantiated recently by Brockett and
Lee [5]; that part of their results which corresponds to the results of the
corollary is presented in Theorem 1 of their paper. It is irtteresting to note,
however, that the proof given by Brockett and Lee is significaltly longer
than that presented in this paper, where the added assumption of perio-
dicity is imposed. Further comparison of the results developed it this
paper and those reported by Brockett and Lee are to be found in [6].

IZ Acknowledgments. The author gratefully acknowledges the discus-
sions with I. W. Sandberg which led to the realization that the proof for
the instability results presented here could be built upon his work
stability.
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ERRATA" ON THE PROBLEM OF APPROXIMATE SYNTHESIS OF
OPTIMAL CONTROLS*

T. F. BRIDGLAND, JR.

Theorems 2 and 3 of the paper are probably not true without an addi-
tional hypothesis such as"

(*) For each (to, x0) B k(.) is continuous on Pl(t0, x0).

Continuity is to be understood here in the sense implied by the supremum
norm topology on the space of continuous functions from Ir into E.
With (*) as an additional hypothesis the proofs of these theorems may be
carried out as indicated in the paper. Incorporation of (*) in the statements
of Theorems 2 and 3 has no bearing on the material of 4 since the corollary
to Theorem 4 is an independent existence theorem whose proof clearly
involves no assumption of continuity for k(. ).
The third seltence of the proof of Theorem 4 makes no sense and should

be changed to read:
"Moreover, if (x, p) OR(b(x), x) be a point nearest g,((x), x, p),

then g,’((x), x, p) F(x, P)ii < , and from this inequality and (vii)
one obtains easily ".

* This Journal, 5 (1967), pp. 326-344. Received by the editors October 9, 1967.

58



SIAM J. CONTROI
Vol. 6, No. 1, 1968
Printed in U.S.A.

THE SOLUTION OF SOME OPTIMAL CONTROL PROBLEMS*

V. F. DEM’YANOVf
Below we shall consider some (linear and nonlinear) problems in the

theory of optimal control. One can turn one’s ttention to two aspects of
similar problems. First of all, it is of interest to establish necessary condi-
tions which must be satisfied by an optimal control. The classic results in
this direction were obtained by L. S. Pontryagi and his collaborators [1].

References [2]-[5] have bee devoted to the derivation of necessary con-
ditions for an extremum in other problems. The second aspect which is
both of theoretical and, primarily, of practical interest is the question of
constructing algorithms for finding optimal controls (or at least controls
that satisfy the necessary condition for minimum--so-called "stationary
controls").
Muny works hve been devoted to the solution of this problem. A good

survey of some approaches is found in [6]. Some methods for solving time-
optimal problems hve been developed in [7]-[10]. Some other problems
huve been considered in [11]. An extensive bibliography on this problem is
found in [6].
Below we shall set forth a general approach to the solution of series of

extremal problems. The methods we shall consider lead to stationary con-
trols (to local extremum points), and if the functional being considered has
no other local extrema, then these methods yield the possibility of solving
the problem completely.
In this urticle only fixed time, free endpoint problems ure considered.

This approach mukes it possible to solve such problems as well as others--
provided thut the indicated methods are suitably modified.

1. Classes of admissible controls. Given is the interval [0, T], where
T > 0 is fixed and T . Let us describe the classes of admissible con-
trols U. The control, the r-dimensional vector function u(t) (u (t),
u(t) ), is squre integrable on [0, T] and stisfies one of the following con-
straints:

(1.1) lu*(t) =<a(t), i= 1,...,r, t [0, T],

Received by the editors April 19, 1967, and in revised form October 12, 1967.
This trunslation into English has been prepared by Lucien W. Neustadt. The transla-
tion was supported in part through a grant-in-aid by the Ntional Science Founda-
tion.

Computing Center of Leningrad State University, Leningrad, USSR. Presently
visiting the Department of Electrical Engineering, University of Southern California
Los Angeles, California 90007.
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60 V.F. DEM’YANOV

where the ai(t), i 1, r, are nonnegative piecewise continuous func-
tions bounded on [0, T];

(1.2) u*(t)N(t)u(t) <= (t), [0, T],

where (t) => 0 is a piecewise continuous function, bounded on [0, T], N(t)
is a symmetric r X r matrix which is positive definite on [0, T], with piece-
wise continuous elements that are bounded on [0, T], and * indicates the
trmspose.

Special cases of 1.2) are (1.3)-(1.11):

(1.3) u*(t)N(t)u(t) <= 1, [0, T],

where N is a real, symmetric, positive definite r X r matrix;

(1.4) ui(t) <= 1, [0, T];
i=1

(1.5) lug( t) 1, i 1, r, [0, T],

lug(t) [o,

p < i 1 2, r,-p< ,
where the a.i- are given tinitc nonnegative numbers;

’
i= 1 r, 0 < ci < ,(1.7) u dt <= c

(1.8) fo u*(t)N(t)u(t) dt <- c, 0 < c <

where N(t) is a symmetric r X r matrix, positive definite on [0, T], with
elements integmble on [0, T];

1.9 f u (t) dt <- 1,
i=1

(1.10) f u(t)[’dt <- 1, 1 < p <
,0 r----I

(here u(t) is supposed to be summble on [0, T] when raised to the pth
power);

the control function u(t) simultaneously satisfies the two constraints

lu(t) l-< 1, t [0, T], i= 1,...,r,
(1.11) foru(t) dt <- c, i= 1, ...,r, 0 < c < .
The classes of controls satisfying one of the constraints (1.1)-(1.11)
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will be denoted, respectively, by U1-Ull. We note that the classes
UI-U4 and UT-UI are convex, bounded and weakly closed. The classes U
and Us are not convex, although they are bounded.

2. Systems of differential equations. On [0, T], where T > 0 is fixed,
we shall consider one of the four following systems of ordinary differential
equations.

dX(t)
dt

=- f(t) A(t)X(t) + Bi(t)u(t) + F(t),
i-1

(2.2) x(o) x0,

where A(t) is an n X n matrix, X(t), F(t) and the Bi(t) are n-vectors,
i 1,... r. The elements of the matrix A nd the components of the
vectors F(t) and B(t), i 1, r, re assumed to be real. piccewisc
continuous functions bounded on [0, T].

(2.3) 2(t) f(X(t), u(t), t),

(.) x(o) Xo,

where X(t) (x(t), x’(t)) is an n-vector,
n-vector-wlued function and the control u(t) (u(t), u(t) is
r-vector-valued function (belonging to one of the above-described classes
of dmissible controls). The function in the right-hand side of (2.3) is
assumed to be continuously differentiable with respccl t) x and u,
i 1, n, j 1, r, in the region of admissible v:lues of x and u
defined by the class of controls U, the system (2.3) and he initial codi-
tions (2.4), and to be continuous in on [0, T].

f(t) f(X(t), X(t hl), u(t), t),

(2.6) X(t) Xo(t) for [-h,O], 0 < h < .
Here, X(t) (xl(t), xn(t)) is an n-vector-valued fuctiio, the

control u(t) (u(t), u(t) is an r-vector-vlucd fuci()n, subjcct
to being chosen from the above-described class of controls 5;; f(X, Y, u, t)

(f, if) is a real n-vector-valued function cot.iauus in x’:, y, u,
and continuously differentiable with respect to x, y, u, i, j 1, n,
lc 1, r, in the region of admissible values for x, y, u, defi.cd by
the class of controls U, the system (2.5) and the given c(mginuous initial
vector function X0(t).

2(t) f(X(t), X(t h(t)), u(t), t),

(2.8) X(t) Xo(t) for [-h(O), 0].

The function ,(t) h(t) is real, strictly increasing ad
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ously differentiable on [0, T],

0 <h(t) < for [0, T], min h(t) > O.
E[O,r]

Then there exists n inverse function r(), which is lso strictly
increasing, continuously differentiable real-valued function on [-h(0),
T h(T)]; X(t) (x(t), x(t)) is an n-vector-valued function,
the control u(t) (u, u) is an r-vector-valued function subject to
being chosen from one of the control classes U described in 1, f(X, Y, u, t)
is a real n-vector-valued function continuous with respect to x, y’, u*, and
continuously differentiable with respect to x, y’, u*, i, j 1, 2, n,
k 1, r, in the region of admissible values for x*, y, u*, defined by the
class U, the system (2.7) and the initial vector-valued function Xo(t),
which is given and continuous on I-h(0), 0]. The region of udmissible
values for is the interval [0, T].

It is clear that systems (2.1), (2.3) and (2.5) are special cases of system
(2.7). We shall denote by X(t, u) the solution of systems (2.1), (2.3),
(2.5) and (2.7) for a given u U. We shall suppose that the function f is
such that, for any u U, there exists a unique solution of the systems (2.1),
2.3 ), (2.5) and 2.7 for the initial conditions (2.2), (2.4), (2.6) and 2.8 ),

respectively, on the entire interval [0, T]. For system (2.1), the solution
X(t, u) is given by the Cauchy formul

X(t) Y(t)Xo- I E Y(t) y-l(-)B(r)u(r) dr
i1(2.9)

Jo Y(t) Y-(r)F(r) dr,

where Y(t) is the fundamental matrix of the homogeneous part of system
(2.1).

(2.10) ]?(t) A(t)Y(t),

(2.11) Y(0) E.

The solution X(t, u) of the system (2.3) sutisfies he integral equation

(2.12) X(t) Xo - fo f(X(.), u(r), .) dr,

and the respective solutions X(t, u) of the systems (2.5), (2.7) satisfy
the integral equations

(2.3) x(t) Xo + f(x(), x( h), u(), ) dr,
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(2.14) X(t) Xo + Jo f(X(r), X(r h(r) ), u(r), r) dr,

where X0 X0(0).
The attainable set R(t) of systems (2.1), (2.3), (2.5) and (2.7) at the

time [0, T] is defined as follows:

z R(t) if there exists u U such that X(t,u) z.

For the system (2.1), at any time t, the ttainable set is convex, closed,
and bounded.

3. The functionals to be considered. For the solutions of systems (2.1),
(2.3), (2.5) und (2.7) we shull consider the following four functionMs:

(3.1) g(u) F(X(T, u)),

where the function F(X) is scalar-vlued, real, and continuously differ-
entible on the ttinable set of the system at the time T;

T

(3.2) J(u) fo g(X(t, u), u(t), t) dt,

where g(X, u, t) is scMar-valued function that is continuous on [0, T]
and continuously differentiable with respect to x and u’, i 1,--- n,
j 1, r, in the region of dmissible wlues for x and u’;

(3.3) J(u) g(X(t, u), u(t), t) dt -t- F(X(T, u)),

where the functions g(X, u, t) and F(X) are as described above;
T

(3.4) J(u) Jo g(X(t, u), X(t h(t), u), u(t), t) dr,

where (t) h(t) is a real function strictly increasing and continu-
ously differentible on [0, T], 0 <= h(t) <: for [0, T]. Let r()
be the inverse fuuctioa of (t) (it is Mso strictly iacresiug and coatinu-
ously differentiable on [-h(0), 7’ h(T)]), g(X, Y, u, t) is real scalar-
valued function which is continuous in and continuously differentiable
with respect to x’, y, u, i,j 1, n, k 1,..., r, ia the region of

U
kdmissible vMues of x, y, nd

For the systems (2.5) nd (2.7), we shall ssume that if h(O) > h(O),
then X() is given nd continuous on [-h(O), h(O) (on [-h(O), 0],
X() is given, respectively, by relations (2.6) ad (2.8)).

Since

(3.5) F(X(T,u)) F(Xo) / f’ (,OF(X(t,u)))*"
Ox

2(t, u) dt,
ao \ ]
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where (t) is defined, respectively, by 2.1 ), (2.3), (2.5) or (2.7), t,he the
functionals (3.1), (3.2) and (3.3) are special cases of the functiion.al (3.4).

It is required to find a control u U, such that

(3.6) J(u) min J(v).
E u

A control u U which satisfies (3.6) will be called an optimal control.
Let U be a convex set of control functions. The funetion.al J(u) will be

called convex if, for any u, u E U and a E [0, 1], we have

(3.7) J(au + (1 a)u:) N J(Ul) + ( )J(ue).

In particular, if in (3.4) the integrand is convex with respect to X, Y, u,
then, for the lear system (2.1), the functional J(u) is a convex functionl.
This problem was considered in [12].

4. Necessa conditions for optimali. If the conditions that we im-
posed on the functionM J and on the systems (2.1), (2.3), (2.5) and (2.7)
are satisfied, then

J(v)
(4.1)

J(u) +
T

(4.z) J(v) (u) +

where G() (G(), G((z)) is related to the gradient of the func-
tional J(u), ewluted t the point v u (this is n r-vector-lued rune-
tion given on [0, T]), nd [[.[[ denotes the L norm. Then we hvc the
following theorem (see [13]).
TEOM 1. In order that the functional J(u), given and bounded on U

and having a continuous gradient (in the sense of Frchet) thereon, achieve its
minimum (relative to the controls of the cla,s U) at a control u it is necessary
(and, in the ca.e when tle functional ,](u} is convex, also .scient) that

(.) in f *()(v() u()) 0.
vEu z0

Let us pply this theorem to our problems. Evaluating Gu(r) and sub-
stituting into (4.3) (these clcultions are crried out n [14], [15]), we
obta,n from Theorem 1 that the following theorem hlds for the functionM
(3.4) and the system. (2.7).
THEOREM 2. In order that the control u U achieve a minimum for the

jnctional (3.4), which satisfies the previously indicated conditions, il is ncccs-
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sary (and, in the case when the functional (3.4) is convex, al,o suicicnt) that

where

f,.() y(x(, ), x(- ,.,(-), u), u(-), -),

a() .(x(, u), x( -/.(), u), u(), ),

(4.6) xI,,,(T) O,

ag.(t) ag,.(r,(t)
i,(t)-X= / a Y for [0, T- h2(T)],

(4.7) c(t)=

for IT h.( T), T],

If it (3.4), h,2(t) - tt2, trod the system of differential equations has the
t’()rm (2.5), thc i f()rnula (4.4) we have

() -c()

for r

_
[0, T- h],

for r (: [T- h, T],

(4..) ,,,(T) 0,
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where

(4.10)
| Og.()- Oz

q_ Ogu(r + h2) for
0Y

r C [0, T- h2],

for r [T- h2, T].

(4.5) ox -2’ ""’ bT ON

(4.13) (r) =--\ OX

(4.14) ’I’(T) 0,

()
OX

Ox

Of
Oxl

() f(x( , u), u( ), ),

() o(x(, u), u(),

The function (r) in Theorem 4 to within a sign change coincides with
the function I,(r) in [1, pp. 23-25].
For the functional (3.2), the system (2.3) and the classes of controls

(1.1)-(1.4), the necessary condition (4.12) is a linearization of the Pon-
tryagin maximum principle.
Yu. F. Kazarinov showed that, for the classes of controls U7, Us, Ug, for

Ox

For the functional (3.2) and the system (2.3), we obtain Theorem 4
from Theorem 2.
TItEOREM 4. In order that the control u U achieve for the functional

J(u), which satisfies the previously indicated conditions, the least possible
value relative to the controls of the class U, it is necessary that

(4.12) min f" -- -[(Ofi,(r).*,,(r q_ Ogu(q’)- (v(r) ui(r)) dr O,
v. ,o :, Lkv/ Ou

For the class of controls U-U we obtain, from (4.4), that the follow-
ing theorem holds.
THEOREM 3. In order that the control u U achieve a minimum for the

functional (3.4), which satisfies the previously indicated conditions (for the
classes of controls of the type of 1.1)-(1.6)), it is necessary that, .for almosl all

IO, T], the following relation be satisfied:

(4.11) min ((Of,,(t)* ’<Iq,,(t) + 3g(t) v
(t)e =, kk/ -/ ((t) u(t)) O.
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the functional (3.2) and the system (2.3), the maximum principle has the
form:

(4.16)
min fo

r

[f(x(, u), ,(), ).() + e(x(, u), v(), )] &
T

fo [*()() + (()1 &’

where 9(r) satisfies the system of differential equations (4.13) with initial
conditions (4.14). Here, we shall not concern ourselves with the proof of
condition (4.16).
We can also assume that, for the classes Ur, Us, U9 and for the func-

tional (3.4) and the system (2.7), the necessary condition, of the maximum
principle holds:

rain [f*(X,(r), Y,(r), v(r), r)’(r) + (X,(r), Y(r), v(r), r)] dr

(4.17)
T

] [f(X(r), Y(r), u(r), r)q,(r) q-- g(X,(r), Y(r), u(r), r)] dr,
o0

where (r) satisfies the system (4.5) with initial conditions (4.6).
A control u U that satisfies (4.4) will be called a stationary control.
For the linear system (2.1) and the functional (3.2) we have that

0f(r) A(r) () -A*(r)I,(r)
OX OX’

,(T) O.

From this, after having carried out the corresponding manipulations,
we obtain that for the linear system (2.1) nd the functional (3.2) the fol-
lowing theorem holds.
TnOnnM 5. In order that the control u U achieve for the functional

(3.2) the least possible value relative to the controls of the class U, it is neces-
sary (and, in the case when the function g(X, u) is convex with respect to X
and u, also sucient) that

min [(*)]*[Y-(r)g(r)] +
(4.18) ,v i=, oU

(v(r) ui(r)) dr O,
where

r age(r)(4.19) co(t)-- Y*(r). oX...
(4.20) I)(r) A (r) Y(r),

(4.21) Y(O) O.
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5. Methods of successive approximations for finding stationary points.
First we sha,ll consider methods for the classes of controls U-U,
UT-U (these classes re convex, wekly closed nd bounded).
Let u U; by v[u] we shall denote any function v(t) U that satisfies

the condit.ion

=t kk o / Ou

To find v[u], it is necessary to minimize a linear functional.
To ti**d the stationary controls, one can employ the algorithms set forth

i** [121, 15]-[18]. Leg us describe some of them for the ca,se under considera-
ion. h. this section.

5.1. The cendifional gradient method. For the first approximagion we
shall choose any admissible u, U. Suppose that u U has been found.
We shall tind v[ue] v U. Leg us form ghe linear combination

u,=u+(1-)v, [0,1], u U,

and let us fid [0, 1] such that

J(u) min J(u).
a [0,1]

We set ue+x u,. It is clear that J(u+) N J(u). The sequences thus
eonstrueted,

(5.2) u u, u U,

5.3 v v v U,

are sueh that

(5.4) J(u) J(u) ....
Since the funet.ional J(u) is bounded from below on U, the following

limit exists"

(5.5) ]imJ(u) J* > -m, J(u) J*.

The sequenee of controls (5.2) (see [15], [17]) converges to a stationary
emtrol it the se-se of the following theorem.

( +
(5.6) -, ,,v = k Ou Ou

(w() u,
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We note that for the case where the functional has the form

J(u) fo g(X(t) dt,

then, for the linear system (2.1), there is no need to deal with the lhear
combinations uk, but rather it is sufficient to consider the functional
(5.7) only on the combination of solutions

Xk(t) X(t, uk) and Z(t, v) k(t),
and to try to find a [0, T] such that

T

J(u%) fo g(X(t) -b (1 a)2k(t)) dt

rain J0" g(aX(t) -b (1 a)2(t))dt.
aE[0,1]

That is, it is not necessary to repeatedly integrate the system of differential
equations (2.1).

If the functional J(u) is a terminal functional of the form of (3.1),
then, in the linear system (2.1), to find a it suffices to consider the line
segment IX( T, u), X( T, v)] and to find a E [0, 1] such that

g(a X( T, u.) d- (1 a)X( T, v)

rain g(aZ(T,u) -4- (1 a)X(T, ))o
[0,]

In these cases (when the system is linear and the functional has the form.
of (3.1) or (5.7)), the application of the conditional gradient method s
especially effective.

5.2. Projective methods. Letu U, where U is one of the classes U-U.,
U-Un. Let us form the linear combination of functions

u,(t) u(t) --aG,(t), a [0, ),

where

G(t) (G,(t), G,,(t))

is the gradient of the functional J(u).
Let us find w(u) U such that

T T

(5.8) fo (w,(t) u,,(t)) dt min f0 (v(t) u(t)) dt.
vU

The control w(u) is the projection of the function u onto U. There
is no difficulty in finding w for U-U0. In the case of U, this problem
can also be solved using more complicated techniques.
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For the first approximation, we choose any u U. Suppose that u
has been found. Let us form u. and find a [0, such that

(5.9) J(w.) rain J(w).
a[0,]

TOW we se krl Wka
It is clear that J(u+) <-_ J(u). We continue in an analogous manner.
Note. The finding of the a that satisfies (5.9) may turn out to be la-

borious because w, enters into the functional through the system of
differential equations. One can at each step find a without solving the
system of differential equations. One can show that, for the sequence of
controls lug} thus constructed, Theorem 6 also holds.

Other projective methods yield the following modification of this second
method (see [16], [17]).
By w, we denote the control

w. u- (1 --)w., / [0,1], w. U.

Let us find/(a) [0, 1] such that

J(w.o) rain J(w.).
E [o,-1

Now we cn find u+ by using one of the folloving procedures.
Method 2a. Let us choose a fixed (for all /c) a (0, o ), nd let us

set u+ w,. As a - , Method 2a, generally speaking, turns into
the conditional gradient method, for w,, roughly speaking, becomes one
of the controls v[u] as a - . This question was discussed in detail in
[16]. This method is similar to the conditional gradient method, except
that we have w, instead of v[u].
Method 2b. Let us find a [0, such that

J(w.) min J(vo),
E 0,]

nd let us set u+ w.. Here, instead of " linear convex combination"
of the control u and the control w, we consider the entire projection
of the "ray" u. u aG.. One step of 5[ethod 2b is more efficient,
but more laborious than one step of Method 2a.

Method 2c. We find the coefficient a from the condition

J(w.) min J(w.),
aE [0,)

and set u+ w,. First of ll, applying 5[ethod 2b, we find the best
control oa the proiectiou, and then we construct convex combination of
u and w,, and then apply 5/[ethod 2.
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Method 2d. Let us find

J(w) mh
aE [0,oo)
[O,tl

nd set u+ wk One step of this method is more efficient, but also
more laborious, than is a step in any of the previous methods.
Methods 2a, 2b, 2c and 2d lead to a stationary control in the sense of

Theorem 6.
We note that the projective method can also be applied to the classes of

controls U and U6. For these classes (as well as for the classes U-U)
one can also employ yet another method. Let us illustrate it with the class
U as n example.
Suppose we have found u U; u is not a stationary control. Let us

find the set c [0, T], where the necessary condition (4.8) is violated
(the set 2 is measurable), i.e.,

where

{tit [0, TI, x(t) <0},

x(t) min *Gk(t)(v u(t)).
vU

kwhere w t,Let us construct the sequence of sets w, w,
k J -k k -k kw + o+ for i > 1, meas w+ meas w+ 1/2 meas ;

k -k kmeas [i+ f’l +] 0; and, for every i+, x(t) =< inf,+ x(t)
fori 1, 2, -...

and that 2 for all i.It is clear that o
Then there exists n m such that if i > m, then for the control

kt-u(t), ,,,,
Uk(

ku(t),

_
,

it turns out that J(u) < J(u).
Let us set u+ ki where

J(ui) min J(u).
i>mi

It is clear that J(u+x) < J(u). We continue in a similar manner.
The sequence of controls {u}, constructed in this fashion, also tends to
stationary control in the sense of Theorem 6.

6. Acknowledgment. The author would like to express his thnks to the
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MINIMIZATION OF FUNCTIONALS IN NORMED SPACES*

V. F. DEM’YANOV AND A. M. RUBINOV$

We examine in this pper a number of problems involving the minimiza-
tion of functionals on normed spaces. In particular, we consider the
minimization of a differentiable functional on a convex set, and the minimi-
zation of a directionally differentiable functional (for example, the minimi-
zation of the maximum deviation). For all the problems which will be con-
sidered, we shall give necessary conditions for an extremum and we shall
discuss various algorithms for finding points which satisfy the necessary
conditions. A number of applications will be indicated, mainly to optimal
control problems.
We do not consider the question of existence of a minimum, because for

most of the problems to be discussed this question can be resolved by
means of a theorem which states that a weakly lower semicontinuous
functional achieves a minimum on a weakly compact set.

1. A few useful results.
1.1. Sublinear functionals. A functional p defined on a normed space X

is called subliuear if it has the following properties"
(i) subadditivity: if x, y X, then

p(x + y) <= p(x) + p(y);

(ii) positive homogeneity" if k > 0, x X, then

p(Xx) Xp(x);

(iii) continuity: if x -, x, then p(Xn) --- p(x).
Sirce the functionul p is subadditive nd positive homogeneous, we

easily i)btain that p(O) 0 and -p(-x) p(x). A functional p is con-
tim()us (and, cosequently, sublinear) if and only if it is bouded, i.e.,

llxll-<
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We observe that if p is sublinear, then it is also convex.
A linear functional h will be called a support to a sublinear functional

p if for all x X, h(x) <= p(x). We shall denote by U the set of all sup-
ports to p. Finally, for any x X, we introduce the set

{h

It follows from the Hahn-Banach theorem that for any x X, the set
U (and therefore U) is not empty. We observe that the sets U and
U are convex, w*-closed and bounded. The following important relation
holds:

(1.1) p(x) max h(x) for x X.
hEUp

It follows from (1.1) that the functional p is completely defined by the
set of its supports. Now, let U be a convex, w*-closed and bounded set in
X*. For x E X, let

p,(z) maxf(x).

It can be shown that the set of supports to the functional p, coincides with
U. Furthermore, the following important result holds.
THEOREM 1.1. The map :(p) U, taes, one-to-one, the set of all

sublinear functionals on X into the set of all convex, w*-closed and bounded
subsets of X*.
The inverse map is defined as follows: -(U) p,. Furthermore,
(i) )(p + p) (p) q- 4)(p), (Xp) (p), X > 0,
(ii) if for all x X, p(x) >= p(x), then (p) (p.).

If U U, then for all x X,
__>

Remark. The study of sublinear functionals is not the aim of this paper.
We note, however, thut Theorem 1.1 holds also in a much stronger form.
Consider the smallest linear spaces which contuin the families of sets
and functionals defined in the above theorem. One can, in a natural way,
introduce a norm into these subspaces as well us a partial ordering. Ex-
tending the map to these spaces, it can be shown that it is an isometry
which preserves the partial ordering.
We now give an important consequence of Theorem 1.1.
COnOLAY 1.1. Let x X be such that p(x) sup,e p,(x), where

p, (a A) is a sublinear functional. Then the set U coincides with the con-
vex, w*- closure of the sets U., a A.
We now give an important example of a sublinear functional. Let
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X C(E) be the space of continuous functions, defined on a closed and
bounded subset E of a finite-dimensional space; let p(x) maxeE0x(t),
where E0 is a closed subset of E.
Making use of Corollary 1.1, it is not difficult to show that U consists

of all nonnegative measures /, defined on the a-algebra of measurable
subsets E, such that (E0) 1, i(E\Eo) O.
We note that sublinear functionals were studied in detail in [1].
We shall call a functional q superlinear if -q is sublinear.
Clearly, all the properties of superlinear functionals can be obtained

from the corresponding properties of sublinear functionals. As an example
of a superlinear functional on the space C[0, T], we can take the functional

q(x) min x(t) --max (--x(t)).
[o,] [o,.]

1.2. Directional ditterentiability. Let f be a functional defined on an
open set in the space X. By the derivative off at the point x , evaluated
on the element u X, we shall mean the quantity

(1.2) f’(u) lim
a-O/

f(x -t- ou) f(x)

Clearly, when f’(u) exists, so does f’(Xu) with > O, whereby f’(Xu)
hf’(u). We shall call the quantity

the derivative of f at x in the direction u. We shall say that a functional f
is directionally differentiable at a point x if the limit (1.2) exists for any
u X. The directional differentiability of f at a point x means that there
exists a functional f, defined on the space X, such that for any u X
and a > 0 sufficiently small,

(1.3) f(x -t- au) f(x) -t- af’(u) -t- o,,(o),

where

lira O.u(O) O.
a-O+ O

The functional f,’ will be called he directional derivative of he functional
f a he poin x, nd (1.3) will bo Mled he formula of finite increments.
learly, f,’ is positively homogeneous functional.
We now introduce on more definition which will be imporn iaer

on. We shall sayh a functional f is uniformly direcionally differeniabl
at a point x, if for any u X and any > O, there exist a ti > 0 and an
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a,, > 0 such that for v -u tiu and 0 -<_ a -< au,

o,()

is satisfied, where the functions o,(a) are defined as in (1.3).
The following theorems hold (see [1]).
THEOREM 1.2. A convex .functional f defined on a normed space X is

directionally differentiable at every point x X. Furthermore, f’ is a positively
homogeneous, subadditive functional and the functions o,(a) are nonnega-
tive for any x, u X.
THEOREM 1.3. A sublinear functional is uniformly directionally differenti-

able at any point x, its derivative p.’ is a sublinear functional, and, in addition,

(.4) V, V,
It follows from (1.1) nd (1.4) that for u X,

p’(u) max h(u).
heV

[hUS, the computation of the directional derivative of a sublinear func-
t,i(.ta,1 is connected with. the description of the sets U,. Consider an ex-
a.mple. Let X C(E) (where E is a closed, bounded set in R’), p(x)
maxe x(t). Then U, consists of uonneg,tive measures such that

.(.E) 1, (E\E(x)) O, where

E(x) It E Ix(t) maxx(r)}.

p. (u) max u(t) dt.

It is easy to shout that

Eu
wheme it follows that

u(t) dg max u(t),

(.5) p/(u) mx u(t),
tE(x)

a formula which will be important to us later.
As customary, we shall say that a functional f is differentiable (Gateau

differentiable) at a point x if f’ is a linear functional. We shall then call
the derivative fx’ the gradient of f at x, and we shall denote it by F.
If f is differentiable at every point of a set t, then the gradient F can be
considered as an operator from a into X*.
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It is also possible to define a directional derivative for an operator. Let
X and Y be normed spaces, let be an open set in X, and let A be an operator
mapping into Y. We shall say that A is directionally differentiable at a
point x if there exists an operator A mapping X into Y, such that for
u X and a > 0 sufficiently smM1,

A(x + au) Ax + aA’(u) "t- o.,(a),
where

0 as a-*O+.
a

In computing the directional derivatives of funetionls, it is often con-
venient to mke use of the formul for the differentiation of composite
function. Let X nd Y be normed spees, le A be n operator mpping
n open set X into Y, nd let g be functional defined on Y. Consider
the functional f defined for x by

g(Ax).

Let x . Then, if A is directionally differentiable at the point x, and g
is uniformly directionally differentiable at the point Ax, and, in addition,
the functional g is continuous, then f is directionally differeatiable at X,
and for u X,

(1.6) f’(u) g(Au):
We now give a few examples which will be important later on.
Let be an open set in the n-dimensional space R, and let E be a closed

and bounded set in the m-dimensional space Rm. We are given a real-
valued function g(x, y) defined on X E (x, y) Ix , y E}, which
is continuous in y and which, for any x , y E, has a continuous, in y,
partial derivative

Og_ (Og Og
Ox -$1’ Ox’ "’

Consider the functional f defined on the set by the relation

f(x) maxg(x, y).

We shall show that f is directionally differentiable at any point x and
we shall find f’. For this purpose we define an operator A from into
C(E) as follows: if x0 , then Axo z C(E), where z(y) g(xo, y).
It is easy to verify that A is differentiable at any point x0 and that for
any u (Ul, u2, ..., Un) R’,

(A’ (u))(y) Og (Xo y)(u) Og (Xo y)ui.
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Making use of (1.5) and (1.6), we obtain that f’ exists at any point
x and that for any uR,
Where

(x,
yEE(x) il Xi

E(x) {y E Ig(x, y) max g(x, t)}.

Reasoning in exactly the same manner, it is easy to show that the func-
tional fl(x) minEBg(x, y) is directionally differentiable and that

(f’)(u) min
Og

EI() = -i (x, y)ui

where

El(x) {y Elg(x, y) min g(x, z)}.

Generally, if A is a differentible operator mapping some normed space X
into C(E), nd for x X,

f(x) mx Ax(t), (f(x) min Ax(t)),
tg t

then f (fl) is directionally differentible at ny point x nd

f’(u)= max (A’(u))(t), (f’)(u) min (A’(u))(t),
t(ax) EI (Ax)

where

E( Ax) E Ax( t) max Ax( r)

EI(Ax) It E IAx(t) rain

2. Necessary conditions for an extremum. In this section we shall give
some necessary conditions for an extremum, which can be expressed in
terms of cones of a special type. These cones are "linear approximations"
to the sets in which we shull be interested in a neighborhood of points of
interest. Recently there have been several papers devoted to necessary
conditions (see, for example, [1], [2], [3]). In some of these papers the frame-
work for obtaining necessary conditions is more general than ours. Our
approach (see [4]), however, is considerably simpler, while at the same
time it can be applied to many problems of practical importance. On the
basis of such necessary conditions, it is possible to construct algorithms for
solving these problems. In the present paper we shall only give .necessary
conditions for a minimum of a directionally differentiable functional.
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Let X be a normed space and let 2 be a subset of X. As is usual, we shall
denote the closure of 2 by . We shall say that an element u is an admissible
direction at the point x , with respect to the set 2, if there exists a
number a0 > 0, depending on x and u, such that for a (0, no), x +au .
Clearly, the set of admissible directions is a cone, which we shall denote by
Ks(a). It is easy to show that K(2) c C(2 x) (where C(2 x) is
the cone hull of the set x). When is convex and x 2, then
Ks(2) C(2 x). Generally we shall require not the cone K() but
its closure Ks(). Because of this, we give one more important example.
Let x X and let 2 {z X I4,(z) <= (x)}, where is a functional
which is directionally differentiable at x. In this case,

{u X Ice’(u) <= 0} D K(t) D {u X ’(u) < 0}.
If some natural conditions on ’ are satisfied, we can obtain that

g() {u Z l’(u) <= 01.
The cone K(a) of admissible directions at x, with respect to the set a,
linearly approximates the set 2 x in a neighborhood of the origin (or,
equivalently, the cone x + K(2), with vertex at the point x, linearly
approximates the set t in a neighborhood of x). An approximation by the
cone K(2) happens to be adequate for a large class of sets, such as convex
sets, sets having a nonempty interior (when the point x is in the closure
of the interior), sets of the form (x) C, where is some functional of
the "maximum type". etc.
However, for many sets 2 of practical importance, an approximation by

the cone Ks(t) is found to be inadequate. Thus, for example, consider the
case when t {z X](z) (x)}, where is a strictly convex func-
tional. In this case K(2) {0}. This leads to the need to define _an object
which constitutes a more accurate approximation.

Let t c X. The element u X will be called an admissible, iu the broad
sense, direction at the point x , with respect to the set t, if for any
e > 0 there is an element u, u u " e, and number a, 0 < a _-< e,
such that x -t- au t. The cone of admissible, in the broad sense, direc-
tions will be denoted by M(t). We observe that M(t) is a closed set
and that K(t) M(gt). If gt is a convex set, x t, thea M(t)
K(2) C (t x). If 2 z X (z) =< (x) and 0’ is continuous,

where is a functional directionally differentiable at x, then M(2)
K(2) u X x’(u) -<_ 0}. We shall be particularly interested ia the

case where 9. {z X (z) (x) }, where is a functional which is
uniformly directionally differentiable at x, and whose derivative ’ is a
continuous functional. In that case,

M(2) {u X 4’(u) 0}.
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If ’ is a sublinear (superlinear) functional and there exists a v X such
that 4x’(v) < 0 (x’(v) > 0), then

M(a) {u X l’(u) 0}.

We now proceed with the formulation of necessary conditions.
THEOREM 2.1. Suppose that the functional f achieves its minimum on the

set at the point y. If it is directionally differentiable at y, then
min,EKy(a) fy’(u) 0.
THOnE 2.2. Suppose ha$ he functional f achieves its minimum on he

set a at the poin y. If i is uniformly directionally differeniable a y and is
derivative fy’ is continuous, then mimey(a) fy’(u) 0.
The following theorem shows when the nbovc necessary conditions are

also sufficient.
THEOREM 2.3. Let f be a convex functional defined on X, let be a subset

of X, and suppose that there exists a point y such that mineK(a)fy’(u)
0 (minuEMy(m fy’(u) 0). Furthermore, suppose there exists a neighbor-

hood S(y) {xl]l x y < e} of y, such that (y + Ky()) S(y)
(y + My() D S(y) ). Then f achieves a local minimum on

a at y. If the stronger condition y -+- Ky(a) (y + My() ) is satisfied,
then f achieves a global ninimum on at y.

It is possible to examine certain important nonconvex problems by
means of Theorems 2.1.-2.3. These theorems can also be used to some
extent in the study of certain optimal control problems, approximation
theory problems, as well as in the study of certain nonlinear equations (see,
for example, [5]). Of main interest, however, is the case when is convex.
THEOREM 2.4. Suppose that a functional f, defined on a normed space X,

achieves its minimum on a convex set at a point y and that it is directionally
differentiable at this point. Then

(2.1) minfy’(x- y) 0.
xE

If, in addition, f is a convex functional, then (2.1) is a necessary and suf-
ficient condition for f to have a global minimum on at y.
We now present a few corollaries of Theorem 2.4.
COROLLARY 2.1. Let f be Gateau differentiable at the point y, then

(2.2) min Fy(x) Fy(y),

where Fy is the gradient of f at y.
ConoImAnY 2.2. Let f be a sublinear functional. Then (2.1) is equivalent

to the condition

min fy’(x) f(y).
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(2.3)

where

COROLLARY 2.3. Let A be an operator from the normed space X into C( E),
and let f(x) maxtE(Ax)(t). Then condition (2.1) can be written as
follows (cf. (1.5), (1.6) ):

rain max Ar(x y)(t) O,
xE $EE(Ay)

E(Ax) {t E (Ax)(t) max (Ax)(r)}.

As an example, consider the following problem. Let U be a convex,
bounded subset of L2r(0, T), the space of r-dimensional real-valued func-
tions which are square integrable on [0, T]. To each u 6 U there corresponds
a continuous function R(t, u), defined for 6 [0, /’]. Furthermore, for any
v U there exists an r-dimensional vector-valued function G(t, -, v), in-
tegrable with respect to T on [0, T], such that for u U,

R(t,u)

R(t, v) + l, G*(t, ’, v)(u(r) v(-)) dr + w(t, u v),

where w( t, u v)/[l u v --* 0 as u v --* O, and * denotes transposi-
tion. It is required to find a u0 U such that

max R(t, u0) min max R(t,u).
tE [0,T] uE E [0,T]

To apply our necessary condition, we observe that the function R(t, u)
defines an operator A from L.r(0, T) into C([0, T]). Furthermore, it fol-
lows from (2.4) that this operator is differentiable and that

A,’(u v)(t) G*(t, r, v)(u(r) v(r)) dr.

The relation (2.3) leads to the following necessary condition: if the point
u0 is a solution to our problem, then

rain max (, r, o)((r) o(’)) dr O.
uEU tE(Auo)

This necessary condition was derived in [6].

3. Algorithms for computing stationary points. Let be a convex set
in a normed space X, and let f be a directionally differentiable functional
defined on X. Points y at which the condition (2.1) is satisfied will
be called stationary points off on . Observe that if f is a convex functional,
then the stationary points are points of minimum of f on t. We shall now
give a few lgorithms for computing stationary points.
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3.1. The conditional gradient method. Let 2 be a convex, weakly com-
pact set, and let f be a Gateau differentiable functional whose gradient,
as usual, we shall denote by F. In this case it is possible to make use of
the necessary conditions in the form (2.2). To find stationary points (points
satisfying (2.2)), one may adopt the following conditional gradient method.

1. Choose an arbitrary element x_ 5 t.
2. Suppose that the element x, n 1, 2, has been found and that

Fx(X) > minxeaFx(X). Then let

(3.1) x+l x -}- a( x),

where is determined from the condition F() min.eF (x),
and a is chosen according to the principle of steepest descent, i.e., it is
such that

(3.2) f(x, + ,( x)) min f(x, + a( x)).
aE[O,l]

Without imposing any conditions on the gradient F, except for continuity,
it is possible to prove convergence of this method only when gt is compact.
THEOREM 3.1. If is a compact set and F is a continuous operator, then

the limit points of the sequence (3.1) are stationary points.
From now on we shall assume that the operator F satisfies on the set [t

the following Lipschitz condition" for x, x ,
(3.3)

In this case, we can apply not only the above described variant of the
gradient method (which we shall call the first variant of the method),
but also another variant, which we shall call the second variant, and which
differs from the first only in the choice of a.. In the second variant we
again determine x+ according to the formula (3.1), with chosen as
before, but with a determined by

where 0 < e -< =< (2 e)/L, > 0 (L is defined as in (3.3)). The
conditional gradient method was used by many authors for solving specific
extremal problems (see, for example, [7], [8]). The first variant of the
method was discussed in a general form in [9], [10] and [11], the second.
variant in [12].
We now give theorems on the convergence of the first variant of the

conditional gradient method.
THEOREM 3.2. Suppose that (3.3) is satisfied. Then

limF.(x. .) 0.
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THEOREM 3.3. Let f be a convex functional which achieves its minimum
on at the point y. Then

(3.4) 0 <= f(xn) f(y) <- Fn(Xn n).

If, in particular, the conditions of Theorem 3.1 (ft is compact) or 3.2 (F
satisfies a Lipschitz condition) are satisfied, then f( x,) -+ f( y).
The first variant can be modified as follows. Let min F.(x x) -a.

Choose 2n to satisfy -an <= F( x) <- -an/, where is fixed, with
1 _-< i" < . Now letf(x,)
and let an’ [0, 1] be such that f(, +
(k (0, 1) is fixed). As the (n + 1)th approximation, take the element

’(
THEOREM 3.4. Suppose (3.3) is satisfied. Then

lim min F(xn x) O.
n-oo xE

Theorem 3.4 shows that the approximate (within reasonable limits)
determination of the elements an and the numbers an does not destroy the
convergence of the scheme. If the spce X is a Hilbert space, rhea the
sume holds for the computation of the gradient, namely, instead of the
functional F we can use u functional n which satisfies

(F,/Y) -> a > 0 and 0 < m_< [[/y _< i < ,
F II/7 F

where n 1, 2, ..-, and a, m, M are fixed numbers.
It was shown in [11] that under certain restrictions on the functional,

the convergence of the sequence f(Xn) can be guaranteed to be at the
rate of o(l/n).
For the second variant of the method it is possible to prove theorems

which are analogous to Theorems 3.2 and 3.3. Furthermore, if f is a con-
vex functional, then f(x,) rain,Ear(x) o(1/n). Under some rather
strong assumptions on the functional f and the set ft, it is possible to obtain
convergence at the rate of a geometric progression.

3.2. The gradient projection method. Let H be a Hilbert space, and let
2 be a convex, closed, bounded set in H. Let x 6 H. Then there exists a
unique element Pnx such that x Pnz min,ea x z !. The
element Pux is referred to as the projection of the point x on the set .
Properties of projections were studied in detail in [13]. Now let f be a
differentiable functional, whose gradient F satisfies on the Lipschitz
condition (3.3). For a > 0, let w,(x) Pn(x aft). It can beshown that
in the case under consideration a point x is a stationary point (satisfies
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condition (2.2)) if and only if for some a > 0, x w,(x). Furthermore, if
for at least one oo > O, x W,o(X (x W,o(X)) then for all a > 0,
x w(x) (x w(x) ). Making use of this fact, one can propose the
following gradient proiection method for the minimization of f on t.

1. Choose an arbitrary xl .
2. Suppose that the element x, n 1, 2, ..., has been determined

and that x, W(Xn) for any a > 0. Then, let

Xn+l Xn -- n(Wan(Xn Xn).

Different choices of a,, , result in different variants of the gradient
projection method. Some of these schemes are given in [13]. Observe that
although all the results in [13] are formulated for finite-dimensional spaces,
they remain valid in Hilbert space. We shall now describe the more im-
portant schemes given in [13].

I. O/n [ln, 2n], where

, min F. cos ’
min IF eos.’

}cos ,(1 sin ,)

(1 e") cos (1 sin )

where y is an arbitrary point in 2, such that (y x, F,,) < 0,

-1 (y- x,-F,)
(n COS

and L is determined by formula (3.3); e’, e"
=1.

II. am is chosen to satisfy

f(w.,,(x) min f(w.(x,) ), 1.

III. a _-> ao, where ao is an arbitrary positive number, and

(3.5) min{l (w,.(x,)--x,,Fx,,’-  oo(x )
IV. a, >-_ ao, where ao is an arbitrary positive number and/, is chosen

to satisfy

(3.6) f(x,, + ,(w,,,(x,) x.)) min f(x, --[- (w,,,(x,,) x,)).
[o,11

V. a. is chosen to satisfy

(3.7) f(x, a.F,.) min f(x,, aF..),

and , is chosen to satisfy (3.5).
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VI. a. is chosen according to (3.7) and . is chosen according to
(3.6).
Aprt from the ones bove, there were described in [13] schemes which

re bsed on the simultaneous minimization with respect to th pmmetes
a, f. Observe that for a --+ , the schemes III nd IV, of the gradient
projection method, "converge" to the schemes II nd I of the conditional
gradient method respectively. For ech of the bove stated vrints of
the gradient projection method, it is possible to prove convergence
theorem, nlogous to Theorem 3.2. A scheme which chooses a [e, 2/
(M 4- e)], where el, e > 0, nd 1, ws studied in detail in [12].

Finally, we wish to point out that the schemes I nd II bove cn lso
be used for solving minimization problems oa certain nonconvex sets.

3.3. A generalized conditional gradient method. Let X be Bnch
spce, let f be convex, wekly compact subset of X, let A be completely
continuous operator from X into the spce C(E), where E is closed nd
bounded subset of R. We give below n lgorithm for minimizing the
functional f(x) mxe(Ax)(t) on the set t2. This lgorithm ws de-
scribed in detail in [6], [17], nd is generalization of the conditional
gradient method.
Let e, p be rbitmry positive numbers.
1. Let x t2 be rbitrry.
2. Suppose x hs been found, n 1, 2, .... Let

i min max A:(x- x,)(t),

where

E(Ax) {t E IAx(t) maxAx(T)}.

If i 0, then the necessary condition (2.3) is satisfied, and, consequently,
x is a stationary point. Suppose t. < 0. Then we find the least real k such
that

(3.8)

min max A,(x- x,)(t) -<- max A(.,- x,,)(t)
Z tEn,/2

where

E IA(x,)(t) max A(x,)(T)I < e

r]

Since n < 0, there will exist the required k. Now let
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x.+ x + a( x),

where n is chosen according to (3.8) and a. is chosen to satisfy

max A(x + a(n x))(t) rain max A(x + a( x))(t).
tE [0,1] tE

It is possible to show that the sequence thus constructed converges to u
stutionury point, or, to be more precise, the following theorem holds.
TEOnEM 3.5. For any e O,

lira inf sup A,(x x) (t) 0,

where

,, It E Ax,,( t) max Ax(r) <- e}

This theorem is a strenthening of the convergence theorem in [6].

3.4. The approximating functional method. The bove described methods
belong to the class of methods of feasible directions. For the minimization
of functionals of the form p(Ax), it is possible to adapt method based on
the idea of approximating the given functional by more simple ones. in
somewhat derent formulion the method we propose below was dis-
cussed in [14], [15], [16]. This method applies also to aoaconvex sets.
Its merit lies in the fact that it always leads to point of global minimum,
while its disadvantage lies in the difficulty of the auxiliary problem.
Le X, Y be Banach spaces, let be weakly compact subset of X,

let A be a completely continuous operator from X into Y, and let p be a
sublinear functional defined on Y. The approximating functional method
consists of the following.

1. Let x, x, ..., x,, r 2, be rbitrary points in and let g- be
arbitrary functionals in rr * i 1, 2, r. (For a definition of the
sets see 1.1.)

2. Suppose that the points x, x, ..., x, n r, and fuuctionals
g U, i 1, 2, ..., n, hve already been found. The point x+ is
then chosen to satisfy

max g(Ax+) min mx g(Ax).
in xE in

For he functional g+ we tuke un arbitrary element in U+. Observe
that if Y C(E), p(y) maxey(t), then the functional g can be
chosen as follows" for y C(E), g(y) y(t), where the point t. E
is such that Ax(t) maxeAx(t). The element x+ is then chosen
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to stisfy

max (Ax,,+l) (ti) min mx Ax(ti).
in xE

We now let mineap(Ax), #, p(Ax,) mxg(Ax),

mx g(Ax) mia mx g(Ax).
n--1 xE in--1

THEOn 3.6. If X+ X, then x solves the problem. Otherwise, the
derived extremun is achieved the limit points of the sequence constructed,
as above. Furthermore,

(3.9) -0 and .
The relation (3.9) cu be considered to be n a posteriori two-sided

bound oa the rate of convergence.
Remark. The problem of minimax in finite-dimensional spces was coa-

sidered in [17].
The above described methods can be a,pplied for solviag number of

problems of practical importance. Some of these were considered in [18]
( minimum time problem with nonlinear pleat) nd in [19] (a optimal
control problem with nonlinear pl.ut and state spce constraits).
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STABILITY CONDITIONS FOR SYSTEMS WITH MONOTONE
AND SLOPE-RESTRICTED NONLINEARITIES*

G. ZAMES AND P. L. FALB:
1. Introduction. Consider the feedback system illustrated in Fig. 1,

where H is a time invariant linear operator and N is a memoryless monotone
(or odd monotone) nonlinearity. In recent years stability conditions for
such a system have been derived in terms of the frequency response H(jo)
of H. Many of these conditions involve the use of multipliers and typically
take the following form" If a multiplier M(jco) can be found such that
Re {M(jo)H(jo)} >- 0 and certain auxilliary conditions depending on N
are satisfied, then the system is stable. Here we derive more general results

linear time
invariant

Xl H J

nonlinear._.
memoryles$

FIG. 1. A feedback system

than those previously available by broadening the class of allowable multi-
pliers. Our derivation draws on the theory of positive operators on a
Hilbert space and involves the faetorization of a convolution operator into a
product of two positive operators.
The problem of stability for feedback systems with a single nonlinearity

was initially considered by Lur’e [1] and a well-known frequency response
condition is Popov’s theorem [2]. Lur’e and Popov assumed that the system
was represented by a differential equation and that the nonlinearity was
confined to the first and third quadrants. We pose our problem in the frame-
work of operator equations and make quite different assumptions on N.
An operator approach to stability was used by Zames [3a], [3b], who

* Received by the editors March 7, 1967, and in revised form November 2, 1967.
Guggenheim Fellow, NASA Electronics Research Center, Technology Square,
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: Division of Applied Mathematics, Center for Dynamical Systems, Brown Uni-
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showed that a feedback system was stable if its "open-loop" operator could
be factored into two positive definite parts. The class of "R.C." multipliers
having the form

(1 Z(s))-l= he he > 0, ai> 0,
sZ7 a

played a crucial role in [3a], [3b]. Closely related results were obtained, in
the framework of Lyapunov theory, by Brockett and Willems [4], Yaku-
bovicz [5], Narendra and Neuman [6], and Anderson [7] and, using operator
methods, by Dewey and Jury [8] and Lee and Desoer [9]. A more general
class of multipliers was introduced by O’Shea [10a] and used to prove sta-
bility by Zames and Falb [11]. (The original resflts of O’Shea were incor-
rectly proved.) In a subsequent report [10b], O’Shea used multipliers de-
fined on o, oo rather than on [0, m however, the results of O’Shea are
valid for a very limited class of nonlinearities since his proof in effect in-
volves the a priori assumption that the solutions are bounded. We require
no such boundedness assumption here and our method of proof is novel.
point of fact, the main feature of this paper is a method fl)r proving stt-
bility with multipliers defined on (- , ), which involves the factoriza-
tion of a convolution operator on L(- , into a product of two oper-
ators, one having a kernel which vanishes on (- , 0] and the other having
a kernel which vanishes on [0, ).
In 2 we define the main problem and state our main result (Theorem 1).

Then, in 3, we introduce our method for deriving stability conditions and
prove a theorem which delineates the range of applicability of the method.
As our approach involves the factorization of operators, we prove a relevant
lemma in 4. Next, in 5, we show that the class of convolution operators
considered forms a Banach algebra. In 6 we develop the requisite condi-
tions ensuring the positivity of the operators involved in our proof of
stability. We combine the results of 3, 5 and 6 to give a proof of Theorem
1 in 7. Finally, we make some concluding remarks in 8.

2. The main problem and its solution. We ctisider Oe feedback equt_-
tiaras (see ]. g. :1)"

(1) e xt y,

(2)

(3)

e. x+ yl,

y(t) Hel(t) =1 ho(t r) + J0" h(r)el(t r) dr,

y(t) lle(t) N(e(t))

under the following assumptions.
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A1. N(. is a real-valued function on (- , with the following
properties"

(i) N(0) 0;
(it) N is monotone nondecreasing, i.e., (r s)[N(r) N(s)] >= 0;

(iii) there is a constant C > 0 such that IN(r) <= C lri for all r.

A2. h(. is (real-vlued) element of L[0, ), i.e., J, h(r)]dr

A3. {r} is sequence in [0, ) nd {h} is a sequence in l, i.e.,

A4. x, x, y, y, e and e are real-valued functions on , and

f(i) j_ < , e(r) dr < for all (finite) ;
(ii) z(. and z(. are elements of (- , ), i.e.,

1[x()d < and I[
Let H(j) denote the frequency function of H, i.e.,

H(j) h exp (-jv) + f h(t) exp (-jt) dr.
0

We shM] sock solution to the following problcm.
h(AIN PROBLEM. Find conditions on H(j) which csure tht e ad

re in L(- , ud that lim y(t) O.
Our solution, which is givcn in Theorem 1, involves the following in-

equality"

(5) R(I Z(j)}H(j)) a > 0, (-, ),

where Z(j) is suitable frequency function. We refer go 1 Z(j) as the
stability multiplier. More precisely, we hve the following theorem.
THEOREM 1. U there is an element z(. in L(- , ), if there are

sequences {a} and {z} in (-, such that

i=l

and (5) is satisfied for Z(j) given by

(7) Z(j) z. exp (-j) + z(g) exp (-j) d,

mzd if either ( 0 d z O, i 1, 2, or N(.) i odd,
e are i L(- , ).
Coo 1. If, ie ddgioe o he hpolhee 4 he heorem, h(.

gN, d h 0, i 1, 2, ..., hen lim. () O.
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COROLLARY 2 (Slope-restricted nonlinearities). Suppose, in addition to
the assunptions A1-A4, the following conditions are satisfied:

(a) there are constants a, b, e 0 such that

a <-N(x)- N(y) <_ b- e
x--y

for all x y;
(b) h Ofor i 1, 2,...
(c) there is an element z(. in L(- , and there are sequences I(}

and {zl in (- , such that (6) holds and there is a constant > 0 for
which the ,inequality

(5’) Re{(1 Z(j))(H(j) + b-)(H*(j) + a-)} >= t > 0

is satisfied;
(d) either z(.) >= 0 and z >= O, i 1, 2, or N(.) is odd;
(e) the Nyquist diagram of H(jo) does not encircle the point l/a, O)

then o(" and e( are in L( and limt_. y(t) 0.
We prove Theorem 1 and its corollaries in 7.
3. A method for geaerating stability coaditions. In this sectio we de-

velop the basic ideas underlying our method for generating stability con-
ditions. We let t be rel Hilbert spce ud we view the spce L(R, t) s
Hilbert space with inner product given by

(8) (x(. ), y(. )) (x(t), y(t)} dt.

We now huve the following definition.
DFNTON 1. Let x(. be mapping of R ito t and let be a element

of R. Then the t-truncation of x(. ), in symbols xt(. ), is the functioa defined
by

x(s) =fx(s)for s<=t,
(9)

for s > t.

We let L,(R, t) denote the set of all mappings x(. of R ito t such that
xt(. L(R, t) for all t, i.e.,

(10) L(R, t) {x(. xt(. L.(R, ) for 11 iu R}.

L(R, ) shall be called the extension of L(R, ).
Note that this implies that bx N(x) >- x for all x.
The Nyquist diagram of H(.) is the subset of the complex plane consisting of

(i) the image of the j-axis under H(. ), und (ii) the origin. In our case, H(j) is a con-
*inuous curve with lim_, H(2") 0.

RisgherealsandL(R,a) (.)’()aand Ilx(OIid<



SYSTEMS WITH MONOTONE SLOPE-RESTRICTED NONLINEARITIES 93

For economy of notation, we write L2 and L2e in place of L2(R, ) and
L2e(R, tl), respectively.

If x(-) is an element of L2, then the extended norm of x(. ), in symbols
II x(. )il,, is given by

f]lx(’)]l if x(.) L,
11) X("

o if x(.) L2,

where [[. [[ denotes the norm on L. Now let T be a mapping of L into L (or
of L into L,); then we have the next definition.
DEFINITION 2. T is nanticipative if

(2) (T), (Wz,),

for 11 x in L (or L,) and all in R.
Nonanticipative mappings play an important role in the sequel. We

now have a third definition.
DEymxoN 3. Let T be a nonanticipative mapping of L into L,. Then

the gain of T, %(T), is given by

(3) (W)= sup {lI(w(.)),lIJlIz,(.)l}.
xL,
(--,)
xtO

T is said to be positie (e) if

(4) (,(.), (Ix(.)),) 0

for all x(. in .L and all in R, and to be strongly positive (e) if

(5) (,(.), (Wx(.)),) z,(" )ll"
for 11 x(. in L,, M1 in R, and some > 0. A mapping T* ofL into L is
said to be a cjugate e) (or adjoint e) of T if

(6) (,( ), (Wy,( )) ((T’x,(.)), y,( )

for all x(. ), y(. in L and all in R.
Definition 3 is a natural generalization of the corresponding properties for

maps T of L into L, and we shall say without further ado that T has a gain
(T), T is positive, T has a conjugate T*, etc.
Now consider the feedback system

(17)

(18)

(9)

(20)

k(’) ,(’) w=(.),

f=(. ) v,.(. + ,,(. ),

w,(.) og,(.),

(. Of(.),



94 G. ZAMES AND P. L. FALB

where (a) G1 and G2 are nonanticipative maps of L2e into L2e (b) f(. ),
f2(-), vl(. ), v2(. ), wi(. and w(. are in L2 and (c) vl(. and v.(. are
in n2, i.e., vl(.)llo and v(.)lle are finite. We wish to determine con-
ditions which ensure that fl(. and f.(. are in L. In particular, we want
to prove a stability theorem for this system under the assumption that,

G and G2 are extensions of maps of L. b.to L2 in the following sense.
DEFINITION 4. Let T be a no.anticipative map of L2 il.to L. A map T,; of

Le is an extension of T if

(2) (Tox(.)) (Tx(.))

for all x(. in Lo and all in R.
Clearly T is nonanticipative and uniquely defined. Moreover, it is easy

to see that To has the following properties"
(i) W,x(.) Wx(. for all x(. in L
(ii) if T is linear (positive, strongly positive), thett To is linear (posi-

tive (e), strongly positive (e))
(iii) o(W,) ,(W);
(iv) if T- is defined and nonanticipative, then To- is defined and

T-= (T-).
These properties will be used shortly.
We now prove a lemma which points the way toward our method for

deriving stability conditions.
LEMMA 1. If G and G. are positive (e) and if either GI is srongly

positive (e) and ,(G) is finite or G. is strongly positive e) and ",(G) is
finite, then f(. and f(. are in L2.

Proof. Let be ny element of R. The-

(22)
()lt("), )lt( )) - (?)2t( ), ’U)2t(" ))

<f( ), Gg(. )> + <f( ), (Gf( )>

by virtue of (17)-(20). Suppose thut G is strongly positive (e) nd that
’o(G) is finite. Then it follows from (22), the Schwarz inequality, and the
positivity of G2 that

(23)

and hence, that

(24)

Since II (" )[[ v(. )[[ < .d v(. )[l v(. )i < , there are

If ft(.) 0 for some t, then f,(.) 0 for all s > t, and if fit(’) 0 for all t,
then the assertions are trivially true.
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positive constants a, such that

(25)

for all t. Since 8, a, and are positive constants, it follows from (25) that
there is an M > 0 such that ft(" )lI, <= M for all t. Thus f(. is in L..
Furthermore, f2(" )11 v.(. + Gill(. )lie =< v2(. )!1, + %(G1)]] fl(" )lie
so that f2(. is also in L. The case where G is strongly positive (e) is
treated in an entirely similar way and thus the lemma is established.
Now let us suppose that there are nonanticipative maps H and N’of

L. into L such that G1 H and Gs lge. We then have the following
theorem.
THEOREM 2. Suppose that there is a mapping M (the multiplier) of L. into

L, such that"
(i) there are linear maps M+ and M_ of Ls into L with the following

properties"
() M M_M+;
b M_ and M+ are invertible

(c) M+, M+-, M*, and M_*- are nonanticipative and have
finite gains .( (i.e., are bounded);

(ii) MH’ and M*N’ are positive;
(iii) either MH’ is strongly positive and ,(H’) is finite or M*N’ is

strongly positive and y( N’ is finite.
’1’hen j’( and f( are in L i.e., fl( )lie and f2( )lie are finite.
l’rooj’. We shall transform the feedback equations (17)--(20) and apply

Lcmma 1. So let

v ),v, v (M+)

k’= (M_*),k, (lvL)&,
M_* wl (M+

MG,’ (M+)He

Then the feedback equations become

(:28)
f,’

We shall show that (28) satisfies the hypotheses of Lemma 1.
Since GI’ and G2’ are compositions of nonanticipative maps, GI’ and G2’

may be antieipative.
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f.’, v,,. and wz’ are in L2e Moreover,are nonanticipative. Clearly fl’, vl, w,
v/ and v2’ are in L since v/ ]], (M-*), v[[ (M-*) v

(M_*)[[ v II < as v is in L and v’ It. [[(M+)v [i M+v

By virtue of Lemma 2 which follows the theorem, G/ and G’ are
positive (e). Moreover, if (say) MH’ is strongly positive and (H’) is
finite, then it follows from Leman 2 that G’ is strongly positive (e). As
(H’) (H’) we hve (G’) (M+)(H’)(M_*-) < . Thus,
in this case, all the hypotheses of Lemma 1 are satisfied and so <

< + and similafly, l]f2 II+ < , The cse wher*’ is strongly positive
is treated in the same way and thus the theorem is established.
LEMA 2. Let P, Q and R be nonantic@ative maps of L+ into L+. U

+( Q < , if Q-t eaists and is nonantic@ative and if Q*PR is positive
strongly posit@e), then P+R+Qjt is positive (e) (strongly posit@e (e)).
Pro@ We have

<xt, (PRQ-xt)>

<y, Q’PRy>,
where y Q-ixt, since PeReQe-1 is nonanticipative. The leman follows
immediately as xt

4. Factorization of operators. In view of Theorem 2, we can see the im-
portance of determining conditions which fisure that an operator has a
suitable factorization. If 65 is some Banach algebra and P is an element of

65, 65) ,s thenwe shall call P a projection if (a) P2 P and (b) xy is in the
range of P if both x and y are in the range of P. The factorization that we
shall ultimately use involves projections in a Banach algebra of convolution
operators.
We now have the following lemma.
L 3. Let 65 be a commutative Banach algebra with an identity E and

with norm (. )..Let P+ be a projection on 65 and let P_ E((R),(R)) P+.
Denote the ranges of P+ and P_ by 65+ and 65_ respectively. Let 5+ be the
subspace spanned by 65+ and E, and let St_ be the subspace spanned by 65_

and E. If Z is any nonzero element of 65 with p(Z) 1, then there are ele-
ments Z+ of + and Z_ of 5_ such that:

(i) E -t- Z Z_Z+;
(it) Z+ and Z_ are invertible and Z+-1, Z_-1 are in fit+ fit, respectively.

65, 65) is the space of all continuous linear maps of 65 into 65.
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Moreover,

(29)

and

(30)

Z+ exp [P+(log {E - ZI )],
Z_ exp [P_(log E -t- ZI )]

Z+-a exp [--P+(log E -t- Z} )],
Z__- exp [-P_(log {E + Z})].

Proof. Since p(Z) < 1, the series

Z Z(31) log (E -t- Z) Z - - -converges absolutely to an element of (. The series for

exp [P+(log E -]- Z} )]

also converges to an element Z+ of (g. Z+ is actually in (+ since
(a) P+(log E -]- Z} is in +, (b) (+ is closed under addition and multipli-
cation, and (c) P+ is continuous. A similar argument applies to
Z_ exp [P_(log E -t- Z} )].

Moreover, since 5 is commutative, we have

Z_Z+ exp [P_(log {E + Z})] exp [P+(log {E -t- Z})]

(32) exp [P_(log {E -t- Z}) -]- P+(log {E -{- Z})]

=E+Z.
Clearly Z+-1 and Z_-1 are defined by (30) and thus the lemma is estab-
lished.

5. The Baaach algebra of convolution operators. Suppose that gc(’) is
an element of LI(- , and that g(. is a real-valued function on
(- , which has a countable support S(g) and which is absolutely
summable on S(g) (i.e., res(gd) Ig(ri)] < ). Then we shall consider
convolutions of the form"

(aa) E +
riES(gd)

where x(. is an element of L.( , ). We call the pair {g, g} the kernel
of the convolution. We shall show that any convolution of the form (33) is a
bounded linear transformation of L(- , into itself and that the set
of all such convolutions can be viewed as a commutative Banach algebra

In other words, gd(r) 0 for all r ( S(g).



08 G. ZAMES AND P, L. FALB

2 with an identity. Moreover, there is a natural projection P+ on . We
begin with the following lemma.
IEMMA 4. Let kl be the set of all real-valued functions ( on )

which have countable support S and which are absolutely summable on S.
Let ( )]] be given by

(34) (-) [ [(r)
ri E8

for ( in kll Then kll is a Banach space with [[. Ilk as norm.
Proof. Clearly lll is a linear space with-the usual definitions of sum and

scalar multiplication. Moreover, II" II1 is obviously a norm on kll. Thus we
need only show that kll is complete. So let {n} =1 be a Cauchy sequencein
kll and let S U Sn. Then S is countable. Letting z be the element of
11 given by z l(r)}=, whcre S /r" i 1, 2, .../,.we can seethat. is a Cauchy sequence in l and hence has a limit lad in l. If we
let (. be defined by (r) ai for r in S and () 0 for r ( S, rhea
(. is in kl and {}= converges to (. ). Thus the lemma is established.

Let K be the direct sum of the Banach spaces kh and L(- , ), i.e.,
K kl @ L(- , o ). K shall be called the kernel space and we shall de-
note elements of K by {g, g}. Moreover, we also have

as the norm on K, or more explicitly,

’i Eod

We now have the next lemma.
LEMMA 5. If {g, g] is an element g K and x(. is an clement

L( ), then the cvolution (33) cvergesfor almost all in ).
Furthermore, y(. is in L( , and
Hence the convolution (33) defines a bounded linear transformation of
L(- , into itself.
Pro@ Formally, we huve

(36)

where

(37)

y:(t) dt I + 2I + I,

I f_: {(f_: g(r)x(t r) dr) (f_: g(z)x(t z) dz)} dt.



SYSTEMS WITH MONOTONE SLOPE-RESTRICTED NONLINEARITIES 99

.We shall show that each of the terms I, Idc, I is finite. Assuming this
for the moment, we can see that the convolution (33) converges for almost
all and that y(. is in L2( , ).

Consider, for example, Ic,. We have

(38)

(39)

(41)

The terms ia (42) re finite by hypothesis; (39) is bounded by (40) s
consequence of the Schwrz inequality; (38) is obtained from (39) by in-
verting the orders of integration ia ccordnce with the Fubini-Tonnelli
theorems. Moreover, Tonnelli’s theorem lso implies that the bracketed
iategrnd of I in (37) converges for Mmost 11 t. The integrals L;d and
I re treated in similar wy ud thus re finite. Furthermore,

and thus the lemm is established.
In view of Lemma 5, we let be the set of all operators G in

(L.( , ), L2( , o )) which re defined by convolutions with
kernels ia K. Addition, scMr multiplication ad composition for operators
in 2 re defined
We shll show that 2 cn be viewed s commutative Bnchlgebr with
identity I.
DEFINITION 5. Let g, go} nd h, he} be elements of K. Then the product

of {g, g} and {h, h}, in symbols {g, g} .{h, h}, is the element of K
given by {g h, g o h g o h g h}, where

g

(43)

go o he(t) go(r)h(t r) dr.
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It is readily verified from well-known properties of ordinary convolutions
of functions that {ga, gel * {ha, he} is a well-defined element of K and that
K is a commutative algebra with an identity (given by {ea, 01, where
ea(0) 1, ea(t) 0 for 0) with respect to the product ,. Moreover,

(44)
so that K is a commutative Banach algebra with an identity.

Let the mapping that takes kernels into operators be denoted by r, i.e.,
if {ga, g} is in K, then r( {ga, g} is the convolution operator G defined by
(33). r is clearly a linear map of K onto . We shall show that r is an
algebraic isomorphism of K and 3. In other words, we prove that

(45) r( {ga g} * {ha, h}) ({ga, gc} )v({ha, h})

and that 7r is an injection (i.e., r( {ga, go} ) 0 if {ga, g} 0). It will then
follow that can beviewed as a commutative Banach algebra with identity
I since the function p(. ) given by

(46)

is a norm on .13. So we now have the next lemma.
LEMMX 6. If G r({ga,ge}) and I-I r({ha, h}), then

hol).
Proof. If x(. is an element of L2( , ), then

(47) ".

where

Jdd Jr- Jac q’-,led Jr"

Jda

Ja ga(r,) h(a)x(t r ) d,

Jc g(r) h()x(t- r- )dadr.

Since (47) converges for almost all t, all the terms Jaa, Jae, Jd and Je are
well defined. Moreover, by inverting orders of integration or summation
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and by translating variables, we easily see that

Jd ({g, 0} {h., 0}),

Jc (/g, 0} {0, he}),

0t),

Jcc (/0, go} {0, he} ),

and so the lemma is established.
All that remains is to show that is injective. We shall do this by means

of the Fourier transform.
DEFINITION 6. If X(. is ia 52(- , ), then the 1.i.m. Fourier trans-

form X(jo) of x(. is given by

(48) X(jo) 1.i.m. x() exp (-jo) d.

If {g gc} is in K, then the Fourier transform G(j) of {g g} is given by

(49) G(jo)= g(r) exp (-jr) + gc(r) exp (-jolt) dr,
i Eg

which converges absolutely for o, ). If G v( {gg, gc} ), then we
often speak of G(jo) as the Fourier transform of G.
The basic properties of the Fourier transform that we need are:
(A) If x(.) is in L(- , ), if G ({g, go}) nd if y Gx,

V(j) X(j)G(j) and

(150) () 1.i.m.

(B) If x(. is a nonero element of L( m, (or if {e, } is a non-
ero elemeng of K), ghen X(joo) 0 (a(jo) 0). In other words, ghe

Fourier transformation is one-go-one.
(C) If {e, } is a nonero element of K, then there is an x(. in

L( , such that Gx o, where G r( {g, g} ). In other words
r is injective.

Properties (A) and (B) are standard see, for example, [14]) and property
(C) is direct consequence of (50) und Parseval’s theorem. Thus we have
shown that 2 is a commutative Banach algebra with an identity.
We now exhibit the natural projection P+ on . If G ( {g, g} is n

element of 2, then we let

(51) P+G r({ + +}),
Limit in the mean.
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where

gd+()__ fgd( if r>=O,
(52) [o if r < 0,

{() if r__>_0,
(53) g+(r)

if r < 0.

We observe that (a) P+ is linear, (b) p(P+G) -<- p(G) so that P+ is con-
tinuous, (c) P+" P+, and (d) (P+G)(P+H) z({g+, g,+} {h+, h,+} ).
Thus P+ is indeed a projectio on . Letting P_ I P+, we denote the
ranges of P+ and P_ by + and _, respectively. We observe that now
the factorization Lemma 3 applies to the Banach Mgebra .
The operators in + are nonanticipative. Furthermore, since the adjoint

G* of any operator G z({g, g,} in is an operator in with kernel
{g(--r), g(--r)}, we cn see that the djoint of any operator in

_
lies in + and is, therefore, nonanticiptive. This fact is relewnt to the
proof of Theorem 1.

6. Positivity conditions. We now develop conditions for the positivity
of compositions of operators. Our derivations are bsed on an are in-
equality which is closely related to Young’s inequality.
Throughout this section we let N(. be real-valued function on ,
such that N(0) 0.

LEMM 7 (An are inequality). If N(. is monotone nondecreasing, then

(54) xN(x) yN(x) >-_ P(x) P(y)

for all x and y, where P( x) N( s) ds.

Proof. Since N(. is monotone ondecreasitg,

55 IN x + x N(x)]x _>_ 0

for any integer/, nd hence,

(56) : IN x + x) N )]z _>_ 0
k=l

for any integer m. Setting Ax (y x)/m and letting m approach infinity,
we deduce that

(57) N(s) ds- N(x) ds >= O,

which is equivalent to (54).
LEMMA 8. If N(. i8 monotone nondecreasing and if there is a constant
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C > 0 such that IN(s) <= CI sl, then

(58) x(t - r)N(x(t) dt <= x(t)N(x(t) dt

for all r and any x(. in L2(- , ). If, in addition, N(. is odd, then

(59) x(t + r)N(x(t) dt <= x(t)N(x(t) dt

for all and any x(. in L(- , ).
Proof. Since IN(s)[ _<_ C]s] and x(.) is in L(-, ), N(x(.))

is in L(- , and P(x(. )) is in L(- , ). Thus,

{x(t)N(x(t)) x(t + v)N(x(t))} dt

P(x(t)) dt- P(x(t + )) dt

0,

so that (58) holds. If N(. is odd, then P(. is even, and so

Thus, (59) holds.
Now. suppose that N(. satisfies the assumption A1 of 2 and let ll

be the mapping of L2(-, ) into L.(-, ) given by llx(t)
N(x(t)). We then have the following proposition.
PROIOSTON 1. /f Z ({z, z} is an element of 2 with p(Z) < 1,

and if either the kernel {z z} is nonnegative or N( is odd, then (I Z)I is
positive.

Proof. If x(.) is in L(-, ), then

(60)
(x(.), Zlx(.)} z(-) x(t)N(x(t r) dt

EZd

I- z(r) x(t)N(x(t- r)) dt dr.
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If {zd, zc} is nonnegative, then (58) and (60) yield

(6) <(. ), zx(. )> _<_ (z)<(. ), x(. )),

which implies that

(62) (x(.), ( z)x(.)) >= (x(.), (.){ (z)} _>_ 0.

If N(.) is odd, then (59) and (60) yield (61).
Proposition 1 is a positivity condition for the composition of a linear

operator I Z and a nonlinear operator 1. In Proposition 2 which fol-
lows, we give a positivity condition for the composition of two convolution
operators.

.PROPOSITION 2. /f : and H are elements of 2 with Fourier transforms
G(j) and H(joo) respectively, and if
(63) Re G(j H(jo >_>_>= ,
then GH is positive (strongly positive) if 0 > 0).

Proof. The Fourier transform of GH is simply G(jo)H(j). Thus, if
x(.) is any element of L2(-, ), then

1 (jo)H(jo) X(jo)i do

by Parseval’s theorem. It follows that

(x(.), GHx(. )} 1 f0 Re{G(j)H(j)} X(jo) d

()

->= - f0 x(j)I d x(. ,
which establishes he proposition.

7. Proof of the main result. Theorem 1 is now a simple consequence of
Theorem 2. The hypotheses of Theorem 2 are satisfied by virtue of Propo-
sitions 1 and 2, the fact that is a commutative Banach algebra with an
identity and a projection P+, and the fact that p(Z) < implies ,(Z) <: o

for Z ia .
As for Corollary 1, we observe that since hd(. 0 and he(-) h(. )

is inLl(-, ) lL2(-, ),

y(t) Jo h(r)e(t- r) dr

h(- r)e_(r) d -t- h(r)e(- r) dr,
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and hence that

(66)
)h2(t- o) do el2(o) do

/2

)d- 2 h2(r) dr e12(t- r) dr
/2 /2

Since el(. and h(. are in L(- , ), it follows by taking square roots
in (66) that limt y(t) 0.
We now turn our attention to Corollary 2. We shall prove this corollary

by transforming the feedback equations (1)-(4) into a form to which
Theorem 1 applies. The transformed equations are of the form

Xl Xl ax2 x2 bx2 Xl

(67) e e +ay (I+aH)o, e be y (hi N)e,

y e + by (I+ bH)o, y y: ae (N aI)e.

If the indicated inverses exist (as we shall soon show), then it is easy to
see that

el xl y2, Yl (I-t-bH)(I-l-aH)-10,
(68)

e2 x2 -l-Y1, y. (N-- aI)(bI- N)-le’,
and that the hypotheses of Theorem I are satisfied for (68). If we show that
(I -[- all)-1 is in o, and that (bI lI)-I is a nonlinear operator with the
same properties as the N of the theorem, then we can deduce that
el (I -t- aH)-lel’ and e (bI N --1

e2 are in L2(- co, ), which
will establish Corollary 2.
Now the condition that b ->_ {N(x) N(y) / (x y) insures that the

function (bI N) (.) is monotone nondeereasing which implies that
(hi N)-I( exists and is a monotone nondeereasing function. Further-
more, (hi N)-1(0) 0 and l(bI lg)-l(x)l <= x [/e (since
(hi N)(x) >= el x i). Thus (hi N)-I has all the requisite properties

and, in view of the properties of compositions, so does (lg aI)( bI lg)-l.
Let us examine I d- all. We first show that the inequality (5’) is equiva-

lent to the following "circle condition""

1 (a- -t- b- - b-H(flo) + : -t- 3(a
(69)

1 (a_l b_l=>

Z{(j) \

jZi(j) )
1

1 7-(oo)
where n > 0 and Z(j0) Zr(jo) + jZ(jo). To do this we note that
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(5’) is equivalcnt to

(70)
te {[1 z(joo) l(a_ + b_i 1.3Z(ao)][[H(j) + 52

1 a_ a_- b-l) + j( b-1)H/jo)]} >= .
In view of (6), 1 Z.(jo) > 0 and so (70) is equivalent to the inequality

1 (a_l_ 5_1)2 (a-1- b-1)Z/joo)Hi(jco)-Jr"
1 Zr(jco)

1 (a-1 + b-i 12_H(joo) +
(71)

1 Zr(joa)"

Upon completing the square of Hi(rio) at- 1/2(a-1- b-1)Zi(jo)/(1 Zr(jco)),
we see that (71) holds if and only if

(72)
H(joo) +

But (72) is clearly equivalent to (69) (as 1 Z(jco) is bounded away
from 0 and H(j00) is bounded) and so (5’) and (69) are equivalent. Since

1 a_t b-_t 1.ll(joo) + a-1-- II(joo) + + +-,2- j
(a- b-)Z(joa)

1 Zr(joo)

1 (a-.1 b--t 1
-5 )+J

(a- b-)Z,(joo)

we have H(j) + a-- >= n > 0 in view of (69). It follows.from (69)
and a lemma of Zames [3b, Part II] that I +aH is injective (i.e., is one-
to-one). In view of a theorem of Paley and Wiener [13, Theorem XVIII,
p. 60] the nonantieipative operator I -t- aH has a nonantieipative postinverse
in and therefore, is surjeetive. Thus we have shown that (I + aI-I)-1

exists and is a nonantieipative operator in .
Moreover, since the composition of two nonantieipative operators irt
is again a nonantieipative element of , (I + bH)(I + all)-1 is a non-

antieipative element of 2. Thus the proof of Corollary 2 is complete.

8. Concluding remarks. We have derived stability conditions for a class
of feedback systems in terms of the frequency response of the linear part
tt and suitable Inultiplier I Z. The key point wa,s that I Z was

Equation (72) is of the form (a B)(a + 13) ->= 7 > 0 with a, fl > 0.
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defined on (- , ). The proof involved the factorization of operators in
the Banach algebra of convolution operators and the developmen of
positivity conditions for compositions of linear and nonlinear operators.
Although .we have considered only the case of scalar-valued functions

here, we can easily generalize Theorem 1 to the case of vector-vMued
e, x ad yi, i 1, 2, .... The operator H is defined just as in. (3); how-
ever, the mapping 1 is no longer defined by : scalar functiot N but rtther
by a vector function N with the following properties"

(i) N(0) 0;
(ii) (r s, N(r) N(s)} >_- 0;
(iii) there is a constant C > 0 such that N(r) II -<-- CII r for all r.

A careful perusal of our proofs will clearly indicate the validity of this
generalization.
Another avenue of generalization is via the extension of the kernel

space to an L(G), where G is a locally compact group; this generaliza-
tion will be studied in a later paper.
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A REMARK ON THE "BANG-BANG" PRINCIPLE FOR LINEAR
CONTROL SYSTEMS IN INFINITE-DIMENSIONAL SPACE*

H. O. FATTORINI

1. Introduction. The "bang-bang" principle for linear control systems

(1.1) u’(t) A(t)u(t) + B(t)f(t)

in finite-dimensional space E (LaSalle [7]) can be stated as follows: If the
system (1.1) can be steered from a point u E to another point v E
in a given time tl > 0 by a control f taking values, say, in the unit cube
K of E", then the transfer of (1.1) from u to v can also be achieved in the
same time by another control f0 taking values in K0, the set of extremal
points of K. This result has been extended in various directions; let us
only mention [9], where K is allowed to be any compact convex set in E
(see also [4], [8] for other types of generalizations). The "bang-bang"
principle does not hold in infinite-dimensional spaces; in fact, it is easy to
construct control systems, even with A and B time-independent where the
final state v at a given time t. depends uniquely on the control f (see [2], [3]).
However, the principle subsists if we satisfy ourselves with approximating
(and not actually attaining) the final state. Moreover, it turns out that we
can also approximate the whole trajectory between u and v by means of
K0-valued controls (Theorem 1). This result is similar in form to the one
in [5] for nonlinear control systems in finite-dimensional space (see also
[11] where a very general treatment of this type of approximation problems
is to be found).

2. The initial value problem. We shall denote by E, F two (real or
complex) Banach spaces, L(F;E) the Banach space of all linear bounded
operators from F to E endowed, as usual, with the uniform operator topol-
ogy? For each in [to, h], to < h, A (t) will be a (possibly unbounded)
linear operator with domain D(A(t)). We shall assume that the Cauchy

* Received by the editors May 22, 1967, and in revised form August 24, 1967.
f Department of Mathematics, University of California at Los Angeles, Los

Angeles, California 90024. This research was supported in part by the Air Force Office
of Scientific Research, Office of Aerospace Research, United States Air Force,
under AFOSR Grant 693-67, and in part by the National Aeronautics and Space
Administration under Grant NGR 40-002-015 at Brown University, Division of Ap-
plied Mathematics, Providence, Rhode Island.

See [1] for definitions and results used here.
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problem for

(2.1) u’(t) A(t)u(t)

is well set. This means there exists an evolution operator U(t, s), i.e.,
strongly continuous L(E; E)-vMued function U(t, s) defined in the tri-
angle to. _-< s =< =< t stisfying U(t, t) I, to -< _-< t, and such that for
each [to, h), u E the function

u(s) U(s, t)u

is a (classic:d or generalized) solution of (2.1) in [t, t] For any E-valued
strongly measurable function g(. defined and summable in [/0, t-] and any
u E we shall define the expression

(2.2) u(t) U(t, to)u + U(t, s)g(s) ds

to be a solution of the inhomogeneous equation

(2.3) u’(t) A(t)u(t) + g(t).

It is easy to see that the function u(. defined by (2.2) exists and is co-
tinuous in [to, tl]. Under additional conditions on A (t), U(t, s), g(s) and u
it is possible to show that (2.2) is a genuine solution of (2.3); we shall not
dwell upon this point here (see, for instance, [12]).

Finally, we consider the linetr control system

(2.4) u’(t) A(t)u(t) + B(t)g(t), to <= <= t.

For each t, to <= <= t, B(t) is a bounded operator from F to E. We assume
that B(. is strongly measurable, i.e., that for any u F the E-valued
function B(-)u is strongly measurable; moreover, we suppose there exists
a scalar-valued function n(. ), summable in [to, t], such that

(2.5) B(t) <= v(t), to <= <= t.

The class of controls consists of all strongly measurable F-valued
functions f(. defined in [to, t] with values in some fixed closed, bounded,
convex set K. The trajectories of the system (2.4) are the solutions of (2.4)
for some control f , i.e., functions of the form

(2.6) u(t) U(t, to)u + U(t, s)B(s)f(s) ds

with f .. Since B(.)f(.) is summable in E, ech trjcci,ory u(.) is
continuous in [to, t].

All the integrals throughout this paper are Bochner integrals; see [6, Chap. 3]
for an exposition of the theory of integration of vector-valued functions.
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3. The "bang-bang" principle. In all that follows, K0 will be a subset
of K satisfying the following assumption.
ASSUMPTION ]. Finite convex combinalions of elemenls of Ko (i.e., finile

sums ku, O, 1, u, Ko) are dense in K.
Let us call 20 the subset of 2 defined by the following two conditions:
(a) There exist disjoint interva,ls I, I, I [0, q], such that

f is constant in each I.
(b) f() K0 for all [t0, ].
TmCOXEM 1. Le u( be a rajecory of (2.4) corresponding to some f

and lel e > O. Then there exisis an fo o such that he lrajeclory no(. cor-
responding o fo satisfies

u(t) -u,,() , t0 t.

The proof of Theorem 1 is , consequence of the following uxiliry result.
LEMMA 1. Let X be a Banach space, N(.) an L(F; X)-valued, strongly

measurable function defined in [t0, t] such that N(t) v(t), to t
for some summable function ( )..Let (o) be the set oJ" all elements of X oj’
th,e form

(3.1) N(s)f(s) ds,

J’ (f o). Then o is dense in .
In fact, assume Lemm 1 holds. Denote by (E) X the Bnach space

of M1 E-vlued continuous functions u(-) defined
sUptott u(t) ). Let e > 0 and U, be the L(E; E)-valued function de-

fined in the square t0 s, t as being equal to U(t, s) in the triangle
t0 s t, null in the triangle t0 s e t e and defined
elsewhere such as to be strongly contbmous iu the square nd such thut

(3.2) sup lUg(t, s)I,,(;) C sup IU( t,
tos,t tl tostt

(For instance, U,(t,s) (1/e)(t + e s)U(:-(t
s 5min(t+,t).)
It is not difficult to see that the L(F; a(E))-alued fmtction

N(s) U,(., s)B(s), to s tl, is stronglymesurable, nd (2.5) implies
that it satisfies the rest of the ssumptions of Lemma 1. Consequetly,
Lemm 1 tells us that the set of elements of (E) of the form

(3.3) U(t, s)B(s)f(s) ds

with f 0 is dense (in the (E)-topology) in the set of elements of the

See [10], where a closely related result is proved.
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form (3.3) with f oct.. We note now that

u(t, s)B()f() s U(t, )B()f() s
1,

CC1 ft
min(t+e’tl)

?(s) ds,

where C1 is an upper bound for {[ f I; f 6 K} and 7(’) the function
(2.5). This completes the proof of Theorem 1.
Proof of Lemma 1. The proof is trivial if N(. is uniformly measurable

(i.e., measurable as an L(F; X)-valued function). For in this case, given
e > 0, we can find disjoint intervals whose union differs from [to, tl] in a set
of measure _-<e and operators NI ,...,Nn L(F; X) such that

IN(s) --Nki(F;x) =< e, s 6 Ik.

This makes clear that we only need to prove Lemma 1 for the case N con-

cm. Le f g. If v f() d, i follows from the fact hat K is

closed and convex that (h o)-v K. Then ig can be approximated
arbitrarily well by convex combinations Xu, K0. Bug

then Nv can be approximated by elemets of the form N( o)u, and

N(tl to)u Nfo(s) ds, wheref0(s) u for s J, J an arbitrary

family of (disjoint) subintervals of [to, t], length (J) (t t0)X.
Observe next that if F is finite-dimensional, the concepts of strong and

uniform measurability for N(. coincide. We shall thus end the proof by
reducing the general case to that in which dim F < . Let f 2. Since
f is strongly measurable, we can find a g of the form

(3.4) g(s) X(s)u,
(finite)

u u. K, X1, X2 characteristic functions of disjoint measur-
able sets el, e, in [to, t], such that If(s) g(s) --< e in [to, t] outside
a set of measure =< e, thus we can assume f to be of the form (3.4). Now,

X’m(k)since each u caT be pproximated by convex combinations _.= hu.,
u K0, we can assume that the values of f actually belong to he convex
hull K of the points u,/ 1, 2, 1 _-< j _-< m(/). But K is contained
in the finite-dimensional subspace F of F generated by the u, nnd those
points satisfy Assumption 1 (with respect to K); thus our result for finite-
dimensionM F applies, and the proof of Lemm 1 is completed.
Remark 1. Assume F is reflexive. Thus K is compact in F with respect

to the weak topology. But then, by the Krein-5/[ilmau theorem [1, Chap. V,
8.4], K is the closed (in the weak topology) convex envelope of its set of
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extremal points. However, the closed convex envelope of a set is the same
in the strong as in the weak topology; thus Ke, the set of extremal points
of K, satisfies Assumption 1. I1 some cases, K0 ca_ be chosen to be a proper
subset of K,. The most interesting case in application is that in which K0
is substantially smaller than K; for instance, if K is a polyhedron in a finite-
dimensional space F, we may take K0 to be the set of its vertices. Thus,
the steering of (2.1) can be achieved up to any degree of accuracy with
controls assuming only a finite number of values.
Remar] 2. Theorem 1 admits evident generalizations to infinite time

intervals (to, m ), higher order systems, etc.
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DUALITY FOR CONTROL PROBLEMS*

BERTRAM MOND AND MORGAN HANSON:

Introduction. A number of duality theorems for the control problem
have recently appeared in the literature (see, e.g., [2], [4], [8] and [9]). Ia
general, these references give conditions under which an extremal solution
of the control problem yields a solution of the corresponding dual.
The main result of this note is the converse duality theorem (Theorem 3)

which gives conditions under which a solution of the dual problem yields a
solution of the control problem. The relationship of our results to duality
in mathematical programming is also discussed.

Notation. f(t, x, u) will denote a scalar function with continuous deriva-
tives up to and including the second order with respect to each of its
arguments. G(t, x, u) and R(t, x, u) are, respectively, n- and r-dimensionM
vector functions with continuous derivatives up to and iucludiTlg the
second order, x, u, and u are, respectively, n-, m-, n- and r-dimensional
functions of t.
A prime will denote derivative with respect to t. Superscripts denote

vector components; subscripts denote partial derivatives. No notational
distinction is made between row and column vectors.
f and f are the gradient vectors of f with respect to x and u. XG,

kG, R and R are the gradient vectors with respect to x and u of kG
and R. Similarly, letting be aa n-dimensional vector function of t,
vf vkG and vlaR mean (vf) (v(G) ) and (v(uR) )

Broadly, the control problem, is to choose, under given conditions,
control vector u(t), such that the ste vector (t) is brought from some
specified initial state x(to) 0 to some specified final state (t) x
in such a way s to minimize a given functional. A more precise mathe-
matical formulation is given in problem P below.

Duality. Consider the following two problems.
PRUAr, P. Minimize

fttf(t, x, u) dt

* Received by the editors My 5, 1967, nd in revised form November 6, 1967.
Aerospace Research Laboratories, Wright-Ptterson Air Force Bse, Dyton,

Ohio 45433.
: Queen’s University, Kingston, Ontario, and Aerospace Research Lbortories,

Wright-Patterson Air Force Bse, Dyton, Ohio.
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sub]ect to

(1)

(2)

(3)

DuAL D. Maximize

subjecg to

(5)

(6)

(7)

x(,to) Xo, x(t )

G(t,x,u) x,

R(t,x,u) >= O.

{f(t, x, u) ),(t)[G(t, x, u) x’] t(t)R(t, x, u)} dt

(to) x(t )

f(t, x, u) )(t)G(t, x, u) t(t)R(t, x, u) X’(t),
f(t, x, u) X(t)G(t, x, u) (t)R( t, x, u) O,

#(t) >- O.

{(x* x)f(t, x, u) nu (u* u)fu(t, x, u) dt

(by the convexity of f)

(x* x)); dt -t- {(x* x)[)G(t, x, u) -t- #R(t, x, u)]

+ (u* u)[G,,(t, x, u) + #R(t, x, u)]} dt (by (5) and (6))

x )X dt -t- {(x* x)),G(t, x, u) -t" (u* u))a(t, x, u)

In the above two problems, u(t) is required to have piecewise contin-
uous first and second derivatives in the interval to -<_ =< tl. x(t) and X(t)
are required to be continuous in to -<_ =< tl xp(t), X’(t) and t(t) are
required to be continuous in to -<__ -< tl except for values of corresponding
to discontinuities of u(t). The constraints must be fulfilled for all t,
to -< -< t, except that for values of corresponding to points of discon-
tinuity of u(t); (2) and (5) must be fulfilled for right- and left-hand limits.
THEOREM 1. f f is convex in x and u, kG and R are concave in x and u,

then the infimum of P is greater than or equal to the supremum of D.
Proof. Let (x*, u*) satisfy (1), (2) and (3) and let (x, u, ),, t) satisfy

(4), (5), (6) and (7). Then
t

,/t{f(t’ x*, f(t, x, u) dt
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q- (x*-- x)Rx(t, x, u) + (u*--u)R(t, x, u)} dt

(by integration by parts, (1) and (4))

_>_ [- x*’ + xz’] dt + Ix[G(, *, u*) G(t, , u)]

+ [R(t, x*, u*) R(t, x, u)]} dt (by the concavity of G and R)

Henc.e

l- ),[G(t, x, u) x’] tR(t, x, u)} dt (by (2), (3) and (7)).

f( t, x*, u*) dt

>= {f(t, x, u) k(t)[G(t, x, u) x’] t(t)R(t, x, u)} dt,

and, therefore, the infimum of P is greater than or equal to the supremum
of D.
Note that if G is linear i x and u, then >,G is always concave in x and

u. This is the case that is considered in [2].
The convexity of f and the concavity of hG and R with respect to x and u

will henceforth be assumed.
We assume also, for the next theorem, that he functions R, i 1, r,

satisfy the constraint conditions"
(i) if r > m, then at each (t, x, u) at most m components of R can

vanish;
(ii) at each (t, x, u) the matrix (0R/0u), where i ranges over those

indices where R(t, x, u) 0 andj 1, m, has maximum rank.
Necessary conditions for the existence of an extremal solution for

variational problem subiect to both equality and inequality constraints
were given by Valentine [10]. Using Valentine’s results, Berkovitz [1]
obtained corresponding necessary conditions for the control problem P.
These may be stated in the following way. If (x*, u*) is an optimal solu-
tion for P, then there exists function of the form

(8) F )of- ),(t)[G- x’] t(t)R

such that

(9) F

(0) o,
(11) ,R 0,

(12) .. 0

i= 1,...,r,
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hold throughout to _-< =< t (except that for values of corresponding to
points of discontinuity of u(t), (9) holds for right- and left-hand limits).
Here ),0 is nonnegative constant, X(t) is continuous in to -<_ -< t, and
)o, X(t), (t) cannot vanish simultaneously for any t, to <_- -<_ t.

It will be assumed that the minimizing arc determined by (x*, u*)
is normal, i.e., that )0 can be taken equal to 1.
THEORE 2. If X*, U*) is an optimal solution of P, then there exist func-

tions )(t) and (t) such that (x*(t), u*(t), X(t), (t) is an extremal solu-
tion of D and the extreme values of P and D are equal.

Proof. It follows from Berkovitz’s results [1] that there exist X(t) and
(t) such that (5), (6) and (7) are satisfied. Thus (x*, u*, , ) satisfies
the constraints of D. In addition, we have, from (11),

(13) u(t)R(t, x*, u*) O.

Equations (2) and (13) and Theorem 1 imply that (x*, u*, , u) maxi-
mizes D.

Converse duality. We now consider the converse dual problem, that is,
of finding conditions under which the existence of an extremal solution of
problem D implies the existence of an extremal solution to the control
problem P.
We assume now that f, G and R have continuous derivatives up to and

including the third order with respect to each of their arguments.
Let us write (6) as F(t, x, u, ),, #) 0 and let z (x, u). We assume

that the functions F, i 1, ..-, m, satisfy the constraint condition-
(iii) at each (t, x, u, , ) the matrix (OFi/OzJ), i 1, ..., m, and

j 1, -..,nTm, hasrankm.
The results of Valentine [10] applied to D state that if (x*, u*, *, u*)

is an extremal solution of D, then there exists a function

H - 0[f h*(G x*’) *R]- (t)[f -XG* -uRn* X*’]

such that

(14)

(15)

(6)

(17)

(18)

(19)

d

H 0,
dH

H 0,

(t) <_- o,
# O,
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hold throughout to =< -< tl (except that for values of corresponding to
points of discontinuity of u(t), (14) and (16) hold for right- and left-hand
limits). Here 0 is a nonnegative constant, (t), r(t) and -),(t) are n-, m- and
r-dimensional functions of t, continuous except possibly for values of cor-
responding to points of discontinuity of u(t). 0, (t), r(t) and ,(t) cannot
vanish simultaneously for ny t, to <= <- tl.
We shall assume that the rc corresponding to the extremal solution

(x*, u*, k*, t*) is normal, i.e., that u0 may be tken equal to 1.
THEOREM 3. If X*, U*, k*, t*) is an extremal solution of D such that the

matrix

(20) (f*- G**- R* f*- G*- tR*If- xG- R f- xG-
is nonsingular for all t, to t then x*, u*) is an optimal solution of
P, and the extreme values of P and D are equal.

Proof. It follows from Valentine’s results [10] pplied to D that there exist
0, (t), r(t) nd (t) such that

f X*G,- z*R,- (t)[f** X*G, *R**]
(21)

,(t)u, * * *’-xG,-zR,]=x

A- x*G- z*R- (t)[f x*G- z*RI
(22)

,(t)[f * *R-Xa-z ] 0,

(23)

(24)

-R A- ( t)R. -4- r( t)R .( t) O,

-G -f- x’ -f- (t)G. A- r(t)G, ’(t),
(25) .(t) <- 0,

(26) -* 0, i 1, ..., m.

Equations (5), (6), (21) and (22) imply

X GX a (t) * *(27) (t)[f** * * R,], ]- [A.- o,
(2s) -(t) x*a * X*G ,*R], ] ,(t)[A 0.

By the hypothesis of the theorem, (t) 0, r(t) 0, to

_
-<_ t, is the only

solution of (27) and (28).
Equations (23) and (24) now become

(29) -R (t) 0,

(30) -G + x’ 0.
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Equations (29) and (25) yield

(31) R >- 0.

Hence (x*, u*) satisfies the constraints of P.
From (26) and (29) it follows that

(32) *R =0.

The theorem now follows from (30), (32) and Theorem 1.
Remark 1. The matrix (20) will be positive semidefinite because of the

convexity of f and the concavity of .k*G and R. The condition that the
matrix be nonsiilgular is thus equivalent to the condition that the matrix be
positive definite.
Remark 2. If P and D are both independent of and x, they reduce

essentially to the static cases of mathematical programming. Putting
tl to 1, P and D become the following problems.
PROBLEM 1". Minimize

subject to

PROBLEM 2". Maximize

f(u)

a(u) 0,

R(u) O.

f(u) XG(u) ,R(u)

subject to f(u G,.(u R(u O,
>=0,

where f is convex, ),G and R are concave in u. Theorems 1-3 then reduce to
corresponding duality theorems for mathematical programming. If only
inequality constraints are given, then Problems 1" and 2* become the dual
mathemticM programs of [3], [5] nd [11].
Remark 3. It is possible to formulate P and D with different types of

endpoint conditions. See [4] nd [8] as well as [6] and [7] for further discus-
sions pertinent to this point.
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CONTROLLABILITY, OBSERVABILITY AND STABILITY OF
LINEAR SYSTEMS*

L. M. SILVERMANf AND B. D. O. ANDERSON:I:
1. Introduction. Of the many types of stability which may be defined

for dynamical systems, at least two are of special importmme when the sys-
tems are linear. These are bounded-input bounded-output (BIBO) stability
[1] and exponential stability [2]. The aim of this paper is to establish an
equivalence between these two types of stability for a large class of linear
time-variable systems. The basic system description we shall consider is an
impulse response matrix H which maps the system inputs u in.to the system
outputs y via the formula

(1) y(t) It(t, r)u(r)

when the system is in the zero state at time to. An ,ltern.ate description is
provided by a set of stttte equations of the f()rm

(2a) Ax + Bu,

(2b) y Cx,

where A, B and C are time-variable matrices, and x is the state vector as-
sociated with the coordinate basis used in setting up (2). The dimensions
of the vectors x, u and y will be taken to be n, r and rn, respectively. The
well-known [3] relationship between the two representations is that
H(t, r) C(t)q(t, r)B(r) fort >_- r, where q)is the transition matrix of
the homogeneous part of (2a).

Recall (see [1], [4]-[6]) that a system of the above type is (zero-state)
BIBO stable if and only if there exists a positive constant c such theft

(3) f ’oo tI t, r dr <= c for 11 t,

where II denotes the Euclidean norm. It should be noted that this type
()f stability is independent of the particular realization (2) of H. In con-
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trast, exponential stability is characteristic of the internal structure of
the system. As is well known [1], the realization (2) is exponentially stable
if and only if there exist positive constants c2 and c3 such that

(4) !1 (t, r) II <= c.e-C3(t-) for all and for all ->- r.

In the time-invariant case (A, B and C constant matrices), relations
between the two types of stability are well known. Exponential stability
implies BIBO stability, while BIBO stability, together with complete
controllability [3] and complete observability [3], implies exponential sta-
bility. Hence, in synthesizing a time-invariant impulse response mtrix
one is assured that all minimal realizations will have appropriate stability
properties. Unfortunately, no such simple and analogous statements caa
be made in the time-variable case. Indeed, as was observed by Kalmaa [7],
who first investigated this problem, it is impossible to conclude the existence
of any sort of relation between the two types of stability without further
constrMnts on the realizations (2). The reason for this is that one can con-
struct a realization for H with an essentially arbitrary A mtrix. If (2) is
to represent a practical physical system (e.g., an analogue computer),
then a natural restriction is that the elemets of the coefficient matrices
be bounded functions. Consequently, we shall assume that constant K
exists such that for all t,

(5) II A(t) ii <- K, liB(t)II <= K, C(t) [I <= K.

A system representation satisfying (5) will be termed a bounded realization.
Even with the restriction to bounded realizations, complete controlla-

bility and observability do not suffice to insure the equivalence of BIBO and
exponential stability. It is shown below, however, that a somewhat more
stringent, but physically reasonable, set of constraints does provide a con-
nection between the two types of stability. Several important classes of
systems which satisfy these constraints are lso derived.

2. Uniform controllability and obsevability. As defined by Kalma [8],
the system rcprcsetation (2) is uniformly completely controllable if, for
some tc > 0, any two of the following three conditions hold for all s (ny
two imply the third) "
(6) 0 < a(c)I <= M(s , s) <= a()I,
(7) 0 < a(a)I __< (s a, s)M(s a, s)’(s ac, s) -<.- a(a)I,

As pointed out by a reviewer, proof of this widely used result does not seem to
exist in the literature. Such a proof is provided here by Theorem 3 and Theorem 4
specialized to time-invariant systems.

If A and B are symmetric matrices, A > B (A >_- B) means A B is positive (non-
negative) definite.
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(8)

where

(9)

(t. ) _< .( it 1) for n t. .
M(s-- 6,s)

-o
q(s, t)B(t)B’(t)(s, t) dt.

The above criteria greatly simplify for bounded realizations. Condition
(8) is immediately implied by the bound on A, and it is a routine matter
to show that the upper bound in (6) is always satisfied. Hence, we have the
following lemma.
IEMMA 1. A bounded system of the form (2) is uniformly completely con-

trollable if and only if there exists c > 0 such that for all s,

(10) M(s , s) _>_ a()I > 0.

Uniform complete observability is defined [8] in a dual [3] manner to the
above in terms of the matrix

(11) W(s o, s) q/(t, s 5o)C’(t)C(t)q(t, s o) dt,

so that we need not state the definition explicitly here.

3. Equivalence of BIBO and exponential stability. If the system (2a)
with x considered as the output is BIBO stable, it will be said that the
system is bounded-input bounded-state (BIBS) stable. We shall firs
establish an equivalence between BIBS and exponential stability. As a
preliminary, we prove the following lemma which gives a useful alternate
characterization of uniform complete controllability.
LEMMa 2. A bounded realization 2a) is uniformly completely controllable

if and only if there exists > 0 such that for every state R and for any
time s, there exists an input u defined on s s) such that if x( s ) O,
then x(s) and u(t) (, 11) for all (s s).

Proof. If the system (2) is uniformly completely controllable, then the
input u(t) B’(t)’(s, t)M-(s 6, s) will transfer the system from the
zero state at time s 6 to the state ( at time s. From (5), (6) and (8)
it is clear that a constant y independent of s and exists such that
u(t) < for all (s 6, s).
The converse will be established by contradiction. If the system is not

uniformly completely controllable, then Lemma 1 implies that, for each
6 > 0 and for any a > 0, there is a vector X R", with [[ X 1, such
that for some s, XM(s , s)X < a, or equivalently, for some s,

(12) - ll x’(, )B()II d < .
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Suppose that a bounded control u exists which transfers the zero state at
time s to the state X at time s. Then,

(, -)B(-)u(-) d,-,

which together with the Schwrz inequality implies

(13) I1X X’(,, r)B(r)II d 11 u()II d

f u<t) < (, 1) or nt (, , > nd or 1 , then (12) and (13)
imply hat for some s, 1, contradiction since a can be made ar-
bitrarily smM1. This completes the proof.
Tunon:= 1. If (2) is bounded and uniformly completely controllable,

then it is BIBS stable if and only if it is exponentially stable.
Proof. It is well known and straightforward to show [1] that if B is

bounded, then exponential stability implies BIBS stability.
To prove the converse, let be any unit norm vector in R. It follows

from Lemma 2 that if (23) is uniformly completely controllable and
bounded, then there exists a > 0 such that, *or all s, an input u exists
which satisfies

(, )()() d,(1) x --.d () () for ( , ). MulUplying boh sides of (14)
by (, ) and inegraUng he norm of ghe resul yields he inequaligy

Letting r r s + 6, and interchanging the order of integration on the
right-hand side of (15), it is then seen that

(16) Ilk(t, *)X 11 & Ilk(t, r)B(),11 d dr,

nd for 0 r it is clear that

(17) .11 (t, )B(r)11 d 11 (t, )B(r)lI d.

Since (23) is assumed BIBS, it follows from (3) that the right-hand side
of (17) is bounded by a constant y so that 15)-(17) imply

(is) lie(t, ,or t.
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Hence, if the supremum of (18) over all X 1 is taken, the bound

(19) f_ lib(t, s)l] ds <= ’’y for all

is obtained. But (19) together with the bound (5) on A suffices to imply
exponential stability [4], [9]. This completes the proof.
To complement the above theorem, we now relate BIBO and BIBS

bility.
THEOREM 2. If (2) i8 bounded and uniformly completely observable, then

it is BIBO stable if and only if it is BIBS stable.
Proof. Suppose that BIBO stability does not imply BIBS stability, i.e.,

there exists a bounded input u which produces both a bounded output
an unbounded state. Then, corresponding to an arbitrary positive number
N, there is a value of time s t0 for which x(s 0) > N. Set u equal
to zero over the interval (s 0, s). Then the output y over this interval
is given by y(t) C(t)(t, s o)X(S t}0). Consequently, using the dual
of (10),

o)W(s o, s)x(s- o) >=y t)y( t) dt Xt(8 3(o)N.
e, ooii ( 0, s, ( > Nx//0. u sie N
is arbitrary, while is bounded his contradicts he assumption of BIBO
sabiliy. This eomplees he proof of he heorem, since i is obvious
BIBS implies BIBO stability if C is bounded.

Following immediately from Theorems 1 and 2 is the main result, as
given in the following theorem.
THEOREM 3. If (2) iS bounded, unifornly completely controllable and uni-

formly completely observable, then it is BIBO stable if and only if it is exponen-
tially stable.
A valid question at this point is whether the boundedness constraint of

Theorem 3 is essential to the conclusion. It is clear that the constraint on
the matrix A can be relaxed since (8) holds under somewhat weaker condi-
tions [8] than (5). However, as shown by the following example, the con-
straints on B and C are essential.
Example. Consider the system realization x -x -ff u, y gx, where

g(t) k for (], ] q- (1/])), ]c 1, 2, and is zero elsewhere. It is
easily verified that this system is uniformly completely controllable and
observable, yet it is simultaneously exponentially stable md BIBO un-
stable.

4. Periodic systems. Periodic systems (A, B and C periodic with the
same period) are n important subclass of linear systems. It is shown be-
low that, minimal (completely controllable and observable) periodic sys-
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tems are uniformly completely controllable and observable. This together
with Theorem 3 establishes the apparently known [10] but previously un-
proven fact that BIBO and exponential stability are equivalent in periodic
systems.
THEOREM 4. If (2) i8 periodic, then it is uniformly completely controllable

(observable) if and only if it is completely controllable (observable).
Proof. If (2) is completely controllable, there must exist a finite z > 0

such that M(0, z) >- eI > 0. Let k be a positive integer such that lcT
where T is the period of the matrices A, B and C. Clearly, for s (/T,
2kT), M(s 2kT) >= eI. It is easily verified, however, that M(s 2lcT, s)
is periodic in s with period T. Hence, M(s 2kT, s) >- eI for all s. By
Theorem 3, therefore, (2) is uniformly completely controllable. Since the
converse is obviously true, this completes the proof.

5. Classes of uniformly completely controllable systems. In order to
apply the results of the previous sections in stability analysis or system
synthesis, it is useful to have criteria for uniform complete controllability
which do not require calculation of the transition matrix. Such criteria are
derived below, and it is shown that several broad classes of systems have
the uniform complete controllability property. A basic tool in this develop-
ment is the following lemma establishing the inYariance of uniform com-
plete controllability under bounded state-variable feedback of the form
u Gx - Fv, where v is the input to the closed loop system.
LEMMA 3. A bounded realization (2) is uniformly completely controllable

if and only if the system (A BG, BF, C) is uniformly completely controlla-
ble, where G is any r X n bounded matrix and F is any r X r bounded matrix
whose inverse is also bounded.

Proof. Let (2) be uniformly completely controllable. Then by Lemma 2
there are a ti > 0 and an input ul which takes x(s ti) = 0 to x(s) ,
such that u(t) 11 -<_ -(i, I111) for all (s , s) and for all s. Itis readily
verifiedthat if v(t) F-lug(t) Gx(t) isthe input to (A + BG, BF, C),
where x is the trajectory in (A, B, C) due to ul, then zl(s ) 0 and
zl(s) , where z is the trajectory of (A + BG, BF, C) dueto Vl (in fact,
z(t) x(t) for all (s ti, s)). Since for all (s tt, s),

vl(t)11 II F-l(t) 11 u <tD +  <t)11 .[I

it is easily shown that vl(t) -< (ti, }11). Hence, by Lemma 2, (A
BG, BF, C) is uniformly completely controllable.

Such criteria are also applicable in other problems [8] which involve uniform com-
plete controllability.

The proof of this lemma is based on an argument of Brockett [11] used in proving
the invariance of complete controllability in time-invariant systems under time-
invariant state-variable feedback.
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The converse follows by a similar argument.
Remarl. Lemma 3 can be applied directly to a class of problems studied

extensively in recent years--stability analysis of a constant linear system
with bounded time-variable feedback from output to input. If G is a
bounded r X m matrix, then such a system has the form (A BGC, B, C),
where (A, B, C) is a time-invariant completely controllable and observable
system. It follows immediately from Lemma 3 and its dual that the closed
loop system is uniformly completely controllable and observable so that
BIBO and exponential stability are equivalent in this class of systems. Con-
sequently, only one of the two types of stability need be examined and
several existing results can be strengthened. For example, a recent criterion
for Lyapunov instability given byBrockett and Lee [12, Theorem 1] extends
to a criterion for BIBO instability.
THEOREM 5. If A and B are bounded and B contains an n X n submatrix

B whose inverse is also bounded, then (2a) is uniformly completely controlla-
ble.

Proof. Without loss of generality, we may take B B. Letting
G -AB-1 and F B-1, we obtain the time-invariant closed loop system
(0, I, C). The result then follows from Lemma 3.
A corollary to the above is the well-known result of Perron [4], [9] that

BIBS and exponential stability are equivalent in systems satisfying the
hypothesis of the theorem.
The constraint on B in Theorem 5 is quite restrictive. A much weaker

condition under which the result holds will now be presented for single-
input systems (B b in (2)). Let Q [p0 pl p-l], where p0 b and
p,+ -Ap + tc 1, 2, .... In terms of this controllability matrix
[13] we have the following theorem.
THEOREM 6. If (2a) i8 a bounded, single-input realization and Q is a

Lyapunov transformation [5], then the system is uniformly completely con-
trollable.

Proof. Let be an arbitrary constant vector, and let g(s, r)
k’(s, r)b(r). Also, let

(s, r)Q(’)Q’(r)’(s, r) dr.

It is easily shown that

so that

0
0.--- g( s, r) k’( s, r )p(r

For time-invariant systems, this condition on Q, is equivalent to complete con-
trollbility.
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It can also be shown [14] that for all s, each element of (s, t)b(t),
hence g(s, t), is a solution of the differenUal equation

(21) z(’(t) q- ai(t)z(i)(t) O,
i=0

where [a0 al an-l]’ -Qc-lp. By virtue of the assumptions oa A and
Qc, the coefficients ai(t) are bounded for all t, so that the following
equality holds [14]"

(22) - g(s, ) d =< K -g(s’ ) dr for 1 =< i=< n,

where K1 is a constant which depends only on i. From (20) and (22),
therefore, it follows that

(23) 1X’M(s r3, s)X >-_
-Ri X’20(s , s)X.

Since the system (A, Q, C) satisfies the hypothesis of Theorem 5,
(A, B, C) must be uniformly completely controllable.
A second class of uniformly completely controllable systems is delineated

by the following theorem, the proof of which is an immediate consequence
of Lemma 3.
THEOnEM 7. The (phase-variable) canonical form

O 1 0 0

0 0 1 0

0 0 0 1

a.0 al a2 an--1

0

1

where the coecients a(t) are bounded for all t, is uniformly completely con-
trollable.
Theorem 7 implies that BIBS and exponential stability are equivalent in

systems represented in phase-variable cnonical form (this result was estab-
lished previously in [15]). It should be noted that any representation which
can be transformed to this form via a Lyapunov transformation also has
this property. A general method for calculating a transformation to phase-
variable form was given in [16], and it is clear from the form of this trans-
formation that with some additional constraints on the derivatives of the
matrices A and b, the classes of systems considered in Theorems 6 and 7 are
equivalent. Without such constrits, however, they are distinct.
An interesting corollary to Theorems 6 and 7 is the following for systems
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represented in the form
n--1

(25) y() + ay() u,
i=0

where the a(t) are bounded for all t, 0 <= i <-: n 1.
COnOLAnY. If the system represented by (25) is BIBO stable, then there

exist positive constants c and c. such that for any solution y of the homogeneous
part of (25),

(26)  (t)II -< II  (to)li e

for all >=_ to, where [y y() y(-)].
Proof. If we let x y(), 0 =< i =< n- 1, then (25) has the state repre-

sentation (24), with y [1 0 0Ix. From Theorem 7, this representation
is uniformly completely controllable, nd from the dual version of Theorem
6 it is uniformly completely observable. Hence, by Theorem 3, the result
(26) follows.
A weaker version of the above corollary was established by Kaplan [17,

Chap. 8, Theorem 25]. He showed that (26) holds under the more restric-
tive condition that the impulse response matrix of (25) is exponentially
bounded.
In conclusion, we note that Theorems 4-7 are pplicable to the synthesis

of impulse response mtrices. Under pproprite conditions [18], H cn
be realized as member of one of the classes discussed above. Thus the
internal stability of the corresponding physical realizations is guaranteed,
if H represents BIBO stable system.
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A COUNTEREXAMPLE IN STOCHASTIC OPTIMUM
CONTROL*

H. S. WITSENHAUSEN
Abstract. It is sometimes conjectured that nothing is to be gained by using non-

linear controllers when the objective is to minimize the expectation of a quadratic
criterion for a linear system subject to Gaussian noise and with unconstrained control
variables.

In fact, this statement has only been established for the case where all control
variables are generated by a single station which has perfect memory.

Without this qualification the conjecture is false.

1. Introduction. In a stochastic control problem control actions have to
be taken at various instants in time as functions of the data then avail-
able. One seeks the functions for which the expected value of the cost,
under given noise distributions, is minimized. It is usually assumed that
all actions to be taken at a given time are based on the same data and
that any data available at time will still be available at any later time
t’ t. This situation is the classical information pattern.

Considering in particular unconstrained control of linear systems with
Gaussian noise and quadratic criteria, it is well known that the search
for an optimum can safely be confined to the class of affine (linear plus
constant) functions [1]. This is the case for both discrete and continuous
time systems, with classical information pattern.
In this paper it is shown that the class of affine functions is not always

adequate (complete, in decision theory parlance) when the information, pat-
tern is not classical.
A counterexample is presented for which it is established that an optimal

design exists and that no affine design is optimal. There does not appear
to exist any counterexample involving fewer variables than the one pre-
sented here.
The practical importance of nonclassical information patterns is dis-

cussed.

2. Problem description.
Original Statement. Let x0 and v be independent random variables with

finite second moments. Consider the following 2-stage stochastic control
problem. (All variables are real scalars.)

State equations, xl xo zr ul

X2 Xl 2.

* Received by the editors August 7, 1967.
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07971.
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Output equations. yo Xo

y x - v.

Cost function, k’(u) - (x), > O.

Admissible controllers, u " yo

u "(y

where (, ,) is any pair of Borel functions. The set of such pairs is
designated by r.

Objective. For any choice of (’),, ,) the variables u and x become
random variables, and since the cost function is nonnegative it has an
expectation that is possibly infinite. The problem is to minimize over
the expression E{ k(u) W (x)}. The information pattern is nonclassical
because the value of y0 is known at the first control stage but not at the
second.

It will be shown that for x0 and v Gaussian and suitable parameter
values the best affine controller is not optimal over

Restatement. Denoting x0 by x, , by g and letting f be defined by
f(x) x (x), the problem amounts to minimizing, over the set F of
M1 pirs of Borel functions (f, g), the expression

(1) J(f, g) E{k(x f(x)) + (f(x) g(f(x) + v))},
where/c > O. Without loss of generality one my assume

(2) E{x} E{v} 0, E{v} 1.

This reduction amounts to ordinate shifts of f and g, abscissa shift of
g and rescaling. The case E{ v} 0 is trivial. Problem r(]c, F) is the prob-
lem of minimizing (1) with v Gaussiau subject to (2) and x having the
distribution function F subject to (2) and 0 < E{x} =- < . Problem
v(k, a) is the special case of problem v(/, F) with F the Gaussian dis-
tribution with zero mean and variance

3. Existence of an optimum for problem v(]c, F).
LEMMA 1. (a) J* inf {J(f, g)I(f, g) F} satisfies 0 <= J*

_<_ min (1, k).
(b) If (f, g) F, then there exists (f, g) F such that EIf(x)l O,

Ei(x f(x))l <= z, J(f, g) <= J(f, g) and E{ff(x)} <= 4J.
Proof. () Forf- O,g 0 one hasJ(f, g) kElx} k, while

for f(x) x, g(y) - y one has J(f, g) =EIv} 1.
(b) If E{ (x f(x) )l > J so that J(f, g) >=

then f g 0 satisfies ll requirements. If El(x f(x))1 <= a, then
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E[f2(x)} =< 4a2, so that m E[f(x)} exists. Let fl(x) =--- f(x) m, gl(y)
g(y + m) m. Then E{f(x)} O, E{(x f(x)) 2} E[(x f(x))}
m -<_ a, hence E{f2(x)} <= 4a and J(f, gl) J(f, g) k2m <= J(f, g).
Hence one need only consider pairs (f, g) for which f(x) has zero mean

and variance not exceeding 4a2. For suchf we now select g gf* to minimize
J(f, g) for fixed f.
With (x) (2re)-1/2 define

Ds(y) f (Y f(x) dF(x),

NI(y) J f(x)(y f(x) dF(x),

gs (y) N(y)/Ds(y),

Je* (f) J(f, gs*).
First we recall a well-knowu fct.
LEMMA 2. Let be a measure and h a measurable function. Consider the

integral

H(s) (s t)h(t) dt(t).

Then the set of real values of s for which the integral is finite is convex and H
is analytic on the interior of this set.

Proof. Since (s t) %/’q(s)e’t(t), one can interpret H as

II() ,/2-() e’()h() d(t).

The claim then follows from the properties of convergence strips of two-
sided Laplace transforms.
LEMMA 3. Assume E{f2(x)} < . Then
) Nf Ds g* are analytic with D] > 0;
b D is a density of the random variable y f( x - v;

(c) g*(y) Elf(x) Y} a.s.;
(d) g*(f) miu J(f, g) g Bore1}
(e) dgs*(y)/dy vat {f(x) lY} >- 0;
(f) g*(f) 2E (x f(x) )2 Eivar If(x)

Elf2(x)} Etg*(y)}
1 I(D]),

where

)2 dyI(Df f Dz(y)
D](y)
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dD(y)
dlog D](y)

dy

is the Fisher information of the random variable y;
(g) max(0, 1 E/fi(x)}) <- I(D) <= 1, andforE{(x f(x)) :} __<

one has J.2*(f) k2a2 -[- min (1, 4).
Proof. (a) For each y the integrands q(y z) and zq(y z), with

z f(x), are bounded, hence the integrals defining N] and D] exist for
all y. By Lemm 2, Nf and Df are nlytic. Since o is strictly positive, so
is D, hence g* is analytic.

(b) The joint distribution of y and x is defined by

(y f(x) dy dF(x)

(vx)because the measurable transformation - with y f(x) + v

is measure preserving by Cavalieri’s principle (though a Jacobian does not
exist for general f). Hence the marginal distribution of y hs density D].

(c) Since f(x) has finite second moment, its conditional expectation
exists. With the joint distribution of x and v as in (b), (c) is immediate.

(d) This states the quadratic minimization property of expectations.
(e) and (f). These follow by simple manipulations. Note that

dN.(y) yD,(y) -{- _-7- D(y);
ay

, d
g] (y) y - - log D](y).

(g) This follows as in Lemma 1.
The problem is thus reduced to the minimization of

J.*(f) tEi(x -f(x))l I(D:) -F 1

over ll Borel functions (or only those of zero mean and variance =< 4a).
The designer is trying to find compromise between (i) keeping the

cost of the first stage correction small, and (iX) making the Fisher informa-
tion of the observation available at the second stage large.
The difficulty is that J.* is not convex functional.
Now for f0 and g0 as in Lemma 3 we attempt to minimize J(f, g’0)

over f for fixed g:*o.
LEMM: 4. Let P be the distribution of a real random variable. Let a be

the set of all points x for which both (- , x] and Ix, - have positive
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probability. Let a2 be the set obtained by removing from the convex hull of the
support of P those boundary points which are not atoms. Let as be the inter-
section of all convex sets of probability one. Then a a2 a(P),
the smallest convex set of probability one.

Proof. (i) al a2" If x belongs to the interior of a2, both Ix, and
(- , x] have positive probability. If x is a boundary point of a2, then
it is an atom, hence belongs to

(ii) a2 :::) a’By construction a. is a convex set of probability one.
(iii) a D a_" If E is a convex set nd x a point in a but not in E,

then E is disjoint from one of the sets (- , x], [x, + ), and thus E has
probability less than one. Hence all convex sets of probability one con-
tain
Note that in two (or more) dimensions the intersection of all convex

sets of probability one may have probability zero, because the boundary
of a nontrivial convex set is uncountable.
IEMMA 5. Forf and g]* as in Lemma 3 let P be the distribution of the random

variable f(x). Then the range of g]* is contained in a(P).
Proof. By contradiction suppose that for some y the set [g(y),

(or (- , g(y)]) has probability zero under P. Then

g(y)D](y) Ns(y) f dF(x)f(x)(y f(x))

f dP(z)z(y z)

f dP(z)z(y z)
,(u))

< g(y) dP(z)(y- z), -,g())

g(y)ns(y),
which is a contradiction.
LEMMA 6. For fo and go as in Lemma 3, fixed, one has

J(f, go) f dF(x)[I[(x f(x) )2 . K(f(x) )],

where K is a nonnegative analytic function.
Proof. To shorten notation let g g]*0 and let P be the distribution of

the random variable f0(x). One has

f dF(x)[k2(x f(x))2
_

K(f(x))]
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with

K(z) J dv(v)(z g(z + v) )

f dy,(y- z)(z- g(y)).

Since the integraads are nonnegtive, the above formulas are valid whether
the itegrals are finite or not. Let be the set {zlK(z) < }. Because of
the inequalities

g(y) <- 2z + 2(z- g(y)),.

(z g(y)) <= 2z -t- 2g(Y),

the set f coincides with the set of all z for which

f dy,(y < .z)g2(y)

By Lemm 2 the set fl is thus convex. By construction of g,

J*(f0) J(fo, g) < ,
and therefore,

f dF(x)K(fo(x)) f dP(z)K(z) < .
Hence the set has probability one under P. Since it is con.vex, fl contains
a(P) defined in Lemma 4 and, by Lemma 5, a(P) contains the range of g.
Also by Lemma 3(e) g is monotone non.decreasing.

This author claims that , + ); indeed otherwise by convexity
of at least one of the inequalities - < inf , sup < holds. If
both hold, g is bounded which implies fl (- , + m ). If inf -,
sup < ,then

converges for z < sup by he assumption on and a foriori for z sup .
Bu, for all z,

dy(y- z)g(y) <

because for y > 0, g is bounded, according to Lemms 3(e) nd 5, by

g(O) <= g(y) <= sup .
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Hence/ , -F and a symmetric argument applies for
sup o.

In conclusion, f dyq(y z)g2(y) is finite for all z, and a iortiori

f dy(y z)g(y) z. By 2, integrals areis finite for &ll Lemma both these

analytic in z. Therefore,

z)g2(y)
is analytic.
LEMMA 7. For E{ (fo(x) x) =} =< a and g g**o as in Lemma 3, there

exists a function f*, monotone nondecreasing on a( F), such that
(a) J(f*, g) min {J(f, g)[f Borel},
(b) ]f*(x) < c(x) for x in a(F), where the real-valued function c de-

pends only on F and 1, not on fo.
Proof. For each x the function

V(z) (x z) + K(z)

is nonnegative, continuous (by Lemma 6) and radially unbounded (be-
cause K -> 0). Hence it attains its minimum on a nonempty compact
set. For each x define f*(x) as one of the minimizing values of z (e.g.,
the largest). Then for any x and x,

y(f*(x) <= v(f*(x’)
and

V,(f*( x’) <= Y,(f*( x) ).

Adding these inequalities gives

(x x’)(f*(x) f*(x’)) O.

Hence the function f* is monotone nondecreasing nd fortiori Borel.

v(f*()) <__ v(f(x)

for all x in a(F), which implies

f dF(x) * fVx(f (x) <= dE(x)Y(f(x))

or
J(f*, g) <= J(f, g),

so that f* is optimal for fixed g. In particular, J(f*, g) <= J(fo, g)
J*(fo) <= a - rain (1, 4a), a constn independent of f0.
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Hence E{f*2(x)} <= a, where a is a constant. Then for x a(F),

( a))1/2 ( )))1/2< f$ a
F(( , x]

() <
F([x, +

Indeed, if f*(x) > (a/F([x, --{- )1/2, then

f dF()f*() >= f dF()f*()
x,+)

a f dF() a,> F([x, A- )) .+)

and similarly for the lower bound.
One also needs a special form of Helly’s selection theorem.
LEMMA 8. Let S be a convex set of reals and f, a sequence of nonotone non-

decreasing functions on S. Assume that, for all n and all x in S, [f(x)
<__ c(x) < . Then there exists a subsequence which converges pointwise
on S to a monotone nondecreasing function f.

Proof. Because at each x in S the numerical sequence f(x) is bounded,
there exists a subsequence converging at that value of x. Given a countable
subset of S a subsequence converging on it can be formed by the diagonal
process. Let So be the set of rational points in S. It is countable, hence we
may assume that f= is a subsequence converging on So, reindexed. Then
lira sup f(x) is a monotone nondecreasing function to which, by monotony,
the sequence f. converges at all points of continuity interior to S. Since the
points of discontinuity of a monotone function are countable and the
number of boundary points of S belonging to S is at most two, a second
application of the diagonal process yields a subsequence converging on S.
THEOREM 1. For any > 0 and any distribution F the problem r(k, F)

has an optimal solution.
Proof. Let (f.(0), g(0)) be a minimizing sequence in F, that is,

lira J(f(), g(0) j. inf J(f, g) fig Borel}.

Observe that J(f, g) depends only upon f through its restriction to a(F).
Henceforth we shall only consider functions f so restricted. Observe also
that when the construction of Lemma l(b) is applied to a pair (f, g),
wheref is monotone on a(F), the resulting functionf is monotone on a(F).
For each value of n replace (f(0), g(0)) by (f(i), g()) according to

Lemma l(b). Then replace by (f=(i), g(2) with g() g*() according to
Lemma 3. Then replace by (f(2), g()), where f.() is optimal versus g(2)
and monotone as by Lemma 7. Then replace by (f=, g(a)) according to
Lemma l(b) noting that fi, is still monotone. Then replace by (f, g),
where g g* according to Lemma 3.
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Then

J(f,, g) * g()J. (f) <= J(fn, <= j(f(2)

=< j(A(1) gn(2)) < j(f(1), gn(i)) < j(f(0) g(0))
and therefore the sequence (fn, gn) is , fortiori a minimizing sequence,
that is,

lira * ,/*.J2 (fn)

By Lemmas 7 and 8 there exists a subsequence fk converging to a limit
f pointwise on a(F). Relabel (fnk, gnk) aS (f, gn). By Fatou’s lemma,

E{fe(x)} <- lira inf E{fn2(x)} 4a2.
Let g g]* NffD]. For each y the functions q(y z) and z(y z)
are bounded functions of z, and since is continuous,

(y f(x) -- (y f(x) ),

f(x)(y f(x) -- f(x)(y f(x) ),

pointwise in x, for all y.
By the bounded convergence theorem,

D(y)

for each y, and similarly,

dF(x)(y A(x) --> D(y) :> 0

N.,,(y) -- N(y).Hence g(y) -- g(y) pointwise.
For all x in a(F) and all y the nonnegative expression

A,,(x, y) [/c(x fi(x) )2 + (f,.,(x) g,,(y) )2l(y f,,(x)

converges to

A(x, y) [k2(x f(x) )2 -t- (f(x) g(y) )](y f(x) ).

By Fatou’s lemma,

f, dF(x) f dyA(x, y)<= lim inf f.() n-o ()

or

dF(x) f dyAn(x, y)

J(f, g) <= lim inf J(f, g,) J*.

But, by definition, J* <= J(f, g), hence J*
is optimal. (Define f as zero outside a(F).)

J(f, g) and the pair (f, g)



140 H.S. WITSENHAUSEN

Note that when a(F) hs (sy upper) boundary point b not belong-
ing to a(F) (because b is ot an tom), then the function c(x) of Lemm 7
pproches s x -+ b nd, in consequence, the function f of Theorem 1
my pproch s x -+ b. Then monotone rel-vlued extension of f
to (- , does not exist.
Tking the first writion of J2* gives, formally,

f dF(x)G(x)f(x),J*(f

where

G(x) 2/:(f(x) x)

f D/(y) I2(y f(x)) D/(y)(y-f(x))-2J+ dyg(y f(x)) :D](y) " D](y)

with
d D](y) N(y) yD,(y)D:’ (y)

Hence one has the following necessary condition.
LEMM 9. Iff is optimal, then E{f(x) O, E{f(x) <-_ 4a, and G/(x) 0

F-almost surely, provided the formal differentiation holds at least in the sense

of Gdteaux for f in L[(- , ), F].
This condition is of little use because there are iu general mny local

minimu of J*(f). Steepest descent iu function space caa be used to im-
prove a suboptimal solution but not, safely, to find an absolute optimum.
An alternative existence proof cn be bsed on generalization of

Theorem 378 of Hrdy, Littlewood and P61y [2]. All functions f which
give the sume distribution to f(x) lso give the same optimul cost i I(D)
for the second stage. According to the theorem in question, among ull
these "equimeasurable" functions, the monotone nondecreasing rearrange-
ment mximizes E{xf(x)l, hence minimizes E{(f(x) x)l. This es-
tublishes the existence of a minimizing sequence (f, g]*) with monotonef.

4. Optimization of v(/, ) over the affme class. For problem 7r(/c, )
let

ga* inf {J(f, g)[f, g affine}.

Observe that the transformation of (f, g) into (f, g) in Lemma l(b)
mps the class of a/fine pairs into itself. Hence one need only consider
E{f(x)} 0 or
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For such f,

with

2(T2j,(f) -,,J2a(k) ]C2(r2(1 X) -4- 1 + k2z

This expression being nonnegative, analytic and radially unbounded, op-
timal values of h exist and are stationary pois of J.
LMM 11. Optimal ane solutions exist and are of the form f(

g( y gy, where

and aX is a real root of the equation

1(- )( + t) += o.

rooL Set dJ:( x / o.
A great deal of insight is gained by in.terpreing graphically the con-

diion of Lemma 11. It may be written

k(_ ).
(1 + t)

Hence the sationary points are the abscissas of the points of intersection
of the curve

8
(1 + t)

with the line

s (- t).

The curve is odd and positive for > 0. Since and ]c are positive, all
solutions are positive. The curve has a maximum at %//3 with value
3%/g/16 and then decays asymptotically to zero with an inflection at

1, where the value is -} and the slope -}.
Hence for k >_- -I and any there is exactly one root which defines a

unique optimum.
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For ] < - and a sufficiently small there is a unique solution with
small. For a sufficiently large there is a unique solution with large. For
intermediate values of there are 3 solutions corresponding to two local
minima of J2* separated by a local maximum. There is a value ac of for
which the two local minima are equal, hence both optimal. For
the lowest root is optimal; for > the largest root is optimal. Hence
for fixed 1 < the plot of the optimal versus has jump at , though
Ja* is continuous in . At, and only at, the jump there are two optimal
solutions.
LEMMA 12. For l < the critical value of is At this value the

two optimal solutions are h (1 4/c), both of which yield
J* 1

Proof. Let k 1, ]c . Then the sttionarity condition is
(t a)(1 + t) + at 0 and can be factored into

(t -t + )(t + t-) o.
Since the two roots (
to J, they are the two local minima, and the real root of the cubic is the
intermediute locul maximum. Hence kz 1 is the critical condition.
Note that fork 1, k , there is a triple root at the inflection point,

and for k 1, k > , the only rel root is that of the cubic and this is
then the optimum.
LEM 13. If a design is optimal in the ane class, it is optimal in the

class of all pairs of Borel functions (f, g) of which at least one is ane.
Proof. If either f or g is affine and fixed, the determination of an optimal

choice for the other function is a Gaussiau-liaear-quadratic single-stage
problem with classical information pttern, hence it is aa affine ruction.

Clearly this lemma holds in far more general problems with "t least one"
replaced by "ull but ut most one."
LEM 14. If f(x) hX and g(y) z:h:y/(1 + ) is stationary (in

particular, optimal) over the ane class, then it satisfies the formal condi-
tions of Lemma 9.
Pro@ With f(x) hx, substitution yields

G](x) 2 (h- 1) + (1 + Xa) x,

which wnishes by the stationarity condition of Lemma 11.
Despite the facts stated in Lemmas 13 and 14, we shall find that J* J*

is possible.

5. Two-point symmetric distributions. Consider problem (k, F) for
F the two-point symmetric distribution assigning probability to x a > 0
and x
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Let a f(). For optimization, we may assume by Lemma l(b) that
f(-z) -a and by Lemma 7 that a >= 0.

The first stage cost is thus k2(a z)2. At the second stage,

Ds(y) 1/2((y a) - (y + a))

/-(a)(y) cosh ay.

Hence,

Ds(y)
y A- a tanh ay

gff(y) a tanh ay,

g*(y) a a seth ay,

EIgs*2(y)} a- h(a),

where

Thus,

h(a) %/ a(a) f (y)
cosh ay

J2*(f) k2El(x f(x))2l + E{f:(x)} Elg

k’(a- r) zc h(a).

This is a radially unbounded analytic function of a, and therefore attains
a minimum J* Vk(z) at one or more optimal values of a. Any optimal
value must satisfy the transcendental equation

k(r a) -1/2h’(a).
A plot of 1/2h’() is similar in shape to the plot of t/( 1 - t) which occurred
in the optimization of the Gaussian case over the affine class. Hence the
qualitative discussion of that case applies also in the present instance. The
possible appearance of two local minima has now a simple interpretation.
For small k and appropriate one policy is to bring a close to zero by
means of f so that the second stage will have little work to do; another
policy is to make a larger than , creating a vast gap between a and -a,
so that the second stage can almost infallibly separate these two values.
In summary one has the following lemma.
LEMMA 15. When F is the two-point symmetric distribution with variance

r then the design f(x) (a/z)x, g(y) a tanh ay is optimal foran appro-
priate constant a which gives the minimum in the formula

J* Vk() - min [k?(a --) zc h(a)].



144 H.S. WITSENHAUSEN

Note that the functions h(a), h’(a) and V(z) can be obtained by com-
puter programs with relative ese. Note also that, for the general problem
r(lc2, F), whenever f(x) has a two-point symmetric distribution with the
values =t=a, then the minimum over g of E{ (f(x) g(f(x) + v) )} is h(a).
When a >> 1 (the vrince of the noise v), the second stage cost should

be close to zero. More precisely one has the following lemma.
LEMMA 16. The function h(a) is bounded by %//- a9(a) ae-a/’.
Proof.

(Y) dy f(y)dy 1.
cosh ay

6. llonlinear design for the Gaussiart case.
THEOREM 2. There exist values of the parameters tc and r for problem

7r(tc, r) such that J*, the optimal cost, is less than J,*, the optimal cost
achievable in the class of a2ne designs.

Proof. Consider the design

f(x) sgnx, g(y) tnhy.

For this choice f(x) has two-point symmetric distributi.on and g g*.
The.

J(f, g) lcZ{ (x r sgn x)} q- h(z),

where h is the function defined in 5.
The first term is readily ewluted to be

For lc 1, by Lemm 16,

<= 2 +

As k -- 0, the right-hand side pproches 2( 1 W//r) 0.404230878,
while by Lemm 12, Ja* pproches 1.

Hence, for smll k, J* <= J(f, g) < J,*.
The design of Theorem 2 is fr from optimal. Lower wlues of J(f, g*)

for k 1, k small, re obtained by starting with f (2n q- 1)-level
quuntiztion nd then improving this choice by the gradient method in
functioa spce.
The optimum, which exists by Theorem 1, is not known.
Computer experimentation suggests that the functional J* hs lrge

(possibly infinite) number of stationry points.
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7. A lower bound for the Gaussian case. Since only suboptimal designs
for the Gussian case were found in 6 and these give only upper bounds on
J*, it may be useful to have loose but positive lower bound on J*.

Let , u, v be independent random variables" , v Gussiun of zero mea
and variances a, 1; u taking the values -t-1 and -1 with probability 1/2.

Let Ja* be the infimum, over ll pairs (f, g) of Borel functions of two
variables, of the expression

J(f, g) E{k2(u f(u, ))2 + (f(u, ) g(f(u, ) + v,))2}.
Let x u and y f(u, ) + v; then x is a Gaussian random variable
independent of v and distributed like (.
Hence for any pair (f, gt) of Borel functions of one variable, the choice

f(x, ) f(x), g(y, ) g(y)

is a possible design, for which

Ja(f, g) J(f, g),

where J is the cost functional of problem r(lc, a). Hence Ja* =< J*. But

J(f, g) E{E{expression (}},

and for fixed ( the minimization of the conditional expectation is the prob-
lem of 5 with the variable of that section having the value . Hence for
all pairs (f, g) the conditional expectation is, almost surely in , bounded
from below by the function V(() defined in Lemma 1.5. This establishes
the next theorem.
THEOREM 3. For problem r(lc, a) one has

j*

Since V can be obt.ined by computer, this bound can be evaluated for
any/ and a.

Theorem 3 my be considered u special cse of the following observation.
Suppose the expected cost, in stochastic optimization problem with
nonnegtive cost function, is considered as a function of the design , nd
of the distribution F of some of the noise vribles. Suppose that the con-
ditionul distribution of the other noise vribles, given those described by
F, is fixed, for instunce, because they are independent. Let K(% F) be
this function, with vMues in [0, -[- ]. Then for each % K is linear func-
tion of F on the set on which it is finite and is + elsewhere. Therefore
K*(F) inf K(% F) stisfies, for all distributions F, F nd 0 ( 0 1,
the extended-rel number inequMity

K*(OF -t- (1 O)F) _>- OK*(F) nt- (1 O)K*(F).
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In other words, K* is concave in the extended-real sense. If F is construed
as a mixture of distributions F, under some distribution of a, then by the
concavity of K*, the expectation of K*(F,) under a is a lower bound
on K*(F).
In Theorem 3, a is the Gaussian random variable . and F, is the two-

point symmetric distribution supported on =t=.
8. Physical situations leading to nonclassical information patterns. (a)

Nonclassical patterns arise when the controller memory is limited. In
particular, one may want to determine an optimal zero-memory con-
troller, that is, one for which each control action depends only upon the
most recent output [3].

(b) Whenever the physical system to be controlled is of large size or com-
prises mobile subsystems, nonclassical patterns appear. Indeed control is
then effected from several stations widely separated and in relative motion.
Hence the actions applied at a given time-stage by the stations are not
based all on the same data, even when each station has perfect memory.
Communication links between stations are subject to delay, noise and
operating costs. These links should be considered as part of the controlled
system and the communication policy as part of the control policy. The
nonclassical effects are most likely to be of practical import in such cases,
as for control of space missions, air traffic or high-speed ground trans-
portation.

(c) When communications problems are considered as control problems
(which they are), the information pattern is never classical since at least
two stations, not having access to the same data, are always involved.

If one considers the transmission of Gaussian signals over Gaussian
channels with quadratic (power and distortion) criteria, then there is a
possibility, in complex cases such as with noisy feedback channels, etc., that
the optimum "controller" (i.e., modulator or coder) not be affine.

9. Conclusions. (,i) Further study of linear, Gaussian, quadratic control
problems with general information patterns appears to be required.

(ii) The existence of an optimum and the question of completeness of
the class of affine designs must be examined as a function of the informa-
tion pattern.

(iii) It would be interesting if a relation could be found between the
appearance of several local minima over the affine class and lack of com-
pleteness of this class.

(iv) Algorithms for approaching an optimal solution need to be de-
veloped. Because of the occurrence of local minima, this appears to be a
most difficult task.
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ON A NEW COMPUTING TECHNIQUE IN OPTIMAL CONTROL*
A. V. BALAKRISHNAN

1. Introduction. host known methods for computing optimal control
laws for dynamic systems involve the solution of the dynamic equations as
au essential step. In dealing with distributed parameter systems in par-
ticular, the complexity attendant on solving boundary value problems for
partial differential equations in addition to the optimal control can often
be prohibitively large. Since the primary aim is to compute the optimal
control, there would be intrinsic advantage if a method could be devised
that would avoid having to solve the dynamic equations explicitly. The
possibility of such a method was first brought to the author’s attention by
J. L. Lions. It turns ou, however, that quite apart from computational
attractiveness the method can provide a constructive approach to charac-
terizing the optimal solutions and, in particular, to the maximum principle.
First results in this directior were announced in [1]. In this paper we give
detailed proofs as well as exteasions, including ifinite-dimensional problems
and time-optimal problems.
The particular computing methods that we discuss cau be stated quite

simply. In reference to a fixed endpoint problem, suppose the dynamics are
characterized (in the usual notation) by

2(t) f(t; x(t); u(t) ), x(O) xo

and it is required to minimize
r

g(t; x(t); u(t))dt,

where x(t) is the state and u(t) the control, the latter being subject to con-
straint conditions C. Instead of solving the dynamic equation, we formulate
first a nondynamic problem for each e > 0. Let us call this the epsilon
problem. We minimize

2-; + xEt);

over, say, the class of absolutely continuous functions x(t) subject to
x(0) x0, with derivative square integrable over [0, T], and over the class
of control functions subject to C. It cn be shown (see 3) that the solutions

* Received by the editors January 4, 1968, and in revised form January 29, 1968.
Department of Engineering, University of California, Los Angeles, California

90024. This research was supported in part by the United States Air Force Office
of Scientific Research, Applied Mathematics Division, under Grant 68-1408.
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of this problem approximate as closely as desired the infimum in the original
control problem for sufficiently small e. The epsilon problem can be solved
(computationally) in many ways, but the gradient methods have a theo-
retical significance as well. In fact, we can obtain an epsilon maximum
principle for the problem which in the limit, as e goes to zero, yields the
familiar Pontryagin maximum principle [2]. Results bearing on computa-
tional aspects will be reported elsewhere.
We begin in 2 with the simplest type of control problem, namely, with

linear dynamics and quadratic criteria where the solution to the epsilon
problem can be made explicit, and the behavior, as e goes to zero, of the
solution of the epsilon problem can be made explicit as well. We consider
both the generM fixed endpoint "pursuit" problem as well as the final value
problem, and extend the results to the infinite-dimensional state-space case.
Equations (2.11), (2.12) characterizing the solutions of the epsilon prob-
lem (and the infinite-dimensional versions (2.22), (2.23)) would appear to
be new and of independent interest. Similarly, the results obtained for the
epsilon problem in the case of boundary control for partial differential
equations appear to be new, and the limiting case as e goes to zero of course
provides , new method of establishing the character of the optimal control

The main results are presented in 3. Here we consider the general non-
linear problem with fixed endpoint. We characterize the solutions of the
epsilon problem, obtain an epsilon maximum principle, and show that the
corresponding optimal controls provide minimizing sequence for the
original optimal control problem, the approach being monotonic in the cost
function. If the optimal control for the epsilon problem converges pointwise
to an admissible control, the ltter is actually an optimal control, and the
epsilon maximum principle yields the fmiliar maximum principle in the
limit. We also show that n optimal solution for the epsilon problem will
exist under some mild conditions. It is probable that the conditions im-
posed in existence and limiting theorems can be weakened.

In 4 we indicate the modifications necessary to handle the time-optimal
problem. For a restricted class of dynamics we show how the epsilon maxi-
mum problem yields the maximum principle in the limit.

2. Linear systems--quadratic criteria. We begin with the simplest and
most common kind of control system" linear finite-dimensional plant with
quadratic cost functions. Thus we may take the plant dynamics as

(2.1) 2(t) A(t)x(t) + B(t)u(t), x(O) xo,

In the forthcoming doctoral thesis of S. ])eJulio, |)epartmet of Egimering,
University of Californi at Los Angeles.



NEW TECHNIQUE IN OPTIMAL CONTROL 151

where all functions are rectangular matrices, x(. being the state and u(.
the control, and A (t) and B(t) are bounded by square summable functions
in each finite interval so that (2.1) has a unique solution. The optimization
problem we shall consider is to minimize

T

jo" g(x(t),u(t) dt,

where T is fixed and

(2.2) (x(t), u(t)) x(t) x(t)l] + , u(t)II ,
xa(t) being a given (square summable) desired function and h a fixed posi-
tive parameter. Here there is no constraint on the control function other
than that imposed through the usuM "penalty function" in (2.2).
We begin by considering the intermediate nondynamic problem for fixed

e > 0, which is to minimize

(2.3)
h(e; x(.), u(.)) 2(t) A(t)x(t) B(t)u(t)l[ dt

.T

+ Jo (x(t), u(t)) dt

over the class of absolutely continuous functions x(t), with 2(t), u(t) in
L2(0, T) (a generic notation for the appropriate dimensional functions
square integrable over (0, T)). We shall first show that (2.3) has a unique
minimizing solution. Let u, (.), x,(. be a sequence of admissible functions
such that

Let

lim h(e; x,(.), u,,(.)) inf h(e; x(.), u(.)) h(e).

z,(t) 2,(t) A(t)x,(t) B(t)u,(t).

Then we must have

x,(t) ((t)xo -f- fo (P(t)((s)-(B(s)u’(s) "+" z,(s) ds,

where (t) is the fundamental matrix solution of

(t) A(t)(t);

where I is the identity matrix. Now

sup fo Zn(t)]] dt < ,

(o) ,
T

sup u(t)l 2dt< .
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Hence we can find subsequences that converge weakly to z0(. and u0(. ).
Also the mapping

fo ((t)(s)-lB(s)u(s) ds,

on u(. ), as well as the mapping

O<t<T,

into L2(0, T) are both compact. Hence it follows that the corresponding
subsequence x,(. converges strongly in L2(0, T) to a function x0(. ). In
fact,

(2.4) xo(t) (t)xo A- [ ((t)(s)-(B(s)uo(s) "4- Zo(S)) ds
ao

establishes in particular that x0(. is absolutely continuous with derivative
in 52(0, T), and that

(2.5) 2o(t) A(t)xo(t) -[-B(t)uo(t) + zo(t) a.c.

But weak convergence of z(. ), u(.) implies that

h(e; Xo(’), u0(’)) zo(t) dt -t- xo(t) x(t) I12 dt

-<_ lim inf’ h(e; x(. ); u,(. ))

(),

or, in other words, x0(. ), u0(. is a minimizing solution. To see that the
solution is unique we have only to note that h(; x(-); u(. )) is (strictly)
convex; indeed let x(. ), u(.) be another minimizing solution. Then if

z(t) (1 O)zo(t) -- Ozl(t),

x(t) (1 -O)xo(t) --Ox(t),

u(t) (1 O)uo(t) + 0u(t),
we have

d 1 fdO h(. x(. ); u(. )) - Zo(t) z(t)11 dt

-t- I[ x0(t) xl(t) dt -t- h uo(t) u ]12 dt

=0

T

+ /o u(t)II gt

Ot.<T,
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if and only if u0(. Ul(* ), x0(-) Xl(" ).
Having established the existence and uniqueness of the minimizing solu-

tion for the problem (2.3), we now proceed to characterize it further by
examining the first variation which must of course vanish at the optimal
solution. Thus let us denote the optimal solutions by u0(t; e), x0(t; e) to
indicate the dependence on e. Let

(2.6) zo(t; e) 20(t; e) A(t)xo(t; ) B(t)uo(t; ).

Let h(t) be an element in the Schwartz space of infinitely smooth functions
vanishing outside compact subsets of the open interval (0, T). Let v(t) be
any function in the same L.(0, T) space as uo(t; e). Then setting the first
variation to zero we obtain

(2.7)

T

[z0(t; e), (t) A(t)h(t)] dt

[x0(t; e) x(t), h(t)] dt 0,

f(2.8) Jo
[zo(t; e), B(t)v(t)] dt ), [u0(t; e), v(t)] dr,

where [, indicates the appropriate inner product. Now (2.7) implies that
T

f0
T

f [zo(t; ),/(t)] dt= [A*(t)zo(t; ) (Xo(t; ) x(t)),h(t)] dt

for every function in the Schwartz spce, or the distributional deriwtive of
z0(t; e) coincides with the function

(2.9) -A*(t)zo(t; ) + (x0(t; e) x(t))

which is an ordinary (square integmble) function. Hence zo(t; e) is bso-
lutely continuous with the deriwtive given a.e. by (2.9). Next let h(t) be
any absolutely continuous function wth h(0) 0 and h(t) square in-
tegmble on [0, T]. Then

[zo(t; e),/(t)] dt fo
r

[A*(t)zo(t; ) e(xo(t; e) x(t) ), h(t)]

-t- [z0(T; e), h(T)]

(2.10) io(t; ) + A *(t)zo(t; ) e(xo(t; e) xd(t) O, .zo( T; ) O,

and since h(T) is arbitrary, it follows that z0(T; e) must be zero. Hence it
follows that z0(t; e) is the unique solution of
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and of course from (.8)

B*(t)zo(t; e) Xeuo(t; ).

Let

(t) (t)*-
Then (2.10) has the solution

(2.10a) zo(t; e) e (t)(s)-(Xo(S; ) x,(s) ) ds.

Hence finally we note that Xo(t; e), Uo(t; e) are characterized as the unique
solution of

2o(t; ) A (t)xo(t; ) U(t)uo(t; )
(2.11) ff ()(.)-(zo(; ) z,()) d, o(0; ) Xo,

(2.12) Xuo(t; e) B*(t) (t)b(8)-1 (Xo(8; e) xg(8)) d8.

The function xo(t; e) is given by itself as the solution of

2o(t; A (t)xo(t; e)

(2.13) B(t)B*(t) + eI (t)(s)-l(xo(s; e) x(s)) ds,

xo(0; ) xo.

One can also rewrite (2.12) us

uo(t; ) B*(t)() Zo(0; )

(.4)

+ n$(t) lP(t)l(8)-l(xo(8; .) Xd(8))

Finally, if we set

U(e; zo(t; e); xo(t; e); t; u)
(2.14a)

[z0(t; e), A(t)xo(t; ) + B(t)u] eg(xo(t; e); u),

we have the epsilon maximum principle that the left side of (2.14a) is a
maximum for each for u u0(t; e).
We shall next study the behavior of the optimal solution x0(t; e), u0(t; e)

as a function of e in a neighborhood of the origin. Now Xo(t; e) is the unique
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solution of the linear equation (2. 13). Putting e 0 we obtain

B(t)B*(t)20(t; O) A(t)xo(t; O)
(2.15)

I (t)C(s)-(Xo(S; O) x(s)) ds.,
T

Also

(2.16) hu0(t; 0) B*(t) (t)C,,(s)-l(Xo(S; O) x(t(s) ds.

But x0(t; 0), u0(t; 0) are readily recognized as the well-known solution to
the optimal control problem. In particular, since z0(t; 0) is identically zero,
x0(t; 0) of course satisfies the plant equation with control given by (2.16).
Moreover, it follows from standard perturbation theory for linear equations
that x0(t; e) is actually analytic in e in a neighborhood of the origin. Indeed,
we can proceed to obtain a power series expansion for x0(t; e) by the usual
technique of taking partial derivatives of (2.13) with respect to the param-
eter. We shall omit the standard calculations here and note that we can
write

where

x0(t; ) x0(t; o) + 2 e Yl(t),

:, L(x0(.; 0) x(.)),

where L is the linear transformation defined by taking the solution of the
linear equation

(t) A(t)y(t) B(t)B(t)*
X

h(t)(s)-ly(s) ds

(2.17) B(t)B(t)*
x (t)C(s)-x() c,

y(O) o

Also

u0(t; e) u0(t; 0) B(t)*
Yk

h
(t)(s)-l (s) ds.

The expansions are clearly valid in a sutficiently small neighborhood of the
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origin.. Finally we note tha from (2.10),

z0(; ) ()()- y,()

+ (t)(8)-1(Xo(8; O) Xd(8)) ds.

It follows in prticular tht

lim
zo(; e)

lim zo(; e) ()()-l(zo(s; O) z.()) d,
eO 0 O

which is clearly bsolutely continuous with derivative squre integmble over
[0, T]. Also, for ny h(t) that is in the sme L(O, T) spee s x0(t; 0),

e (xo(t; e) x(t)), h(t) dt y,(t), h(t) dt

0 as --0.

Again for any v(t) as before, by (2.18),

uo(t; ), (t) t

B(t)* (t)(s)- y,(s) ds, v(t) dt

0 as 0.

Also, of course letting

(t) lira
0

o ; Zo(t; ) (t)(,.)-(xo(s; o) x(s))

We hV

&(t) + A(t)*(t) xo(t; 0) x(t), O(T) O,

no(t; 0) B(t)*(t),
and finally,

lim -1 H(e; zo(t; ); xo(t; e); t;u) lim _0 H(e;zo(t;e); Xo(t; e); t; u)
(2.19) 0 0 0e

[(t),A(t)xo(t) + B(t)u] g(xo(t);u)

and the right side is a maximum for u no(t), which is the maximum
principle for the problem.

2.1. Final value problems. We shll now indicate how similar results can
be obtained for the finul value problem. Thus, with the dynamical equations
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as i1 (2.1), let it be required to minimize
T

(2.20) x(T) x ]1 + x fo u(t)ll dr,

where x is the desired "final" value t time T. We tke the corresponding
epsilon problem as

2. 2(t) A(t)z(t) B(t)u(t)[ dt + ]x(T) x

T

x u(t)lI dr.+
The existence of unique minimizing solution is trivial, as before. Using
the same notation u0(t; e), x0(t; e), z0(t; e) as before to denote the optimal
solution, we readily obtain the following necessary conditions by the same
perturbation methods (first order variation)"

io(t; e) + A(t)*zo(t; ) O,

heuo(t; ) B(t) *zo(t;
zo(T; ) (x xo(T; )),

the last equation being the only one that is different. We hve thus:

xo(t; ) (t)xo
(.2o) (+ (t)(s)- B(s)B(s)* ’ T)* T e)) ds.+d (s)*- (x-Xo(

In particular, we can obtain x0(T; e) from

xo(T;) =(i+l )-1( R

where R is the operator defined by
T

Rx (T)(s)-aB(s)B(s)*(s) *- (T)*x ds.

The limiting case as e goes to zero is thus readily obtained as

lim
z0(t; e) (t)*-’(T)*(z- xo(T)),

xo( T) I+ cP(T)xo + ;x
lim u0(t; e) B(t)*(t)*-l(T)*(x xo(T)).
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The epsilon maximum principle and the maximum principle for this prob-
lem can also be obviously obtained by appropriate modification of (2.14a)
and (2.19).

2.2. Infinite-dimensional problems. The infinite-dimensional versions
(that is, where the state space and control space are iffinite-dimensional)
of the above problems are readily deduced. Thus let us (for simplicity)
consider the time-invariant problem where the dynamics are now given by

(2.21) 2(t) Ax(t) + Bu(t), x(0) x0 domain of A,

where x(t) has its range in a Hilbert space 5Cl, and A is the infinitesimal
generator of a strongly continuous semigroup T(s) over 3Cl the control
u(t) has its range in a possibly different Hilbert space 32, and B is alinear
bounded transformation mapping 3C2 into the domain of A. Then for the
problem (2.2), we again take the epsilon problem as (2.3). The existence
and uniquenes of the solution for the epsilon problem is immediate; using
the same notation u0(t; e), x0(t; e) for the optimal control and state functions
and z0(t; e) as before, the necessary conditions may be deduced as before,
and (2.13) becomes

 o(t; e) Axo(t;e)
*
+ d T(s t)*(Xo(S;) x())

(2.22)
x0(0;) x0,

which is readily shown to have a unique solution. Also, corresponding to
2.12 ), we have

(2.23) Xu0(t; X) B* T(s t)*(Xo(S; ) x(s)) ds.

The limiting optimal control is also deduced as before leading to well-known
solutions (see [3], [4]).
There is, however, another and more important class of problems, namely,

the boundary control problems, where the method actually leads to new
results. Not to complicate matters unduly, we shall again consider a time-
invariant problem for a concrete partial differential equation. Thus let the
partial differential equation be

(2.24) 0
o-t f(t, x) Vf(t, x), 0 < t, x a E,,

where is a bounded open domain in E, with smooth boundary S, and V
stands for the Laplacian. ’The control is now on the boundary

(2.25) u(t, ) f(t, ), z S.



NEW TECHNIQUE IN OPTIMAL CONTROL 159

We shll consider n fixed endpoint problem, where it is desired to minimize

(2.26)
Jo If(t,- O(t, d] x -t- u(t, 0-)[ dS dt

and (for simplicity) we tke the initial "vlue" f(O, x) to be zero lmost
everywhere (in x). (For a standard treatment of such a problem, see [5].)
We begin by formulating the epsilon problem as that of minimizing

1 Of V); - f dlx]dt

f+ 4
]f(t, x) g(t, x)[’ d[ x dt

x (, 1 as a,+
where u(, ) is given by (2.25), over ghe class of funegionsf(, z) defined on
A [0, T] N such ghagf(t, z) is eonginuous ghereon, absolugely eonginuous

in for each z, (Of/O)(, is an elemen of g() of class in on a sueh
ghag Vf(.,z) is also in g(l). Because ghis is again a linear problem wih a
quadragie eosg funegion, ghe exisenee and uniqueness of an opgimal solugion

may be demonsgraed essengially as in ghe finite-dimensional ease. Leg us
now examine he neeessary eon.digions gha he optimal solugion mus
satisfy. Leg f0(, z, e) denote ghe opgimal solugion wigh

Leg h(, z) be any infinigely differenfiable funegion vanishing outside com-
pact subsegs of (0, T) N . Segging

and gaking ghe firsg derivative of ghe funetional (2.27) wigh respeeg go
0ag0 0, wehave

v zo(t, x, ) dl xgt

where

of f0(t, x, ) vf0 (t, z, ), x .(2.28) zo( t, x, -O-t
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As in the finite-dimensional case we readily obtain that

0 zo(t, x, e) -t- V1/20(t, x, e) e(g(t, x) fo(t, x, e)), x ft.(2.29) -t
By using Green’s integral formula,

UV=V VV"U V dS U dS,

where v is the inner normal to S, and with the appropriate choice of a per-
turbing function h(t, x), it follows that we must have

(2.30) zo(t, z, e) O, r S,

(2.31) 0 zo(t, , ).X uo(t,,) =
We have thus obtained the necessary conditions for optimality. It may be
shown (essentially as in the finite-dimensional case) that (2.29) has n
unique solution subject to (2.30), and so does (2.28) subject to (2.31).

Passing on to the limiting case as e goes to zero, we obtain

(t, x) ]im zo(t, x, )
e0

uo(t, a) lim Uo (t, , e),

fo(t, x) lim fo(t, x,
-0

and we observe that the optimal control Uo(t, () satisfies (see [5])

uo(t, ) (t, ),

and the function (t, x) satisfies

(t, x) -- V:(t, x) g(t, x) fo(t, x), x

4,(t, ) o, < .
3. Fixed endpoint problems with finite-dimensional state space. We

shall now consider the general fixed eadpoiat problem but with the state
spces still finite-dimensional. We shall discuss both necessary and suffi-
cieat coaditions for optimality.
In what follows we assume that the dynamics re described by the

equations

(3.1) a(t) f(t; z(t); u(t)), x(0) x0,



NEW TECHNIQUE IN OPTIMAL CONTROL 161

where (as usual, see [2], [6]) it is assumed that f(t; x; u) is continuous in all
of the variables and is continuously differentiable with respect to x. As in
2, we shall take the state x(t) as n ) 1, the control u(t) as p X 1. The
control problem is to minimize the functional

T

(3.2) fo g(t;x(t);u(t))dt

with the control function u(t) subject to certain constraint conditions C
which will be described below. Here g(t, x, u) is assumed continuous in all
of the variables and continuously differentiable in x.
The nondynamic epsilon problem is then to minimize, for fixed e > 0,

h(; x(-); u(.)) (t) (; z(); (t))ll d

(3.3)
T

] g(t; x(t); u(t)) dt+
J0

over the class of functions x(t), u(t) such that x(t) is absolutely continuous
with x(0) x0, the derivative 2(t) square integrable over [0, T], and
u(t) measurable and subject to constraint C. A measurable control tunction
u(t) satisfying the constraint C will be referred to as an admissible control.
It is assumed that (3.1) has a unique solution for each admissible control.
It will be further assumed that C is such that the admissible controls are
uniformly bounded in [0, T]. In addition we shall assume throughout that
f(t; x(t); u(t)) is such that for admissible u(t),

(3.1a) [x(t),f(t;x(t);u(t))] <= m[:[ + x(t)ll].
This implies that x(t) in (3.1) is uniformly bounded for admissible controls
(see [6]).
The first result relating the epsilon problem to the control problem of

minimizing (3.2) is the following theorem.
THEOREM 3.1. Let h(e) denote the iufimum (over the stipulated class) of

(3.3). Suppose the infimum is attained so that

h(e) h(e; x0(.; e); u0(-;

for each > O. Let (., ) be the solution of (3.1) with u(t) given by Uo(t, ).
Then

lim,_0 h(e) inf,o h(e) inf J0 g(t; x(t); u(t)) dt go

lim fo
r

e(t; (t; ); u0(t; )) dr.

In other words, the epsilon problem approximates the actual control
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problem and provides an approximating sequence of controls that approxi-
mate the optimum, if any.

Proof. Let 0 < e2 < el and let

z0(t; e) o(t; e) f(t; Xo(t; e); Uo(t; e)).

Let us observe that

l r2e:
zo(t; e)( dt+ g(t; xo(t; e); u(t; )) dt

2 zo(t; e) : dt + g(t; x0(t; e); u0(t; e)) dr.

Similarly,

zo(; )1 d + (; Xo(t; )Uo(; )) d.

Since e e it readily follows that

zo(t; e)l] dt zo(t; e): dt,

Hence we have ghag

is monotone increasing as goes o ero, while

(3.6) zo(t; )li dt

decreases monotonically as goes to zero. On the other hand, we know that
T

(3.7) h(e) inf Jo g(t; x(t); u(t)) dt g0,

where the infimum is over admissible controls with state satisfying (3.1).
In particulur, then, (3.6) converges monotonically to zero ns e goes to zero,
and

T

(3.s) im ] g(t; z0(t; ); u0(t; )) g0.
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Let 2(t; e) denote the solution of (3.1) with u(t) uo(t; e). Since g(t; x; u)
is continuously differentiable in x, and the admissible controls are uniformly
bounded, it follows that we can find a constant M such that

l(t; (t; ); uo(t; )) (t; xo(t; ); uo(t; ))l
(3.9)

_< M II xo(t; ) x(t; )11, 0 <- <_. T.

Next let

y(t) 2(t; e) xo(t; e).

Then because of the existence of the continuous derivative in x of f(t; x; u)
it follows that

[(t), y(t)] [f(t; 2(t; e); uo(t; e)) f(t; xo(t; e); uo(t; e)), y(t)]

[zo(t; e), y(t)]

[M(t)y(t), y(t)] [zo(t; e), y(t)],

where M(t) is uniformly bounded independently of e, and so is y(t), by
T

and the fact that f zo(t; dt is going to zero. Hence it follows(3.13)

that if

n(t) u(t)]!,
then

(3.10) /(t) --< Mira(t) z7 M, zo(t; e)ll, m(0) 0.

Hence it follows that re(t) goes to zero in such a way that from (3.9) we
have

T

limo g(t; x(t; e); uo(t; e)) g(t; xo(t; ); uo(t; e)) ]dt O.

T

go -< lim_,o fo g(t; 2(t; e); uo(t; e)) dt

(3.11) T

lim,o f g(t; xo(t; ); uo(t; e)) dt.

From (3.8) therefore it follows that equality holds in (3.11);thus we have
proved (3.4). In pargieular,

(3.12) 2 zo(t; e) dt O.

Hence,
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3.1. Necessary conditions for optimality. We shall next turn to necessary
conditions for optimality. We shall first obtain necessary conditions for
optimality for the nondynamic epsilon problem (3.3) and then show how
under suitable limiting conditions they lead to the Pontryagin maximum
principle for optimal control.
With x0(t; e), u0(t; e), z0(t; e) an optimal solution for the problem (3.3),

le h(t) be any n X 1 function in the Schwartz space of infinitely smooth
functions vanishing outside compact subsets of (0, T). Let

x(t) x0(t; e) + Oh(t),
where 0 is a real variable. Then we must have

_d h(; x(.); u0(.; )) 10=0 0.
dO

But because of our assumptions on f(. and g(. it follows that this deriva-
tive equals

(3.13)

where

[zo(t; e),/(t) f(t; xo(t; e); uo(t; e))h(t)] dt

T

nt- fo [gl(t;xo(t; e); u0(t; e))] dr,

fl(t; x; u) vJ(t; x; u), g(t; x; u) vg(t; x; u),

f (t; x; u) being n n and g (t; x; u), n ) 1, both continuous. As in 2 this
is enough to imply that z0(t; e) is absolutely continuous with

(3.1.4) i0(t; e) -fl(t; x0(t; e); u0(t; e))*z0(t; e) + eg(t; x0(t; e); u0(t; e)).

Next, specializing h(. to any smooth function with

h(0) 0, h(T) arbitrary and nonzero,

it follows as before that

(3.15) z0(T; e) 0.

We observe that (3.14) is a linear equation for z0(t; e) and has a unique
solution subject to (3.15). Next let us form the Hamiltonian

(3.16) H(e; z; x; u; t) [z, f(t; x; u)] eg(t; x; u).

Let.us note that for any admissible control u(t),- :o(t; e) fCt; xo(t; e); u(t)) 11 dt

(3.17)
T

I g(t; xo(t; e); u(t)) dt
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can be.expressed as

lfo" 2o(t; e) ]: dt :, llf(t; :co(t; e); uo(/; e)) dt

(3.18) q- j’(t; xo(t; e); uo(t; e)) j’(t; xo(t; e); u(t)) ]2 dt

It follows that

(3.19)

fo H(e; zo(t; e); Xo(t; e); u(t); t)

T

fo H(e; z0(t; e); x0(t; e); u(t); t) dt

attains its maximum over admissible control functions when u(t) u0(t; e).
Under certain additional conditions (usually satisfied in control prob-

lems in. practice) we can also obtain a pointwise version of this maximum
property when the constraint C is also expressed as a pointwise condition.
In the simplest of these conditions we take C to be such that for each the
control u(t) is required to be in a closed bounded convex set Q and measur-
able in t, and that both f(t; x; u) and g(t; x; u) are continuously differ-
entiable with respect to u as well. In that case, if v(t) is any admissible con-
trol, so is

u(t) (1 --O)uo(t; ) + Or(t), 0 <= 0 <__ 1,

and (3.17), or equivalently (3.19), is differentiable in O, and the derivative
at the origin can be expressed as

(3.20)
fo [zo(t; ),f(t; Xo(t; ); uo(t; )) (,(t) uo(t; ))1 at

T

+ f0 M(t; x0(t; ); u0(t; )), v(t) u0(; )1 dt

and must be nonnegative. Here

f=(t; x; u) Vuf(t; x; u),

g2(t; x; u) V.,g(t; x; u),

f2(" being n X p and g,.(. being p X 1. Let E be the subset of [0, .T] on
which

[f2(t; xo(t; e); uo(t; e))*zo(t; e) eg2(t; xo(t; e); uo(t; e)), v(t) Uo(/;

is positive. Then let us define

v(t) on E
w(t)

[u0(t; e) on the complement of E.
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Then w(t) is an admissible control by virtue of our assumptions, and we
must have that

T

fo xo(t; ); no(t; ))*zo(t; )[A(t;

(; o(t; ); uo(t; )), w(t) no(t; )1 t

is nonpositive, which is clearly violated unless E is of measure zero. Hence
we have that

[f(t; xo(t; e); uo(t; e))*zo(t; e) eg2(t; xo(t; e); uo(t; e)),
(3.21)

v(t) Uo(t; )] 0

for every admissible control almost everywhere in [0, T]. In particular, then

(3.) mx H(; z0(t; ); x0(t; ); u) H(; z0(t; ); x0(t; ); u0(t; ))
uQ

almost everywhere in [0, T], as is readily proved by contradiction. We have
thus obtained a maximum principle which we may term the epsilon maxi-
mum principle. We note that (3.22) can be proved under weaker assump-
tions.

3.2. Behavior at e 0; the maximum principle. Let us next examine
the limiting form of the necessary conditions as e goes to zero. Let us assume
as before the existence of an optimal solution for the epsilon problem and
use the same notation x0(t; e), u0(t; e), z0(t; e) as before.

Here we shall treat only the least complicated case (of. [1]). Suppose then
that no(t; ) converges for ctch to a function u0(t), nd suppose that u(t)
is an admissible control. (This has been shown to hold for linear systems
with quadratic criteri in 2, but can be shown to hold for more general
systems such as the "bilinear" case when

f(t; x; u) A(t)x + B(t)u + (C(t)u)x,

where C(t) is a linear transformation mapping E into the space of n X n
matrices and C(t) is continuous iu t, and g(.) is as in 2, for example.)
Since the functions x0(t; ) are equicontimous (by virtue of (3.1a) and the
fact that the integral of z0(t; e) over any subinterval of [0, T] goes to zero),
we can certainly choose sequence of e’s such that x0(t; e) converges uni-
formly in to, say, xo(t). Because of our continuity assumptions,

f / f0xo(t) xo + Jo
lim f(t; (t; e); u0(t; e)) dt lim z0(t; e) dt

xo -- f(t; xo(t); no(t)) dt,
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and it readily follows that xo(t), uo(t) is an optimal solution to the control
problem using (3.11). From (3.14), which is a linear equation for z0(t;
it readily follows that lim_0 (1/e)Zo(t; e) exists, and if we denote the limit
by (t) we actually have that

(3.23) (t) -fl(t; /0(t); uo(t))*4(t) -{- g(t; xo(t); uo(t)), 4(T) O.

Also it follows (by dividing through by e in (3.13) and taking limits) that

[(t), (t) (t; xo(t); uo(t))(t)] dt

(3.24)
T

fo [.(/o(t; xo(t); no(t)), h(t)] dt =0,

which is of course equivalent to (3.23). Now from (3.19) we have that for
every and every admissible control u(t),

’ H(; z0(t; ); x0(t; ); u(t); t) d

r 1_<_ H(; z0(t; ); x0(t; ); uo(t; )) dt.

Hence by taking limits on both sides as goes to zero, we obtain

(3.25) t((t); xo(t); u(t); t) d! =< /((t); xo(t); uo(t); l) dr,

where

(3.26) 17($; x; u; t) [), f(t; x; u)] g(t; x; u).

Again under the additional conditions as in obt,inirig (3.22), we also ob-
tain (by dividing through by e and taking limits)

max I(4)(t) xo(t) u; t) ((t) xo(t) uo(t) t)

almost everywhere. In other words we have obtained the maximum principle
as announced in [1]. It is clear that the partial derivatives with respect to e

used therein are all obtained by simply dividing by e and letting e go to
zero.

3.3. Existence of optimal solutions to the epsilon problem. Finally we
shall show that an optimal solution to the epsilon problem exists under the
following mild condition:

(H) If u(t) is a sequence of admissible controls converging weakly to
u0(t), then u0(t) is also dmissible, and further for each absolutely continu-
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OUS x(t) we have the semicontinuity properties that
T , T

(3.27) Jo g(t; x(t); uo(t)) dt <= lim inf Jo g(t; x(t); u,(t)) dt,

T

fo (t) f(t; x(t); uo(t)) dt

(3.27a)
T

lira inf f0 2(t) f(t; x(t); u,(t))II dr.

Let us assume (H) and let x(t), u(t) be an admissible sequence such
that

(3.28) lim z,,(t) dt A- g(t; x(t); u,(t) dt h(e),

where

(3.29) z,(t) 2,(t) f(t; x,,(t);u,(t)), x,,(O) Xo.

Since h(e) is finite, we can clearly choose the sequence so that the first
term in (3.28) converges also. Now the functions x(t) are uniformly
bounded. For if

ran(t) X,,(t)II,
then we have

1/2.(t) [2,(t), x,,(t)] [z,(t), x,(t)] -4- If(t, x,,(t), u,,(t)), x,,(t)]

,n.d

I[z(t),x,(t)]] <-_ IIz.(t)ll(1 / m,(t)),

Jill(t; x(t), u,,(t) ); x,(t)][ -<_ C(1 -t- m(t) ),

so that

"the(t) <= 2 z(t)ll m,(t) A- im,(t) + M2 z(t)][ + ia

from which, using (3.28), the usual arguments yield boundedness of x(t)
T

of n and t. In turn, since f(. is continuous, f 2,,(t)I[ dt isindependent

bounded. Since

the x,(t) are actually equicontinuous, and hence we can choose a subse-
quence that converges uniformly to, say, xo(t). Again, a further subsequence
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can be chosen so that 2(t) converges weakly to, say, y(t). But

xo(t) x0 lim 2 s ds 2, s ds y s) ds

implies that xo(t) equals y(t) almost everywhere. Now for any/, because of
the existence of continuous derivatives in x for both f(. ) and g(. ), we have
that

(3.30) l g(t; xo(t); u(t)) dt lim l g(t; x(t); u(t)) dt

uniformly in k. Again,

f o(t) f(t; x0(t); u(t))ll t
(3.31)

T

lim, inf fo 2,(t) f(t; x,(t); u(t)) dt

independently of k in the sense that the right side equals

lim inf [ 2,(t) ]] dt 4- [ [If(t; to(t); u(t)) ]]2 dt

(.32)
T

2 Jo [xo(t),f(t; x0(t); uk(t))] dt.

Since the uk(t) are uniformly bounded we may pick a subsequence that
converges weakly to uo(t), say, which by (H) is admissible. We shall show
that by virtue of (H) the functions x0(t), u0(t) provide an optimal solution
to the epsilon problem. For by (H) we have

f. xo(t> f( x0(t>; u0(t)) dtt;

lim inf [ I! xo(t) f(t; xo(t); u(t)) ]]2 dt
,0

and by virtue of (3.32), (3.31) and (3.30), it follows thut

2 xo(t) f(t; x0(t); uo(t)) dt -[- g(t; xo(t); uo(t)) dt <= h(),

or, in other words, xo(t), uo(t) is optimal. Condition (H) can be weakened
but our aim has not been to state the weakest conditions. Condition (H)
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is clearly satisfied if f(t; x(t); u(t) is linear in u(t) (see the following sec-
tion for such a case).

4. Time-optimal problems. In order to illustrate how the method applies
to time-optimal problems, we shall consider such a problem for u somewhat
specialized case where the dynamics arc specified by

(4.1) 2(t) f(t; x(t)) + B(t)u(t)

with the state function being n 1, the control u(t) being p 1 and f(. ),
B(. continuous and f(. continuously differentiable with respect to x,
as before. The time-optimal problem we shall consider is that of finding a
solution to (4.1) with

x(0) x0,
(4.1a)

x(T) xl

for the smallest possible T, the controls u(. being now subject to the
constraint

(4.2) Ilu(t)]] =< 1.

We proceed as follows. First, the cpsilon problem is now phrased as that of
minimizing

(4.3) h(e;x(.); u(.)) :)- 2(t) f(t;x(t))-B(t)u(t)II’dt+ ’1’

over positive numbers T, the functions x(t) being required to be absolutely
continuo,us with derivative square integrable over finite intervals and
x(0) x0, x(T) x, and the controls u(. being subject to (4.2). As is
usual, we assume that there exists at least one solution of (4.1) (with ad-
missible control) satisfying (4.1a) for some finite T. Then the minimal time
for the time-optimal problem, denoted To, is finite and

(4.4) infh(e; x(.); u(-)) h(e) -< To
for every e > 0. Now because condition (H) of the previous section is satis-
fied, and of course also (3.1a), it readily follows that the infimum in (4.4)
is attained. Let us denote the optimal upper limit by T, let x(t), u,(t)
denote an optimal solution and let

z(t) 2(t) -f(t; xo(t)) B(t)u(t).

Then as in 3, by perturbing x(t) by a smooth function vanishing outside
the compact interval of (0, T), it follows that we must have that z(t)
satisfies

(4:5) i(t) + f(t; x(t))z(t) O, 0 < t < T,
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where
f (t; x) v f(t; x).

Also because of the "pointwisc" nature of the constraint (4.2) we can, by
defining (analogous to (3.16))

(4.6) H(e; z; x; u; t) [z, f(t; x) "4- B(t)u], 0 < < T,

proceed to obtain (as in (3.19) and (3.22)) the epsilon maximum principle
that

max H(e; z(t) x(t) u; t)
(4.7) --<-

H(,;z,(t); x,(t); u,(t); t) .e., 0 < < T,.

In fct it follows, because (4.1.) is linear in u(. ), that

(4.8)

and hence that

m,nx [z,(t), B(t)u] [z,(t), B(t)u,(t)]

B(t)*z(t)

where the denominator is not zero.
Next let us consider the situation as goes to zero. Now becmse (4.5) is

linear in z(t), we can write the solution as

z(t) (T ;t; e)z

for some z, where (T T e) is the identity. Now because the functions
x(t) are equicontinuous, we can find a strongly pointwise convergent subse-
quence converging to xo(t) which is also absolutely continuous in [0, T] and
we know that T increases monotonically to To. We can clearly find
subsequence of

Ze

that converges to a unit vector z0. It follows th,t

z (t)

for a suitable subsequence converges for each to zo(t), where z0(t) stisfies

(4.10) io(t) q- f(t; xo(t))zo(t) O, zo(T) Zo,

and u(t) converges to
B(t)*zo(t)

(4.11) uo(t)
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where the denominator is not zero. By using the weak convergence of u, (t)
alone we know that, if we define (4.6) as

(4.12) H(z; x; u; t) [z, f(t; x) + B(t)u], 0 < < "1’o,

then

max H(zo(t) xo(t) u; t)
(4.13) II’ll =<-

n(zo(t);xo(t);uo(t); t) .e., 0 < < To,

from which (4.11) would follow lso.
We note that simiktr development is possible in the infinite-dimension,l

ese except that there is a major difficulty that

will now converge weakly only, in general, and the limit can be zero. If
the state ,nd control functions hve their ranges in Hilbert spaces, for ex-
ample, and (see also [4])

f(t; ) + B(t)u Ax + Bu,

where A is the infinitesimal generator of strongly continuous semigroup
T(t), (s in 3.1 ), (4.5) becomes

so that

i,(t) -t- A *z(t) 0, 0 < < T.,

z,(t) T*(T, t)z,,

but s is known (see [5]), (4.11) is in general false. On the other hnd, u,(t),
which is necessarily of the form

B*T*(T,- t)z,
T*(T,- t)z, ]}’

always yields an ,pproximting sequence of controls.
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ON THE NECESSITY OF A CERTAIN CONVEXITY CONDITION
FOR LOWER CLOSURE OF CONTROL PROBLEMS*

PAVOL BI’CUNOVSK’f
1. Introduction. The existence problem of optimal controls has been in-

vestigated by many authors (see, e.g., [1]-[9]). This problem is closely con-
nected with a property of control problems, which we shall call "lower
closure" in this paper. The proof of this property is usually the crucial
pr of the proof of ny existence theorem. It is based on a convexity as-
sumption, which has subsequently been relaxed. The most general
assumption of this type is that of Cesari (cf. [7], [8]). It is of some
interest to know whether this assumption might be further relaxed. The
maia purpose of this paper is to give some insight into this problem. It is
proved that in an important class of control problems Cesari’s condition is
actually necessary for lower closure, but that this is not true in general. As
t by-product, some slight relaxations of the continuity part of the sufficient
conditions for lower closure are obtained; by its applications we could
obtain some improvements of the existence theorems.

2. Definitions. Let R denote the n-dimensional Euclidean space with
the Euclidean norm denoted by Ix for x R", n 1, 2, ..-. Further,
denote p(X, x) inf x’ xl, {x’l Ix’ z[ < N(X,

X X Z[x[p(X,x)< },p(X,X’)=inf{Ix-- Ix X, clZand
x Xco X the closure and convex hull of X, respectively, for x, R X,

subsets of R.
DEFINITION 1. A mapping F of D C R into the set of nonempty subsets

of R will be called -continuous if, for every x0 D and e > 0, there is a
ti > 0 such that for every x N(x0, i) D, F(x) N (F(x0), e). F will be
called a-continuous if it is -continuous and, moreover, for every x0 D
and > 0 there is a i > 0 such that for every x N(xo, ) D, F(xo)

N(F(x), ) is valid.
DEFINITION 2. F will be called -continuous if, for every x D, F(x)
l>0 cl F(N(x, 5) l D). F will be called &-continuous if it is -continuous

and, moreover, for every x D, z F(x) and every sequence {x}, x --) x,
x D, there is a sequence z F(x) such that z -- z.
Both /-continuity and -continuity are usually called upper semi-
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Czechoslovakia. At present at Center for Control Sciences, University of Minnesota,
Minneapolis, Minnesota 55455. The final version of this paper was prepared with the
support of the National Aeronautics and Space Administration under Grant NGI
24-005-063.
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continuity; a-continuity coincides with continuity of F in the Hausdorff
set topology.

Obviously, if F is -continuous, its values are closed sets. Further,
-continuity (a-continuity) implies -continuity (-continuity); if the
values of F are all contained in a compact subset of R, also the converse
implications are true. It is also easy to prove that ]-continuity is equivalent
with the following property: x1 D, k O, 1, Zk F(xk), ] 1, 2,.., x --. x0, zk --* z0 implies Zo F(xo) (if D is closed, in other words,
the graph of F is closed), a-continuity coincides with contimlity in Haus-
dorf set topology.
DEFINITION 3. The set-valued function F with closed values will be

called measurable (Borel-measurable) if, for every closed set Z c Rn, the
set {xlF(x) Z} is measurable (a Borel set).
A control problem (f0, f, U) is given by a differential equation

(1) "2 f(t, x, u),

x= (x x,. R’,u (u, .,u R’,f (f, ),ascalar
cost function f(t, x, u) and a control domain U(t, x). Here U(t, x) is a
set-valued function defined on a closed domain D Rn+ (such that
D cl int D), its values being closed subsets of R, andf andf0 are defined
on the set/ {(t, x, u) l(t, x) D, u U(t, x)}. The pair (f, U) will
be called the control system.
A pair of functions u(t)" [t, t] ----) R", x(t)" [t, t,] -- R will be called

the control-trajectory pair (CT-pair) of the control system (f, U) if u(t)
is measurable, x(t) is absolutely continuous, u(t) U(t, x(t) and x(t)
is a solution of the differential system (1) with u u(t) on [t, t]. u(t)
is called the control and x(t) the corresponding trajectory.
Denote (x, x) Rn+, ] (f0, f) and for a given CT-pair (u(t),

x(t)), x(t) I. f( s, x(s), u(s)) ds.

DEFINITION 4. The control problem (f0, f, U) will be called lower closed
if it has the following property" Given a sequence x(t), u(t) of CT-pairs
on a common interval [t, t] such that the (t) converge uniformly towards
an absolutely continuous function 2(t), then there is a control u(t) on
[h, t] such that x(t) is its corresponding trajectory and

(2) f(s, x(s), u(s) ds <= x(t)

for all [h, t].

In optimal control problems, I() fo(, (), ()) d represents

the eosg functional which has to be minimized in a certain class of admissible
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CT-pairs t (e.g., the class of CT-pairs (u, x} such that x(tl) and x(t2)
are fixed). The proof of any existence theorem of optimal controls usually
proceeds as follows (or this procedure is hidden in the proof) One finds
minimizing sequence of CT-pairs (uk, xk} such that

I(uk) -- inf I(u).

From pproprite ssumptions one concludes that from the sequence
2(t) subsequence converging to certain function 2(t) cn be chosen.
Now, the lower closure property llows us to prove that there is u(t)
such that x(t) is the corresponding trajectory nd

I(u) x(t) < lim inf x (t) lim inf I(u).

Thus u is the optimal control (of course, one has to prove that (u, x} be-
longs to ).

Let us note that our definition of lower closure is often not general enough,
especially in the case of D or U unbounded, since then one is usually able
to prove only pointwise convergence of the minimizing sequence x(t)
towards a function x(t) of bounded variation (the convergence of x(t)
being uniform). In this case x (t) in (2) has to be replaced by its absolutely
continuous part (cf. [8], or [9, p. 25]). Also, the CT-pairs are often not
defined on the same interval. However, since this is not essential for our
discussion and our attention is concentrated mainly on the necessary
conditions for lower closure, we have introduced this simplified defini-
tion to avoid unnecessary complications.
Denote

Q(t, x) f(t, x, U(t, x) ),

(t, x) {(z, z) ]z f(t, x, u), z f(t, x, u), u u(t, )}
for (t, x) D.

CONDiTiON C. The set (t, x) is convex for (t, x) D.
This is Cesari’s convexity condition, the necessity of which for lower

closure of control problems we are going to discuss.

3. Auxiliary lemmas. The following lemma is an analogue of Lusin’s
theorem for set-valued functions. It is a slight generalization of the result
of Pli [11] for set-wlued functions with noncompact wlues.
LnM 1. If the set-valued function F with closed values is measurable a

compact A, then it is asymptotically 5-continuous on A, i.e., for eery e > 0
there is a closed subset A of A such that F is 5-continuous on A, and
meas (A A) < e.
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PROOF. DenoteN N(O,j) {y y "(- Jl,E {x lF(x) r’lN .(}.
The E. are measurable and UI E- A. For everyj there is a finite covering
U,, u 1, ..., p, of N, U, being open with diameter less than j-1.
By K, u 1, q, q 2 1, we denote the subsets of the index
set {1, p} ordered in an arbitrary manner. Denote

E. {x IF(x) N c U cl U, F(x) U };

the E are measurable and U. E.
Let e > 0 and let {e},,= be positive numbers such that ,= e. < e.

Since the E are measurable, there are sets B., C. such that B. I,
C. A E. and meas [A (B. U C.)] < e for all . Further, there
is a positive constant d such that p(B, C) > d for all u.
Denote B U= U.= [A (B, U C)], A, A B.. We have

meas B. and
qj

A A -B A U U[A (BUC.)]

qi qJ

A O[E. B] B

A U UE.,.

since

Further, B is open and, consequently, A is closed.
To prove the d-continuity of F on A suppose first that F is uot f-co-

tinuous on A. Then there is sequence {xi}=l, xi A, xi -- xo,
zi F(x), z-- zo, zo ( F(xo). Since F(xo) is closed, there is a ti > 0
such that p(F(xo), Zo) > . There is an i0 such that for i > io, ]zi Zol
< i/2. Further, there are j0, o such that F(xo) I’l No ., jo- <. /2,
xo Eo,o and, consequently, N(zo, i/2) Uo,0 . From this it
follows x ( E’o,o, Ix0 xl > do, for i > i0, which is inconsistent with
xi -- xo. Hence, F is -continuous on A.

Suppose further that there is an xo A Zo F(xo), sequence xi xo
such that for no sequence z}, z F(x), z- z0 is valid. Then passing to
subsequence, if necessary, we may suppose that there is a it > 0 such that
p(F(x), Zo) > i. There is u jo such that Zo F(xo) I’l No ]o- < . Then,
xo E’0,o for some Io, while x ( E.0,o, i 1, 2, 3, ..-. Hence,
x x01 > do, contrary to the assumption. This completes the proof.
Remark. A -continuous set-valued function F is measurable. This fol-

lows from the fact that ft-continuity of F implies that {x IF(x) r’l c
is closed for every compact C and {x IF(x) Z} A U,i_.l {X IF(x) I"1
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Ca }, {Ci}l being an arbitrary denumerable covering of R Z by
compact sets C. such that C. 1 Z . Thus, from Lemma 1 it follows
that a $-contin.uous set-valued function F on a compact A is asymptotically
a-continuous on A.
LEMMA 2. Let E(y) be a set-valuedfunction on a closed domain D c R with

values being closed convex subsets of Rr. Let E(y) be (-continuous in D. Let
g’{(y, v) [y D, v E(y)} ---, R be continuous and denote F(y)

g(y, E(y) ). Then, given points yo D and zo F(yo), there is a continuous

function ’D -/ R such that (yo) Zo and (y) F(y), y D.
Proof. Let v0 be an arbitrary point of E(yo) such that g(yo, Vo) Zo.

Then, according to [12, Theorem 3.1] there is a continuous function
’D -- R such that (y0) v0 and (y) E(y) for y D. It is obvious
that the function (y) g(y, (y)) satisfies the desired properties.
The following example shows that if the convexity assumption in this

lemma is dropped, it need not be valid even if F is connected. Let m r
n 2 and let g be the identical mapping. Identify the points of R

with complex numbers. Denote

F(o) {zllzl --<
F(y) (F(0) {zil zl ) 1, Re z (-tY l, Y I)}) "e(iAru)/,
E(y) F(y), y R.

It is evident that no continuous function may be found so that 0(0) 0,
(y) F(y).
Remark. Lemma 2 can be used in the theory of contingent equations

(orientor fields; cf. [5], [11]). Let in Lemm 2, m n + 1, y (t, x), dim
x= n. Then, F (t, x) may be considered s an orientor field in R. From
Lemma 2 it follows that through every point (to, x0) D passes a tra-
iectory with an arbitrary given initial direction zo F(to, xo). (This tr-
iectory is identical with the traiectory of the differential equations 2
(t, x).) In particular, this gives an existence theorem of solutions for
fields of nonconvex orientors.
LEMMA 3. Let D R be measurable and f’D ---+ R be a measurable

function. Then, for eery Borel set E R"+ the setP x (x, f(x) ) E}
is measurable.

Proof. Denote 8 the set of ll subsets of R+" such thatP is mesurable.
Then, 3 clearly contains ll sets of the form A B, A R being measur-
able, B R being a Borel set, and is a z-algebra. Thus, 3 coatains any
Borel set of R+’.
IEMMA 4. Let D R }( R be a set such that D y l(x, y) D}

is closed for every x, and D is a measurable set-valued function of x,

Let us note that the counterexample [12, Example 6.1] does not fit to our cse
since in it is not -continuous ccording to our definition.
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P {x (x, y) D for some y} be compact. Let f(x, y):D ---> R be a func-
tion such that f is measurable in x for every fixed y and continuous in y for
every fixed x. Then, for every 0 there is a closed set F c P such that f is
jointly continuous in x and y on D F X R") and meas (P F) <

This lemma is a slight modification of Goodman’s extension of Scorza-
Dragoni’s theorem ([13], cf. also [14]), the modification being in somewhat
relaxed conditions on D. The detailed proof of this modification will be
given in [15].

4. Main results.
THEOREM 1. Suppose that:
(i) fo, f are continuous in u for every (t, x) fixed and Borel-measurable

in (t, x) for every u fixed over 1)
(ii) U (t, x) is closed for every (t, x) D and U(t, x) is Borel-measurable

onD;
(iii) t, x) is 5-continuous on D;
(iv) there is an 5-continuous set-valued function E(t, x) on D, its values

being convex subsets of some Rr, and a continuous mapping g:{(t, x,
(t, x) D, . E(t, x)} --> R such that Q(t, x) g(t, x, E(t, x) for
(t,x) D.

Then, the condition C is necessary for lower closure of the control problem
(, f, U) If and (ii) are satisfied and, moreover, either

(v) (t, is -continuous on D,
or

(vi) (t, x) is -continuous and there is a nonnegative function
>- O, such that lim.. -1() and f(t, x, u) >-_ (lf(t, x, u)I) for

If(t, x, u) suciently large,
then the condition C is sucientfor lower closure of the control problem (fo, f, U).
Proof of necessity. If the condition C is violated, then there-is a point

(to, Xo) int D and u, u U(to Xo) such that

(3) 1/2[](to, Xo, u) - ](to, Xo, u)] ( Q(to, Xo).

Denote o (0, Xo). By Lemm 2, there are continuous functions
5(t, x), 5 (o, ), i 1, 2, such that 5(to, Xo) ](to, Xo, u) and
5.(t, x) )(t, x) for (t, x) D, i 1, 2. There is , > 0 such that the
set A I(t, x) lit tol <= % Ix Xol . "} D.
Denote

t [to - 2j’-1, tO + (2j + 1),k-),
j=O, 1,...,]-- l,

t [to - (2j -t- 1)&-, to -t- (2j -t- 2)&-1),
j=0,1,...,1/2/-- 1,
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lc 2, 4, .... Since the (t, x) satisfy Carathodory’s conditions in A,
there are solutions 2(t) of the systems

(4) (, )
starting at (to, 20). Evidently, the (t, x) are uniformly bounded. Hence,
there is tl > to such that (t, 2k(t)) A for [to, tl] and the 2k(t)
are equiabsolutely continuous on [to, tl]. From this it follows that there is a
subsequence of {(t)} which tends uniformly towards a certain absolutely
continuous function 2(t) on [to, tl]. Without loss of generality we may
suppose that this is the original sequence.
Denote

,(t, x) .[,(t, z) + ,(t, x)].
We have for [to, t],

:(t) :o $(s, x(s)) ds

lim ft
lim t

[(s, x(,)) d. 4(s, (..)) ds

[(,, x(.)) (s, x(,))]

[(s, x(s)) ,s, ())]

The first term tends to zero, since the k(t, x) are continuous in x,
uniformly in (t, x) A and/, and xk(t) -- x(t) uniformly in t. For the
second term of (5), which we denote by I, we have

I f [(,x(s)) (,x(s))] ds (,()) ds
at =0 0+2jTk-

tO+(2j+2)k’-I

f+ 5(s, x(s)) ds 5(s, x(s)) ds
(2j+l)Tk- o+2]Tl-

+ [(,( (, ()1 ,
where jo is such gha (2j. + 2)lc- < < (2fl + 4)-. By ghe mean
value gheorem we have

2 1

+ &(+, x(+)) 0(/, z(/,

+ -’ mx (s, x(s) $(s, x() I,
s o+ (2j+2) l-],t]

where , [to + i-, to + (i + 1)vk-]], ’ [to + iy-, to
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+ (2j + 2)3,k-1]. From the fact that 41,42 are uniformly continuous in A
and ., are bounded in A, it follows that I#, -- 0 for k -- . Hence,

:() 0 + / (s, x())

This means that (t) is a trajectory of the system

(t, x(t)).

There are measurable functions uk(t) such that ,,(t, xk(t))
](t, x(t), u(t)). To prove it note first that U(t, x(t)) is measurable.
This follows from Theorem 1 (ii), Lemma 3 and {tlU(t, x(t)) Z}
{t (t, x(t)) (t, x) U(t, x) c Z} }. By a similar argument f(t, x(t), u)
is measurable for every fixed u. Now, by Lemmas 1 and 4 for every
e > 0, there is a compact subset I of [to, to -t- ’] such that f is jointly contin-
uous in t,x, u, U(t,x(t)) is t-continuous on I and meas ([to, to - ’] I) < e.

Using the formalism of [8, pp. 384-385] we can construct the desired measur-
able u(t) on I. Since e > 0 is arbitrary, this proves the existence of the
desired u(t) on [to, to - "].
Now we can consider two cases in which (3) can be satisfied.
Case 1. 1/2[f(to, Xo, ui) -t- f(to, Xo, u2)] ! Q(to, xo).
Case 2. 1/2-[f(to, xo, ul) + f(to, Xo u2)] < min {f(to, xo, u) If(to, xo u)
1/2-f(t0,1 X0 UI) + f(to XO U2)], U U(t, x)}
In Case 1, from Theorem 1 (iii) and the continuity of 4) it follows that

4(t, x) ( Q(t, x) for (t, x) from a certain neighborhood B of (to, Xo).
There is ar > 0 such that (t, x(t)) B for [to, to + r]. Since(t)

4(t,x(t)) . Q(t,x(t)) fora.e, [to,t0-t- r], x(t) is ro a trajectory of
the control systems (f, U).

In Case 2 from Theorem 1 (iii) it follows again that

(6) 4)(t, x) < rain {f(t, x, u)If(t, x, u) 4)(t, x)}

for (t, x) from a certain neighborhood of (to, Xo) and that there is a r > 0
such that (t, x(t)) B for [to, to + r]. If x(t) is a trajectory of (f, U),
then there is a control u(t) such that d)(t, x(t)) f(t, x(t), u(t)) for

[to, l0 + r]. Then for every [to, to + r], and any such u(t), we have
from (6) that

:f(s, x(s), u(s) ds > (s, x(s) ds
,)t

f
tO-{-t

lim (s, x(s)) ds

to+t

> lira f (s, x(s), u(s)) ds,
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which completes the proof of the necessity part of the theorem.
Proof of sufficiency. Since the proof of the sufficiency part of the

theorem is essentially covered by [8] and [9], we shall point out only the
differences which arise from the slightly generalized assumptions.

First let us note that both from (v) and (vi) of Theorem 1 it follows
that )(t, x) has property (Q) of [8]. If (v) is valid, this follows from the
fact that cl N((t, x), ) is convex and, consequently, if Q(t’, x’)

XN(Q(t,x),e) for all (t’, N((t,x), ) D, then
cl co )((N(t, x), ) D) c cl N((t, x),

If (vi) is valid, this follows from [9, Proposition 3] or [16].
As in [8, p. 394] we may construct the auxiliary control problem, denoting

= (u u u’) (t,x) {= (u,u) lu V(t,x) u>f(t,x,u)}
] {]0, f, "", if} with]0 u0.

Now, if U(t, x) was -continuous and f0, f continuous, we could obtain
the desired result from [8, Closure Theorem II], but the set 0(t, x) being
the same for the auxiliary as for the original problem, this does not concern
the proof of the fact that, for the limit trajectory x(t) of a uniformly
convergent sequence of trajectories 2k(t), (t) )(t, x(t)) a.e. on [h, t].
Thus, the only thing we have to prove is the existence of a measurable
(t) such that

(6) (t) ](t, x(t), t(t) a.e.

As in the proof of the necessity part of the theorem we can prove that
U(t, x(t)) is measurable and ](t, x(t), u) is measurable for every fixed u.
Thus, by Lemmas 1 and 4 there is closed subset I of [t, t] such that
](t, x(t), u) is jointly continuous in t, u on the set G, l(t, u) It I,,
u U(t, x(t)) }, U(t, x (t)) is -continuous on I and meas [t, t] I,) <: e.

Now, let t -- t, t I, (t ---. (t, (t (tk, x(t)). Then, from the
t-continuity of U(t, x(t) on I, the t-continuity of ) and the continuity
of x(t), it follows that u U(t, x(t)), u >= f(t, x(t), u), i.e.,

(t, x(t)).
Hence, (t, x(t)) is -continuous on L.
Since] is continuous on G nd (t, x(t) is -continuous on L, we can

apply again the procedure of [8, pp. 384-385] to prove the existence of a
measurable (t) satisfying (6) on I,. e :> 0 being arbitrary, this proves the
existence of u(t) with desired properties on the whole [t, t].
The necessity prt of Theorem 1 seems to be of little value because the

convexity condition C is replaced by another condition (iv). However,
the following important corollary shows that in prticular the theorem
is valid if U (t, x) is convex for every (t, x). The importance of this corollary
lies in the fact that the convexity condition of U is usually natural from

The author is grateful to Professor Czeslaw Olech who called his attention to-
wards this fact.
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the point of view of pplictions, which could not be sid bout the condi-
tion C. Oa the other hand, the counterexample of 3 indicates that the
convexity assumption (iv) cannot be completely dropped.
COROLLARY 1. Let (i) and (iii) of Theorem 1 be satisfied and let f; f be

continous on D, U(t,x) be 5-continuous on D, U(t, x) being convex for every
(t, x) D. Then the condition C is necessary for lower closure of the control
problem (fo, f U).
For the proof it has only to be noted that the assumptions of Theorem 1

are satisfied by r m - 1, v (v, u), E(t, x) (- , U(t, x),

f(f(t, x, u), f(t, x, u) if v < f(t, x, u),
g(t, u)x

(v, f(t, x, u)) if v >= f(t, x, u).
COROLLARY 2. Let (i), (ii) and (iii) of Theorem 1 be valid. Further, let

Q(t, x) be convex for every (t, x) D and let the mapping h’G ----> R1,
G {(t, x, O) l(t, x) D, Q(t, x)} c R’+1 defined by h(t, x, )

rain {f(t, x, u) If(t, x, u) } be continuous on G. Then, the condition
C is necessary for the lower closure of the problem (fo, f, U).
Again it is easy to verify that the assumptions of Theorem 1 are satisfied

byr n-l- 1, E(t,x) (- , X Q(t, x), v (v, ),
[ (h(t, x, O), i)) if v <= h(t, x, O),

g(t,x,v) t[(v,0) if v> h(t,x,).
5. Two counterexamples. The purpose of the following example is to

show that the -continuity assumptions of Theorem 1 cannot be ia general
dropped. More precisely it shows that even if U, Q are compact, convex
and -coutinuous and the condition C is violated on a set of positive
measure, then the problem can be lower closed.

Example 1. Let n m 1, D [0, 1],f(x, u) u,f(x, u) -u.
Denote G the union of open intervals (a, b), 1, 2, 3, ,j 1, 2,

2-1, of length 2- which are placed as follows. The center of (a b)
is 1/2. The centers of (a., b), j 1, 2-, coincide with centers of the
equal segments which remain from [0, 1] after removing the intervals

2- G is open and F [0, 1] Ga,b.,= 1, ,k- 1,j= 1,.
is closed, meas G meas F 1/2.

Define

I--1 " 2(x a)/(b a)} for

U(x) lc 1, 2, ...,
[- 1, 1] for

x (a., b.),

j 1,2, ...,2-,
xF.

Evidently the condition C is violated on F. We shall prove that the problem
(f0, f, U) is lower closed.
Since U(x) is compact for every x [0, 1] and -continuous on [0, 1],
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every limit of a uniformly convergent sequence of trajectories is a trajectory
(cf. []).

(a) Ifu(t) x(t) is a CT-pair on [to tl] and for some [t0,h] x( E,
then x(t) x(t’) for It’, tl] and, consequently, u(t) 0 for a.e. It’, tl].

tFor the proof, suppose the contrary. Then there is a [if, t] such that
(t" t"x x(t’) Let x( > x(t’) Then there is an a such that x(t")

<= a < x(t"). This is impossible, since 2(t) hs to be negtiw if x(t) >
a nd x(t) is sufficiently close to a.. The cse x(t < x(t’) my be treat-
ed similarly, a being replaced by b.

(b) From () it follows that for every CT-pir u(t), x(t), we hvc
u(t) w(x(t) or a.e. t, where

0_ for x F,
w(x)

1 + 2(x a)/(blc ak) for x (akj, blc.).

(c) Let x(t) be a trajectory starting t a point (to,Xo) with
x0 (a., b.). Then from (a) and (b) it follows that for >= to -{- 1/2(b a)

In [1/2(b a)lxo- 1/2(a -t- b)t-], x(t) a, if x0 < 1/2(a,.-t-b,i), and
x(t) b if x0 > (a- -t- b.); if x0 1/2(a. -t- bi), then x(t) Xo for
t>=to.

(d) Let x(t) be a sequence of trajectories which tends uniformly to
trajectory x(t) on (to, t). We hve to prove

(7) lim (,z(t), w(z()))d (,z(),w(z()))d.
k-o

]?irs suppose x(t0) F. Then, divide he equenee x(t) into wo subse-
quences" the first consisting of those x(t) with x(to) F, the second con-
sisting of the remaining elements. For the first subsequence, (7) holds, since
the integrands wnish for all ]c. As for the second one, the integrands are
bounded and by (c) they are nonzero only on an interval the length of which
tends to zero. If x(to) G, then (7) follows from the continuity of w on G,
(a) and (c).
The following example shows that Cesari’s property (Q) of ) is not

necessary for lower closure even if (i), (ii) and (iii) of Theorem 1 are satis-
fied (of course, then (v) and (vi) have to be violated, since otherwise this
property follows from the condition C). Recall that Q is said to have
property (Q) if )(t, x) 1>0 cl co )( (N(t, x), ) ’1D). In this example )
has property (Q) nowhere in D.
Example 2. Letn 2, m 1, D R, U R,f(x,u) u,f(x,u)
xu, fO(x, u) =-- O. That ) has property (Q) nowhere in D follows from

the fact that for every x R and > 0, cl co (N(x, )) (0, R
while )(x) (0, {(z, z)l z xlz}. Let x(t) be a trajectory. Then
we have d(x --(x):)/dt 0 so that the graph of it is a part of some



LOWER CLOSURE OF CONTROL PROBLEMS 185

parabola

(s) x 1/2(x) + c,
where c , ). On the other hand, every x(t) such that xl(t) is
absolutely continuous and x(t) [xl1(t)]2 A- c is a trajectory. Now, it is
obvious that the graph of a limit of a uniformly convergent sequence of
trajectories is a part of a parabola (8). Thus if this limit is absolutely con-
tinuous, it is a trajectory. Since f0 0, this proves the lower closure of the
problem (f0, f, U).
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L-STABILITY OF LINEAR TIME-VARYING FEEDBACK SYSTEMS*

CHI-TSONG CHEN
1. Introduction. Consider the single-loop feedback system shown in

Fig. 1, where G is a linear time-invariant nonanticipative system and N is a
memoryless element. It is well known that if N is a constant gain and if the
Nyquist criterion is satisfied, then for any class of input function u, the
output y will be in the same class of function [1]. For example, if the input is
bounded, so is the output; if the input is of finite energy, so is the output.
If N is a nonlinear element, then a stability has to be defined with respect
to a specific class of input [2]-[5]. In this paper we consider the case where N
is a time-varying memoryless element; more specifically, N is characterized
by x(t) k(t)e(t), where k(t) is the time-varying gain, x and e are the out-
put and input of N, respectively. Clearly, this feedback system is linear. Let
g(t) be the impulse response of G and h(t, r) be the impulse response of the
entire feedback system, h(t, r) is, by definition, the output response at
time due to a i-function input applied at time r. Suppose the feedback
path in Fig. 1 is disconnected for a moment and a -function input is
applied at time ; then the output of G will be k(r)g(t r) for _>_ r. Now
if the feedback path is connected, then k(’)g(t -) will go to the output
and the input of the entire feedback system as shown in Fig. 2. Hence we
have

>=
1 h(t, -) (.0 for T

If h(, r) can be solved from (1) and if h(t, r)l dr < c < for all ,
then in the feedback system any bounded inpu generates a bounded ou-
pug [61. Itowever, solving for h(, r) from (1) is very diffieulg, if hog impos-
sible; hence this approach is not feasible. Furthermore, it is desirable to
state the stability condition in terms of the open loop system.
The time-varying gain k(t) considered in this paper is assumed to be

of the form k0 ](t), where 0 is a positive constant. It will be shown that
if the gain deviation (t) is bounded and absolutely integrable, then this
gain deviation can be neglected in considering stabilities of the feedback sys-
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FIG. 1. Continuous feedback system

FiG. 2. The relationship between g(t) and h(t, r)

tern. A system with sector condition on k(t), 0 <= ]c(t) <= lcl, is studied
in [71, [8].

2. Statement of the problem and some lemmas. Given the feedback
cmltrol system shown in Fig. 1, N is a memoryless time-varying element
and G is a nonanticipative linear time-invariant system. It is assumed that
G is characterized by a convolution integral. More precisely, let g be the
impulse response of G; then the input x and output y of G are related by

(2) y(t) z(t) + g(t- r)x(r) dr, t>= O,

where z(t) is the zero-input response of G. It is assumed that G satisfies the
following conditions"

(A1) For all initial conditions, the zero-input response z is an element of
L[0, m ), where p is a fixed number in [1, m ].

(A2) The impulse response g (t) is of the form

(3) g(t) r + g,(t), >- O,

where r is a nonnegtive constant and g(t) is bounded on [0, ),
is an element of L[0, and tends to zero as tends to infinity. It is
also assumed that g is either continuous or of bounded vriution.

Let G(s) be the Laplace transform of g, i.e.,

G(s) e-"g(t) dr.

Here G(s) is not necessarily a rational function of s. Let e and x be the input
and output of the time-varying element N. It is assumed that N is charac-
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terized by

and k(t) is of the form

x(t) k(t)e(t)

(t) o +/(t),

where k0 is a positive constant and ](t) is a continuous function of t, f being
the gain deviation from ]co.
A feedback system with ](t) 0 is called a "constant gain" feedback

system. Let/ be the impulse response of a constant gain feedback system
with k (t) /Co. Then

(4) ;(t)
o () o (d(t -)/(-) d- f,.,, >= o,

o for < 0.

Before proceeding we need the following lemmas.
LEMMA 1. Let fl(t) and f2(t) be any real-valued functions defined on [0, ).

Ifft. is an element of L[0, ), 1 <= p <= and iffl is an element of LI[0,
and L,[0, and tends to zero as tends to infinity, then the convolution

(j’ :f) t)

tends to zero as tends to infinity.
Proof. Let p’ be such that lip’ q- lip 1. By using the H61der in-

equality we obtain

l(f2 f) (t)

(5)

Since If is an element of Lx[0, ), it is shown in [9] that (f.t *lf I’)(t)
tends to zero as -- . Hence from (5) we conclude that f2 f tends to
zero as --* .
LEMMA 2. Let o, , b, and 0 be real-valued functions defined on [0, and

either continuous or of bounded variation. Let

o(t) =< 4,(t) + (t) o(-)o(-) d- for all ft. [0, ).
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If O(t) and b(t) are nonnegative for all [0, ), then

co(t) =< 4)(t) + (t) 4)(r)O(r) exp (v)O(v) dvdr

for all [0, ).
This is a modified version of the Bellman-Gronwall lemma [13]. This can

be proved by defining ,(t) =a O(r)o(r) dr and ,( = O.

3. Main result. We state the main result as a theorem.
THEOREM 1. If the feedback system shown in Fig. 1 satisfies the assutptions

(A1) (A2) and if, in addition, satisfies
(a) infao >__0 1 + koG(s)[ > O,
(b) is a continuous function and an element of LI[0, oo and L[0, o ),

then
(i) the output y is an elenent of L,[0, oo if the input u and the zero-input

response z are elements of Lp[0,
(ii) for any initial state,

lim ly(t) (t)[ 0,

where j is the output of the corresponding constant gain feedback system.
In the proof, we shall use a comparison technique and the following facts"

Let h(t, r) be the impulse response function of a nonanticipative linear time-
varying system. Then (a) any bounded input generates a bounded output

if and only if [h(t,r)ldr -<_ c < for all (see [6]); (b) ir

h(t,)ld-< cl < for alltand ih(t,)idt <= c. < for allr,

and if, in addition, the input is an element of Lp[0, o ), 1 -< p -< , then
so is the output [11].
Proof of Theorem 1. Consider the constant gain feedback system with

k(t) ko. It is shown in [1] that if the assumption (A1), (A2) and the
condition (a) in the theorem are satisfied, then the impulse response of the
constant gain feedback system,/(t), is an element of L[0, and L(R)[0,
and tends to zero as --. . It follows that the output of the constant gain
feedback system 9,

(6) (t) z(t) + f(t ) [u() z()] , -___- 0,

is an element of Lv[0, o if u and z are elemeuts of Lv[O,
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The output of the time-varying feedback system is given by

y(t) z(t) -b lCo g(t- v) [u(v) y(v)] dv

Jo g(t- v)f(v) [u(v) y(v)] dr.+
Under some manipulation and using (4) and (6), (7) can be written as

(S) y(t)= (t) + k- f(t r)(r) [u(r) y(r)] dr.

Define (t) = y(t) (t), t(t) u(t) (t); then

(9) (t) k-1 /(t r)(z) [(r) (z)] dz.

This is u key equation in our proof. Instead of studying y(t) directly, we
shall compare the output of the feedback system and the output of the cor-
responding constant gain feedback system. Since 9 is an element of Lp, if
we succeed in proving that is an element of L, then by the Minkowski
inequality, we can conclude that y is an element of Lp (if u and z are
elements of L).

Consider the linetr time-varying feedback system shown in Fig. 3, where
the impulse response function of I is/(t) which is defined in (4). Clearly
Fig. 3 is a block diagram representation of (9). Let/(t, z) be the impulse
response of the feedback system shown in Fig. 3. Then, similarly to (1),

-()f(t )

(10) /(t,r) t

and and are related by

(11) (t) f

(t,v)-o-(-)f(v .) v

f(t -)(-)

FtG. 3. Linear time-varying feedback system
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We shall show now that (a) [/(t, r)] dr __< cl <

(b) (t,r)]dt <= c. , for all r.

(a) From (9), if L[0, ), then

(12)

for all t, and

<- k0 hm m

where fm
lemma [10], [12, p. 35] and using the assumption that ] LI[0, ), it can
readily be shown that (t) is bounded for all t. Equivalently, in (11), any

gives u bounded . Hence we conclude that J_ I](t, r)bounded

=< cl < for allt.
(b) From (10),

(13) i](t,r) k-1 t](r) l](t r) + leo h, [](t, s) [)(r)[ ds.

+ - I(t -)1 I()1 I(-)l

sup, I/(t)l, ,, sup, (t)[. Applying the Bellmun-Gronwall

Taking the integration with respect to t,

(14)
fi(t,r) dt _<__ lclf(r) ]](t r)

-I foofoo+ 0 h fi(t,s) dsdt.

Changing the order of integration [14, p. 234] and noting that/(t, s) 0
fort < s, (14) becomes

(15)
ft(t,r) dt <= kj fc(r) c

where cA ft( t) dt. Define
0

(16) ](r) i f

+ o h

fi(t, )1 dt.
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Then (15) becomes

--1 fr(17) ](r) _<_ k; ])(r) c + ko h, I(r) f(s) ds.

Now applying Lemma 2, we obtain

+ lo hm I](r) k l(s)I ch exp /co h [](1) ldl ds.

Since is bounded and absolutely integrable, from (18) we conclude that

f(r)l is bounded on (- , ). I follows hag I(, r)l d N c <
for all r.
We have proved ghag (, r) is absolugely ingegrable wigh respeeg go

and r; hence from (11) we conclude ghag if g L. Now + ;
hence L if and . This proves ghe firsg parg of Theorem 1.
From (8) we have

(19) I (t ,)1 [[u(,)[ +

Since is an element of L and L and tends to zero as , and since u
and y are elements of L, by applying Lemma 1, we know that the right-
hnd side of (19) tends to zero as . Consequently,

lim [y(t) (t)i 0.
t

The frequency domain interpretation of infa 011 + koG(s) > 0 is
given in [1]. With slight modification Theorem 1 can be easily extended
to multiple loop feedback systems. Furthermore, if N is nonlinear time-
varying element and is characterized by x (e, t) and (e, t) koe
+ 5(e, t), and if 5(e, t) (t)l e ], then all the results in the paper still
apply to this class of nonlinear time-varying feedback systems.
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OPTIMAL CONTROL OF PARTIALLY OBSERVABLE DIFFUSIONS*

WENDELL H. FLEMING
Summary. The problems considered are stochastic analogues of the problem of

Lagrange in calculus of variations. The response to the control is assumed to be a
diffusion process, and the controls admitted are based on partial observations of the
current states of the response. The problem can then be phrased as one of optimally
controlling the coefficients of linear second order parabolic equations. An existence
theorem in the class of bounded, measurable controls and necessary conditions in
terms of conditional expectations are obtained.

1. Introduction. The problem of Lagrange in calculus of variations is
to find the extrema of some variational integral subject to end conditions
and to a system of ordinary differential equations as side conditions.
Similar problems occur in the theory of optimal control, in which one
usually has inequality constraints on the control variables of the problem.
Lagrange multipliers are introduced, which are functions of time satis-
fying a linear system of differential equations dual to the linearized state
equations. One then has the classical necessary conditions of calculus of
variations for an extremum, and for optimal control problems, Pontryagin’s
maximum principle (see, for example, [11]).
We are interested here in stochastic extremum problems like the problem

of Lagrange, in which one has as side conditions a system of stochastic
(rather than ordinary) differential equations. The problem of finding ap-
propriate necessary conditions for an extremum in such problems has been
settled only in certain cases. In this paper the stochastic differential equa-
tions have the form (2.1’) below. The controls Y admitted are based on ob-
serving at each time the current state (t) of the solution, which is a diffu-
sion process called the response to the control Y. (By diffusion is meant
a Markov process with continuous sample paths.)
When (t) is completely observable, we called the problem Markovian

(see [4], [6]) and used a dynamic programming method which reduced the
problem to the solution of a nonlinear second order parabolic equation (see
(5.9) below). In the present paper we suppose that (t) is only partially
observable. The problem can be formulated in terms of linear second order
parabolic equations, whose coefficients involve the control function Y. By
varying Y we vary the coefficients of the backward operator of the response
process, and from that a necessary condition for minimum is deduced
(4, Theorem 1). Under some further assumptions we obtain in 5 stronger
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necessary conditions and a theorem about the existence of a minimizing
control. These necessary conditions amount to solving simultaneously
boundary problems for the forward and backward operators of the response
process together with a minimum condition of the Pontryagiu type involving
conditional expectations. Similar necessary conditions have been derived
independently by Mieri [15], by a formal calculation involving the semi-
groups generated by the backward and forward operators.
When the response is partially observable the controller does better by

remembering past observations up to time than by observing only the
current state of the response at time t. By admitting only controls based on
current observations we are considering a somewhat artificial problem,
except in two extreme cases (no observations and complete observations of
the response). However, if this problem can be solved, then at least an
upper bound is obtained for the minimum in the more difficult problem
where controls based on past observations are admitted. By an extension
of the method, another approximation to this minimum can be obtained
using controls based on observations at a fixed finite set of times (see 7).
A different approach to a stochastic variational calculus is to look for

Lagrange multiplier processes which satisfy a system of stochastic differ-
ential equations dual (in some sense) to the linearized system equations
(2.1’). If the matrix a in (2.1’) is constant, then the dual system consists
of ordinary (not stochastic) differential equations. In that case, Kushner
[12] derived the relevant variational formula, provided moreover that the
response process is stopped at a fixed tine r. When a is not constant, well-
known difficulties are encountered, but some partial results have been.
found (see [7]). This approach and the one in the present paper are com-
pared in 6.

2. Probabilistic formulation. Let us first formulate the minimum prob-
lem in terms of stochastic processes, tnd then in 3 turn it into a problem
about parabolic partial differential equations.

Let T > 0 be fixed throughout, and let t, x (x,..., x),
y (y,.-. y) denote, respectively, points of the interval [0, T], of
Euclidean R, and of Euclidean R. Let f, be functions on [0, T] R X R
with, respectively, values in R and n X m matrices as values. Let (.)
denote partial derivative in the first variable t, and (.), (.) gradients in
the second set of variables x and the third set y. We make the following
assumptions.

(i) f, are of class C().
(ii) If H R is any compact set, then f, a, f, a are bounded on

[0, T] X R’X H.
(iii) Let a 1/2an*, where * denotes matrix transpose. Then there exists
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c > 0 such that

a,(t, x, y),i >= c l
i,/=l

for every R.
Condition (it) will prove to be no real limitation, since we shall restrict

(t, x) to a compuct cylinder Q iu 3. Condition (iii) is essentiul to treating
the problem as one about parabolic equations, since it assures that the
operators A r in 3 are uniformly parabolic. (Certain results have been
found in [5] and [6] without condition (iii) by a combination of proba-
bilistic and partial differential equations methods.)

Let (, (, P) be probability spce on which a random variable
(with values in R) and an m-dimensional Brownian motion process
w (w, w) independent of 0 ure defined. Let Y be function from
[0, T] R onto R which is bounded and Lipschitz. (For brevity we say
that u function is Lipschitz if it satisfies u Lipschitz condition, and HSlder
(or ttSlder continuous) if it satisfies a HSlder condition.) Let

" (t, x, Y(t, x)).if(t, x) f(t, x, Y(t, x) ), (t, x)

These functions are also Lipschitz. Hence the system of stochastic differ-
ential equations

(2.1) (t) 0-{- f0 f’[r, (r)] dr + fo ar[r’ (r)] dw(r)

determines uniquely a diffusion, process on [0, T] satisfying
for each [2, Chap. 6]. We say that Y is a control based on observing current
states, and , the response to the control Y given the initial dt (0)
Equation (2.1) is of course the integrated form of the system of stochastic
differential equations

(2.1’) d fr dt -[- " dw

with the initial data.
Using results about generalized solutions of linear parabolic equations

with discontinuous coefficients, one can still define a response process
when Y is merely bounded and measurable, at least when a a(t, x) and
(iii) holds. This is done in [10] and [19] under slightly more restrictive as-
sumptions. While the existence of response is of interest in connection
with 5, we shall not give details.

2.1. Controls based on partially observed current states. Let us now
suppose that the controller can observe t time not the state (t) of the
response but only (t), which is vector consisting of certain components
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of (t).

(t) (l(t), ..., t(t)), 0 =<l_< n.

When n, the states are completely observable, and the problem is of the
type we called Markovian in [4], [6]. We agree that 0 means that the
controller has no information and chooses a nonrandom function of time.
In many problems there are observations v(t) governed by stochastic
differential equations of the form

d7 ](t, , 7) dt + r(t, , 7) dv,

where .t? is a Brownian motion independent of w. The pairs (7, ) form
(vector) diffusion process; and if we regard (7(t), (t)) as the state of the
system at time t, this is of the type being considered here.

]et us admit only controls of the form Y(t, 2), "2 (xl, x,), which
are bounded and Lipschitz on [0, T] R . Let denote the class of all
such controls Y. If K c Rp, let gJK consist of those Y which have
values in K.

Let 2: be a closed subset of the strip [0, T] R called the terminal set.
We shall make specific choice for 2 immediately below. Let denote the
least time [0, T] such that (t, ((t)) Z. We assume that the controller
can observe the stopping time r.

Let K Rp be closed and convex (E is the "control region"), and let
L(t, x, y) be a real-wflued functio of chtss C(2). We are interested in neces-
sary couditions for

J(Y) E Lit, (t), Y(t, (t) )] dt

to be minimum among controls Y K.
3. The backward and forward boundary problems. Let us choose the

terminal set 2: to lie on the boundary of a cylinder Q, iust as in [4], [6]. Let
B c R be open with compact closure/) B U OB. Moreover, let OB be
locally representable by functions with HSlder continuous second order
partial derivatives. Let

Q= (0, T)XB,

z [o, T] X OB U {’-/’l X ,
(=QUa=QU;U{O/ XB.

Thus, the stopping time is the first positiw when (t, (t)) reches OQ,
starting at time 0 in B. We have chosen such a terminal set since several of
the results needed about parabolic equations are available in the literature
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for bounded cylindrical domains. There would not appear to be any diffi-
culty extending the results to a domain Q c [0, T] X R such that
OQ Bo [J S [J Br, where B0, Br are open subsets of the hyperplanes

0, T, respectively, and S (the lateral boundary) is a compact set
locally representable by

x h(t, x x_ X,i+l

for suitable j as in [9, pp. 64-65]. In case Q is unbounded, one needs growth
conditions on f, z, L as xl -+ for instance, f, z, L, f, , L bounded
when y is restricted to any compact set H would suffice.

Let 5:0 denote the set of all real-valued functions on the cylinder Q such
that"

(i) and q are HSlder continuous on Q;
(ii) the partial derivatives Or, i.., i, j 1, ..., n, are continuous

on Q {T/ X OB and square integrable on Q;
(iii) O(t, x) 0 for all (t, x)
Given Y , let (as in 2)

g’(t, x) g(t, x, Y(t, x) ),

where g is any function of (t, x, y). Let A Y denote the backward operator of
the response process "
where

a xx aijqzizj

Since Y is Lipschitz, the coefficients of A r are Lipschitz. The boundary
problem

AkA-L 0 in Q
(3.1)

0 on 2,

has a unique solution 5=0. This is a slight modification of a standard
existence theorem [9, p. 65] for smooth solutions to (3.1). In the Aopendix
we review this and other known results about parabolic equations (in the
notation there, ar fr L=a, =, ).
From the theory of Markov processes [3, especially Chap. 13],

(3.2) E A re(t, (t)) dt E, 1o --Eb(O, o),

since (, ()) 0. Ict the distribution of the initial state 0 be prob-
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ability measure r0 on B. Then from (3.2),

(3.3) J(Y) f, (0, x) dro(x).

Our minimum problem can now be restated" find Y K such that (3.3)
is minimum, where is the solution of the boundary problem (3.1). Neces-
sary conditions for a minimum will be found using this boundary problem
and a dual one for the forward operator. The method is nonprobabilistic;
the reader who may wish to avoid probabilistic considerations altogether
may take (3.1)-(3.3) as defining J(Y).

In stating the dual problem let us for the moment assume that the
initial distribution 70 has a smooth density q0 and that the control Y is
smooth (say of class C(3)). Then the adioint is given by

(A ’) *q -at + (arq) (frq).

Let q(t, x) solve the boundary problem

(Ar)*q 0 in Q,

(3.4) q(t,x) 0 for x OB, 0 <-_ <= T,

q(O,.x) qo(x) for x B.

If ,%, then

(3.4’> fQ (Ar>q dt dx f, h(O, x>qo(x) dx.

The remaining terms in Green’s identity [9, p. 27] disappear since
q 6 0forx OBand6 0whent T.

Let us now merely suppose that m is a probability measure on B and
that Y . Then not all of the indicated derivatives in (3.4) need exist.
However, (3.4) has a weak solution q in the following sense. Let q be a func-
tion integrable on Q. Then q is a weak solution of (3.4) if, for every .%
such that Ar is bounded,

The existence and uniqueness of the weak solution q are known. Moreover,
q has the following properties (Appendix 2). Let Q (3, T) X B.

1. For any > 0, q is HSlder continuous on Q-and i% 12 is integrable
over Q.

2. q(t,x) O for O < =< Tandx 0B.
3. q(t, x) > O for O < =< Tandx B.
In probabilistic terms, q(t, is the density of the random wriable
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’(t), where ’ is the response process stopped at Z; namely,

f(t) if 0__<t-< r,’(t) x if -<t<=T,

where x is an "ideal point" to which ’(t) jumps when Y2 is first reached.
The necessary conditions for a minimum will involve conditional, ex-

pecttions. Let

(Xl, Xl), (Xl+l, Xn),
(3.5) P

(t, 2) J q(t, , ) d, 0 < T,

where the integral is over R"-z nd we have set q(t, x) 0 for x
Let Q denote the projection onto (t, 2)-space of the cylinder Q. The func-
tion is continuous, und (t, 2) > 0 on . Let G be ny function contin-
uous on (0, T) X B. For every (t, 2) Q let

(3.6) EG(t, 2 f G(t 2, ) q(t,2,) d.
(t, )

The integral is over R-; for x , G(t, x) is arbitrary since q(t, x) 0
there. The function defined by (3.6) is continuous on Q and

lEG(t, )1 1 max G(t, x) [.
If ’ consists of the first components of the stopped process ’, ther

(t, is the density of ’(t) and EG(t, )2 the conditional expectation.
of G(t, ’(t)) given that ’(t) 2.

4. ecessary conditions for a minimum. Let us suppose that Y0 makes
J(Y) a minimum on. Let 0 be the solution of the boundary problem
(3.1) when Y Y0; and let

(4.1) (t, x, y) a. + f.0 + L,

(4.2) (t, 2, y) E(t,., y) 12.
In this section we prove a necessary condition which corresponds to the

wmishing of the first variation in classical calculus of variations. When
z(t, x), a stronger result corresponding to Pontryagin’s maximum

principle (5, Theorem 2) is proved later.
As usual (.), denotes gradient in the variables y (y, ..., yv).

et q0 be the weak solution of (3.4"), and 0 given by (3.5), when Y Y0.
LEMMA. If Yo + Z K, then

i,(t, s,, ’0). z q dt d 0.
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Proof. Since K is convex the control Yo 4- eZ is in for 0 -<- <= 1.
Write A A ro+Z, etc., and # for the corresponding solution in fro of
(3.1). Then

A0( 0)+ (A A0), 4_ L L 0,

<= J(Yo + eZ) J(Yo) j: [(0, x)0 ’)(o, X)] &to(x).

If we take b o and A r A in (3.4"), then

(4..3) 0 < f [(a ao) g,: + (f fo) + L L"]"1 dt dx.

The functions :, have uniformly bounded square integrals over Q
and, as e -- 0, tend to x, o uniformly on any compact subset of Q (even
on compact subsets of Q {T} X OB) (see Appendix 1). Moreover, if g
denotes a, f, or L, then e-(g gO) tends uniformly to g. Z. Hence, if we
divide by in (4.3) and let -- 0, then

o <= fo x, Yo). z qo dt dx.

But since Y0 nd Z are functions of (t, ), the righ side equals hc expres-
sion in the lcmm by taking conditional expectations.

For ech y 6 K let K(y) denote the contingent to K y. I is the con-
vex cone of all z such that y + ez K for 0 =< -<_ h(z), h(z) > O.
THEOnEM 1. If Yo minimizes (3.3) among all controls Y , then for

every t, Q,
6(t, ., Yo(t, )).z >-_ 0 for all z K(Yo(t, :)).

Proof. Suppose not. Then for some (h, ) Q, y Yo(t ), and
z K(y), we hve 6v(t, , y).z < 0. We my assume that y + z 6 K.
Now . is continuous on [0, T) X 1 X R and hence 6v is continuous on
Q X R. Therefore, there exist neighborhood U of (t, ) und O > 0
such that 6(t, , y).z < 0 for all (t, 2) U nd Y Y < 0, z z < 0.
For each v R, let P(v) be the point of K neares . Then

If z P(y -{-- z) y, then y 4- z K; and since P(y. -t- z) y -t" z
z z, P(y 4-z) P(y-t-z) -t- y- y, z-z[ -< 2[y-y[.Wc
now take U small enough that

Y0(t, 2) Yo(t, 2)l < 0/2

for all (t, 2) U, and take y Yo(t, 2), z s bove. Let g be Lipschitz
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with 0 =< g(t, 2) <- 1, g O, and g(t, 2) 0 outside U. If Z gz, then

f6 &(t, 2, Yo) Zq dt d2 < 0,

contradicting the lemma.
COROLLARY. If K Rp (no control constraints), then E(t,
0 for every (t, ) Q.

Proof. The contingent to Rp at any point is Rp.

.,

5. Measurable controls. Let us suppose now that z z(t, x) and admit
controls which are merely bounded, measurable functions of (t, 2). If Y
is such a control, then

Ar -t- a. -t-fr’,
where a(t, x) is a C(2) function (the same for all choices of Y) and
is bounded and measurable. Let ff denote the set of 11 which satisfy (i),
(iii) in the definition (see 3) of if0, and in addition"

(ii’) the partial derivatives t, , i, j 1, ..., n, are square in-
tegrable on Q.
The boundary problem (3.1) now has a unique solution ff :x (Appendix

1). We take (3.3) as the definition of J(Y). The forward boundary prob-
lem (3.4’) has a weak solution q with the same properties 1-3 as in 3.
Moreover, (3.4") remains correct for any ff such that A rff is bounded
(Appendix 2). The conditional expectation EG(t, )12 is defined exactly
as before. Let us suppose that Y0 is minimizing; let 0 be the corresponding
solution in ff of (3.1), and

(5.1) (t, x, y) f’2 + L.

Since 0 is continuous on Q, is continuous on
TIEORM 2. Let Yo minimize (3.3) among all bounded, measurable con-

trols Y(t, 2) with values in K. Then for almost every (t,
is minimum on K when y Yo(t, ).

Proof. Let [y, y:, .../be a countable dense subset of K,. and

(,0 {(t, 2) ’(t, 2, y) < (t, 2, Yo(t, 2))},

where

’(t, 2, y) E(t, .,
It suffices to show that has measure 0 for each l 1, 2,
that this is false for some/c. Consider the control Y given by

fy for (t, 2) D,Y(t, ) Yo(t, 2) otherwise,

Suppose
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where b (k has the following properties"
(i) there is cylinder 17 It1, t] such that b 17 and
[ 2]b ], where ].[ denotes Lcbesgue mesure;

(ii) for (t, ) D, ,,(t, 2, y) (t, 2, Yo) b, where b > 0;
(iii) is smll enough (see (5.8) below).
Let be the solution of (3.1) corresponding to Y, nd o.

Then

J(Y) -J(Yo) f (A)q dtdx,(52) 0

(5.3) _A (fr fo). + Lr no,
where A A to, etc. Let

D {(t,x) Q" (t,) }, F {xB"

Their meusures are bounded by u constant times the measures of b, ,
respectively, since Q is bounded set. The right side of (5.3) is bounded
and equal to 0 except on D. Hence,

for suitable o. By Sobolev’s lemm,

n--2’

while by (5.4) and (A2) in Appendix 1,

f Ildtdx clDl.(5.6)

Since fr f0 is bounded nd q0 is bounded for t > 0, we hve, using
Hhlder’s inequality,

c r ’’’ I I’ u t,

where (r’)-I + r-1 1 nd thus 1 r’ 2. From (5.5), (5.6) nd the
Cuoh-Sohwr inequality,

(.) f (y yo).@:zo ut u r 1: 1’1 ’ I 1:1 D I,

where a (r’)- 2- > 0. Now 0 < b (s, 2) on , for soe b,
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Let us choose " small enough that

From (5.3),

-A (t, x, Y) (t, x, Yo) + (fr fo)..
Since

,’o dt dx

we tind by (5.7) trod (5.8) that

f (A)q dl dx < O,

contrary to (5.2). This proves Theorem 2.
Remarks. If Y0 is continuous, then the conclusion of Theorem 2 holds

for fll (t, 2) (. In that case the sets O re open, of Lebesgue measure
0, hence empty.
The necessary conditions in Theorem 2 involve the solutions 0, q0

of the boundary problems (3.1), (3.4") together with minimum condi-
tion of Pontryagin type. These conditions resemble those of Pontryagin’s
maximum principle in ordinary control theory; however, we must now
solve backward and forward boundury problems for linear pmbolic equa-
tions insteud of initial nd finul value problems for ordinary differential
equations.

If (t) cn be completely observed, then the minimum condition in
Theorem 2 becomes f.0 + L minimum on K when y Yo(t, x).
This is equiwlent to saying that 0 also solves the nonlinear boundary
problem

eO+a.+ min[f.
_

L] 0 in Q,
(5.9) ,

=0 on E.

This equation cn be obtained formally from Bellman’s principle of op-
timality in dynamic programming. Since the equation is uniformly
parabolic, the solutions of (5.9) are smooth, and the dynamic programming
formalism can be made precise.
The problem with complete obserwtions ws studied from the point of

view of (5.9) in [4], [6]. However, the dynamic programming upproch
seems less promising when (t) is only prtially observable. The principle
of optimality then leds (formally) not to prtial differential equation,
but to some more complicated equation for function of t, 2, , where is
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a probability measure on B representing the conditional distribution of
’(t), given that 2 is observed at time t.
Under some reasonable additional conditions J(Y) has a minimum

among measurable controls.
THwOREM 3. Let L be convex in y and f linear in y. Moreover, let the con-

trol region K be compact and convex. Then (3.3) has a minimum among all
measurable controls Y with values in K.

Proof. Let Y, Y, be a minimizing sequence. By taking subsequences
we may assume that Y, tends weakly in L*() to a limit Y0, which has
values in K since K is compact and convex. As usual L*(O) is the spce of
bounded measurable functions on (. Let

L(t, x) L(t, x, Y(t, x) ), t O, 1, 2,

nd let h(t, x) be any nonnegative continuous function. By standard
semicontinuity theorem (Appendix 3, with F hL),

(5.10) f hLo dt dz <- lim inf f hL dt dx.
Q

By tking a further subsequence we may ssume that L tends weakly

in L(Q) to limit L*. The right side of (5.10) equals j hL* dt dx. Since

this is true for each h, we have L0 <= L* almost everywhere in Q. Let
A Ar, and the corresponding solution in of (3.1) for Y Y.
Let * Y satisfy

A* + L* O.

By the maximum principle for parabolic equations, 0 __< . since L0 <= L*
lmost everywhere. The second order coefficients of A and A are the
same, and the first order coefficients f tend to f0 weakly since f is linear
in y. Moreover, L tends to L* weakly. This implies (Appendix 1) that
(0, x) tends to *(0, x) uniformly on/, from which

[ (0, x)dro(X)<__ [ *(0, x)dr0(x) lim f x)d o(x).
B

This shows that Y0 is a minimizing control.
It is an interesting open problem to determine what further continuity

or smoothness properties a minimizing control Y0 must have. Simple
examples show that Y0 may in general have discontinuities. However, under
a stronger convexity condition on L we can prove that Y0 is continuous on. In fact, we can show that the following theorem holds.
THEOREM 4. Let f be linear in y, and let
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for all # R, where b > O. Then Yo is Hlder continuous on any compact
subset of Q.

Proof. Let us define as in the proof of Theorem 2. By differentiatg
under the integral sign,

f q0 di

0
Let be compact. For any > 0, q0 is HSlder on [, T] X X K,
and 0 is HSlder and positive on (we set q0 0 for x B). Hence
is HSlder on X K. Further differentiation under the integral sign gives

i,=1

for all . In particular, is strictly convex in y, and Yo(t, ) is the unique
y K at which (i, , y) is minimum. The proof of [6, Lemma 2.1] shows
that Y0 is HSlder on .

For completely observable diffusions we proved a slightly stronger result
about Y0 [6, Theorem 2.2] by the same method.

6. Lagrange multipliers. If in }3 and }4 we let

(6.) x(t) (t, (t)), (t) (t, (t)),

then .a + k.f + L. The processes k, have the role of Lagrange
multipliers in Theorems 1 and 2. In case a a(s, x) the multipliers are
irrelevant and in }5 we could replace by .
A quite different way to define multipliers, which resembles the usual

method for the Lagrange problem in calculus of variations and control
theory, is the following. Let us take const., and a fixed stopping time
(r T). Let us also make the (rather strong) assumption that Y is of
class C() in , and define a process A by the system of ordinary differential
equations"

dA

(6.2) dt
A(f, + f Y) (L. -{- L Y),

O<=t<__ T, A(T) =0.

Here Y is the gradient in the variables xl, x.
The multipliers k in (6.1) can be obtained from these by taking condi-

tional expectations with respect to the complete past of w and 0. More pre-
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cisely, let 6 denote the z-algebra (of subsets of our probability space )
generated by the random variables w(r) for 0 -< r -< s and 0. Then

(6.3) h(s) EA(s) I(B 0 <= s <= T,

with probability 1 for each s. This can be proved by substantially the same
reasoning as in [12, 4]. Since r --- T, b is now a solution of (3.1) in the strip
[0, T] X R with the Cauchy data 0 on the hyperplane {T} X R".

Unfortunately the multipliers h involve the partial derivatives of Y,
which in many examples the optimal control does not possess everywhere.
In certain instances one can replace 3_ by , defined by

dX(6.4)
dt

(Thf - n), 0 <= <- T, 7k(T) O,

which are the usual equations in calculus of variations for the multipliers.
Obviously A * if there are no observations (l O, Y Y(t)). More-
over, * will serve as a set of Lagrange multipliers whenever we can put. instead of h in (6.3). Let us show that this is so in the case when informa-
tion is complete ( x), there are no control constraints, and Y is optimal.
Theorem 1 then states that

(6.5) X.f + L 0.

For s < let M(s, t) be the fundamental matrix of the linear system
d/dt f (actually M M(s, t, 0), 2). By subtracting (6.2)
from (6.4) we obtain

(s) A(s) (Af + L)Y M(s, t) dr.

All terms under the integral sign are ,-measurable except A(t). Hence,
upon taking conditional expectations we obtain

The right side is 0 by (6.3) and (6.5). Thus with probability 1,

in this case.
Kushner [12] took as controls and variations processes u, v depending

explicitly on the Brownian past, rather than functions of the stutes as we
huve done. In his variational formula the multipliers rather than A
appear. In [7] we derived a generalization of Kushner’s formula when
a a(t, x), again with fixed stopping time. In doing so, (6.2) and (6.4)
must be replaced by certain stochastic differential equations which in-
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involve J... dw after time is reversed. While the partial differential

equation method above works for fixed or variable stopping time r,
the author knows how to derive a variational formula in terms of the
multipliers A (or .) only when r is fixed.

7. Observations at a finite set of times. We have assumed that the con-
troller knows (t) at time t, but does not remember past observations
(r) for r < t. A more difficult problem is the one in which controls may
be based on past observations (r) for 0 =< r =< t. If the controller could
solve that minimum problem, then he would generally do better than by
using an optimal control based on current observations. However, a solu-
tion to the problem we have considered gives at least an upper bound for
the minimum attainable in the more difficult one.
Another problem of practical interest to which our method applies in

principle (although the calculations involved are quite difficult) is the
following. Suppose that is observed only at fixed times to, tl, ..., tN
and that at any time the control is based on the observations (t) for
tj. -< t. Forj 1, ..., N let tj jT/N, to O,

For brevity let us write

Q (t._, t) B,

S [t_, t] )< OB.

= (:o -),x (xo,

where xi R", R . Let Y(t, x) be Lipschitz in all variables appear-
ing. For t._ <- < t. we apply at time the control

u(t) Ys(t, (to), (t_x) ).

The problem is to choose Y (Y, YN) such that the expected value

J(Y) E Lit, (t), u(t)] dt

is minimum, where the response is determined from the stochastic dif-
ferential equations

d f(t, , u) dt + a(t, , u) dw

with (0) 0.
We define functions , ..., working backward recursively from

j N as follows. The function (t, x’: x) is defined for (t, x)
x /fori_-<j- 1"
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(T, x, x) 0,

Ag/j + L= 0 in Q.,
(7.1) ,= 0 on S.,

’(t’, x, x) .+x(t, x, x, x),

where A Ar is applied in the variables (t, x). In probabilistic terms,

i(,zi,z) E Ldt’() z for i <j, ’() z,

where ’ is he sgopped response process. Therefore, if (0) has disgribu-

ion -,

Y) f(O, x, x) doJ

By the methods we have used one can obtain necessary conditions for a
minimum corresponding to Theorems 1 and 2. For instance, suppose that
a a(t, x) and that Y0 (Y01, "’, YoN) minimizes. For t._l =< < t
let

(7.2)
(t, xj, x, y) f.x + L,

(t, cj, y) E(t, ., ., y) 12,
where 0 is the corresponding solution of (7.1). Then .(t, x, y) is mini-
mum when y Y0(t, 2’). In the proof, which we shall not give, one needs
to verify that each in (7.1) is Lipschitz in all variables from the fuct
that Y0 has this property.

It would be interesting to be able to answer the following general ques-
tion, of which the preceding are particular cses. Consider ny control
problem defined by stochastic differential equations and a loss criterion,
of the kind in 2, with controls u based on certain observations of pst
responses. If u0 is a minimizing control process, do there exist multiplier
processes h, tt such that

El (g.a + h.f + L)I observations up to tl
is minimum when y no(t)?

Appendix 1. We shall summarize known results about the boundary
problem

4,t + a(t, x)’4xx + (t, x)’4, -t" 7(t, x) 0 in Q,
(hl)

4=0 on 2,
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where the cylinder Q and ; are as in 3. Let us assume that (A1) is uni-
formly parabolic and that the entries ai of the symmetric matrix a are
Lipschitz. For the moment also assume that , 3" are HSlder and that
7(T, x) 0 for x OB. Then the boundary problem (A1) has a solution

in Q such that , Ct, x, Cx. are HSlder in Q [9, p. 65]. We need the
following a priori estimates. Suppose that

a(t’, x’) a(t,x) < M, I,(t, x) < MI(t,)l + tl + Ix’- xt
for all (t, x), (t’, x’) Q, and that c > 0 is a lower bound for the charac-
teristic values of the matrices a(t, x). Then

+ Ix. + 14xl] dt dx -t- f.[q(t,x)] dx

(A2) <= C1 3" dt dx,

i,j=-I

For 0 < < 1 and q) or ,
(A3)

IF(t, x) -t- ]’(t’, x’) ’(t,
[I t’ -tl + Ix’ x

1]0 max Iv(t, x) l.
Q

The numbers C1, C2 depend only on Q, c, M, M2, and (in the case of C2). See [16, 2, Theorem 8], [9, p. 191]. Estimates similar to (A3) are proved
by different methods in [13, I 5, II 1].

In 3 and 5 we used results about (A1) under-weaker assumptions on
and v. If , are merely bounded and measurable, take sequences ,v

tending almost everywhere to , 3", respectively, as k --* , such that
] ] _<_ M:, Iv -<_ M for some M and for each k, , v are HSlder with
37(T, x) 0 for x OB. The estimates (A2), (A3) hold with replaced
by the corresponding solution of (A1). From this one can conclude that
(A1) has a solution 4) ff (see 5 for notation). This solution is unique;
see for example [16, 5, Theorem 3]. Moreover, 4) and tend uniformly on
Q to , , while Ct, tend weakly in L2(Q) to Ct, x as/ -- . If in
(A1) we put ff instead of 3" and let denote the corresponding solution in
%, then ff >= 3" implies >= (see for example, [4, p. 135]).

In a similar way, one can deduce from (A2) and (A3) the following.
Let , 3" be any uniformly bounded sequence tending weakly in L(Q)
to/, 3’. Then the corresponding tends to in the sense just described.
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If/, are HSlder, then one can say more. Let E Q {T} )< OB be
compact, and let h be a C(3) function with value 1 on E and 0 on T} OB.
Then

(h) + .. (h) + . (h)
(*)

--h (ht a.h ’h)4) "Let D deImte or any of its derivatives t, Cz, Since the right
side of (,) is HSlder on ( nd 0 on IT} X OB, D(h4) is HSlder on
Q. In particular, Ct, . re continuous on Q IT} OB.

Similarly, let a, , be ny sequences tending uniformly to a, , ,
such that a stisfies a uniform Lipschitz condition nd , , uniform
HSlder condition on (. Let be the corresponding solution of (A1). If
h and E are bove, then by [9, Theorem 6, p. 65] there re uniform bounds
nd HSlder estimates for D(h4)). Therefore, De tends to De uniformly
on compact subsets of Q {T} X OB.

Appendix 2. Here we discuss weak solutions of the adjoint equatio.
Let us write (A1) us A - 0, and assume that the coefficients a.
of A are Lipschitz, the / bounded, measurable. These assumptions are
.satisfied in 3 and 4 if we take a aY, f fY (in that case is Lipschitz)
and in 5 if we take a a, t ft.

LLet 2 denote the linear functional on (Q) such that, for all , L(Q)

f.o(o, x) d’o(X),

where A -t- ’ 0, ff. By (A3), 2 is bounded. We need to show
that

(A4) 2 fQq dt dx fQ(AO)q dt dx,

where q L(Q) and q has properties 1--3 listed in 3. Clearly q is uniquely
determined by (A4). The existence of q follows from recent results about
weak solutions of parabolic equations in the "divergence form"

(A5) Oq i, c3 ( Oq )Ot ai W aq 0 in Q

with q(t, x) 0 for x OB, 0 < <-_ T. In our case,

is bounded, measurable. For/ 1, 2, let a, be smooth functions
on [0, T] X R which are uniformly bounded, such that the a

: satisfy a
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kuniform Lipschitz condition and a , OaiffOx tend, respectively, to
a, [, Oai/Oxi almost everywhere in Q as/ --* . Let G be the Green’s
function for Q [9, p. 82] and the operator Ak (with a, fl. in (A1) replaced
by a, ); and let

(A6) qk(t, x) fBGk(O, Xo t, x) dr(Xo), 0 < <- T.

Then q satisfies the equation corresponding to (A5) with ai replaced by
aii and a by

ai
)Xj

Moreover, qk _>_ 0 with equality for x OB. Now A has a (unique) funda-
mental solution F satisfying

s< t,(A7) 0 <= F(s, x0; t, x) <
(t- s)/2

exp
t- s

for suitable positive constants C, b. From the construction of Fk [9, pp.
14-16] or [16, 4.1] one sees that these constants depend on uniform bounds
and HSlder estimates for a, but only on a uniform bound for . Since
0 < G < F the integral of q over Q is uniformly bounded, and q is
uniformly bounded on Q for any t > 0. By [13, I 6] there are a uniform

H61der estimate for q on Q nd uniform bound for j!q [’ dt dx. For

a subsequence q tends uniformly on each Q to a limit q, which is integmble
on Q and has properties 1 and 2 in 3. Let be any smooth function with
compact support in Q, nd the solution of

Ak-t- 0 in Q,

= 0 on 2;.

For each k 1, 2, .--,

f.,(o, x) do (x).

Since 0h(0, x) tends uniformly on/ to (0, x), the right side tends to
2. On the other hand,

Thus (A4) holds if 7 is smooth and has compact support in Q. Any bounded
measurable /is the limit almost everywhere in Q of a uniformly bounded
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sequence of such functions k. From (A3) 2/ tends to 2, from which
(A4) holds for all / L (Q) by Lebesgue’s convergence theorem.

Similar reasoning shows that

A
tl

Therefore q is a wek solution of (AS) in the sense of [1] or [13]. By
Harnack inequality for nonnegtive weak solutions [1, Theorem 3],
q(t, x) > 0 for ll (t, x) Q (3, property 3).
Appendix 3. For completeness we include a proof of the following known

result. We consider sets V R+, K R" such that V is open with com-
pact closure V and K is compact, convex. In the proof of Theorem 3 in
5, we take V Q.
THEOREM. Let F be continuous on V X K and convex on K for each v V.

If Y Y have values in K and tend weakly in L( V) to Yo, then

lira inf

Proof. We may assume that F(v, Y(v)) tends weakly in L(V) to
limit F*(v). Let v0 be any point at which both Y0 nd F* are approxi-
mately continuous; almost all points of V hve this property [17, p. 132].
Since F is convex in y, there is a linear function G such that G(y) F(vo, y)
for all y K with equality when y Yo(vo). If A denotes an (n + 1)-
dimensional cube such that v0 A V, and A], its Lebesgue measure,
then.

F(v, Yo(vo)) aim
1 fa1. F V Y, v dv l01im 1 G Yo v dr.

Since F is uniformly eonginuous,

for all v , where x() gends o 0 as ]1 O. Bug F(v, Y(v)) gends

weakly to F*(v), and since G is linear, a(Y(v)) gends weakly o a(Yo(v)).
Thus

for 11 ueh . herefore,

F(vo Yo(vo) F*(vo).

Since this is true for almost all v0 V, the theorem is proved.
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OPTIMAL CONTROLS FOR SYSTEMS WITH TIME LAG*
A. HALANAYf

In this paper Pontryagin’s maximum principle will be established for
some. systems with time lag in cases where the control is also delayed.
Results of Kharatishvili [1] (see also [la, Chap. 4, 27]), Friedman [2]
and Oiiiganova [3] are obtained as particular cases. In the proof the abstract
multipliers rule of Hestenes [4] will be applied.

1. The problem. Consider a system of the form

x(t) xo(b) + f(t, s, o’, x(s),.." ,x(s ), x(s + ), u (s),"’,

u(s v), u(s + ), b) ds,

Xo to, Uto o, x(T) (b), r > O, j 1, ,k,
and the functionals

I(u, b) g(b) + L(s, , x(s), x(s ), x(s + ),

u(s), u(s ), u(s + ), b) dz ds,

Ol,...,m.

Here x, x0, , f(t, s, a, x, y, y, z, v, v, w, b) are n-vectors;
x is the state variable, u the control function and b the control parameters;
Xto is defined as Xto(Z) x(to + ), [-, 0], max {,
r, r}, and ut0 is defined in the same way; is continuous function de-
fined in [t0 , t0], which may depend also on b, and is piecewise contin-
uous in [t0 r, t0]. To allow the initial function to be free we suppose
that the components of b belong to an abstract linear space vhich may
contain the space of continuous functions defined on [t0- , t0].
The control couple (u, b) is admissible if u is piecewise continuous in

It0- r., T], u(t) U, for [t0- r, T], where U is a given set,

Received by the editors July 6, 1967, and in revised form October 24, 1967.
Institutul de Matematic, str. M. Eminescu 47, Bucuresti 9, Romuniu.
Several results in this direction were communicated t the Scientific Meeting on

Equations with Deviating Arguments in Moscow at the University of the Friendship
of Peoples, May 1966, nd at the Interbalkan Congress of Mathematicians in Bucha-
rest, September 1966. Similar results, for usual systems with time lag, were presented
by Kharatishvili [7] at the Conference on Cotrol Systems in Los Angeles, Jnuury
1967.

215
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Ut, o, b B, where B is a given open set, and if the solution of the
system defined by xt Ct0 corresponding to (u, b) satisfies the conditions
x(T) (b), I =< 0 for 1 =<, =< m’, I, 0 for m’ < =< m; T is
fixed. The couple is optimal if it is admissible and minimizes I0 in the
class of admissible couples. We could allow the initial control also to de-
pend on b but in the general case this fact would imply some complications
which we wish to avoid here.
We are looking for necessary conditions for a couple to be optimal. In

the following we shall suppose that f and L are sufficiently smooth, in
order to avoid nonessential technical difficulties.
The system considered admits as special cases the following situations"
(u) Systems with time lag as

2(t) f_ f(t, , x(t), x(t ’), x(t ), x(t -- (r), u(t),

u(t ), u(t + ), ) d,

xto 4, Uto , b B C R,
L(t, , x(t), .., x(t -), x(t -{- ),u(t),...,

u( ), u( + ), b) 1 dr.

(b) Hereditary processes as

x( t) xo + f(t, s,x(s), u(s),b) ds,

I,(u, b) g,( b +
r

L(s,x(s),u(s),b) ds.

(c) Hereditary processes as

x(t) Xo-k f(t,s,x(s),u(s),b) ds, xt 4, uto v,

I.(u, b) g,(b) + ftr L(s, x(s), x(s r), u(s), u(s- r), b) ds.

(It is easy to see that this is a special case of (a).)
(d) The most simple systems with time lag as

2(t) f(t, x(t), x(t r), u(t), u(t r), b), xto 4, Uto v,

I.(u, b) g,(b) "t" ftr L(t, x(t), x(t r), u(t), u(t ’), b) dt.
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The case (a) is obtained from the general one if f does not depend ex-
plicitly on t; indeed, we have, by integrating the equation in

x(t) X(to b) "4- f(s, , x(s), x(s T), X(S + o.), U(S),

u(s rk), u(s + o.), b) ds.

The case (b) is obtained from the general one if f does not depend on
and on x(s r), x(s + z), u(s ), u(s + a). The case (c) is seen
to be a particular case of (a) by differeatiating with respect to t; we
obtain

2(t) f(t, t, x(t), u(t), b) f(t, r, x(t ), u(t r), b)

ftt (t, s, x(s), u(s), b) ds+ -t
f(t, t, x(t), u(t), b) f(t, r, x(t r), u(t r), b)

fOf(t,t+o.,x(t+o.),u(t+o.) b) do./ -i

f f(t, t, x(t), u(t), b) _1 f(t, r, x(t r), u(t r), b)
T

+ -t (t, --[-- o., x(t + o.), u(t -t- o.), b) do,

i.e., a particular case of (a).
The general equation considered is a particular case of the so-called

Volterra functional equations. For the general theory of such equations
see, for example, [5] and [6], where further references can be found.

2. The general result. Let (g, ) be an optimal couple, 2 the correspond-
ing optimal solution. Denote

f (t, , ,(s)A t, s, o.) -of (t, s, , (s),B(t, s, o.)

Of (t,s,K(t, s, o.)

(s ), (s + ), (s), ...,

(s ), (s + ), (s), ...,
(s ), (s + ), ),
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c(s, ) - (, , (),

OL (s, r, 2(s),(, )

OLK(s, r) (s, r, c(s),

.., (s + ), a(s), ..., a(s + ), ),

.., (s + o-), (s), ..., (s + o-), $),

.., (s + ), a(s), ..., a(s + ), ),

where f and L are written as functions of (t, s, (r, x, Yl,

Vl, v, w, b) and (s, r, x, yl,

tively. Let

f_ f_A(t) A(t, t, r) &r, B(t) B(t, t, r)

(, ) (, , ) , B(, ) B(, , ) ,
c(t) c,(t, ) dz, d,(t) d,(t, a)

THEOREM 1. If , i8 optimal, there exist mult@liers o
with the following properties"
() o + + + O, O for 0 m,
m’) if [(, 5) < o.
b Let be the solution of the system

(t) -(t)A(t) (t + )B(t + )

Yk Z U
y, z, u, v., vt,, w, b), respec-

-0(1 __<,y

defined by the conditions (t) 0 for > T, (T) -h+, and let

H(t, z, x, y y z, u, v v w, b)

(t)f(t, t, , x, y, y, z, u, ,, v, w, b)

+ () f(, t, , x, y, ..., y, z, u, v, ..., v, w, b) dr

hL(t, , x, y, ..., y, z, u, v, ..., v, w, b).
0
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Then, for all u U and for all [to, T] in which t is continuous the fol.
lowing inequality (maximum principle) holds"

f H(t, o., 2(t), ..., 2(t 7"k), (t + o.), u, t(t 7"1),’",

..o
"(t 7"), (t + o.), ) do-

H -- 7"1, o- 2 -- 7"1) 2 2 -- 7"1 7" 2 - 7" z7

t + 7"1) u t -- 7" 7"k t -- 7" -- o. do. +
+ H(t + 7", o., 2(t + 7"),2(t + 7"- T1),

(t + 7"),

.., (t), (t + + ),

u, a(t + + ), ) d-- f_ H o-, o-, 2 o. ..., 2 o. 7" 2 t o. ...,

.0

H(t, o., 2(t), ,2(t - o.), e(t), t(t T1),

a(t ), u, ) d

.., a(t + ), ) d

H(t -- 7"1, o., 2(t -- 7"1), "’’, (t + 7"/’1 + O.), ’(t + 7"1), (t), ...,
fi(t + 7" -i- o.), $) do- -t-

U(t + 7", o.,2(t + 7"), ,2(t + 7" + ), t(t +
(t + ), ..., (t + + ), ) d

H(t o-, o-, 2(t o.), ..., 2(t cr 7"k), 2(t), t(t o.), ...,
(t ), (t), ) d.

c We have the transversality conditions"., ks Og ($) (to) ..Ox([)Ob + ,(T) Oo()Ob
(t -- 7")B(t - 7") OO(t, )

dt
Ob

-rf 0--

,-
() 0 B(, t) d} O(t,Ob ) dt

,K(, ) d(t, )
Ob

dt

(a)K(a, a, a) daI Od(t,Ob ) dt

t+r O(t, ) dt
Ob
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d(t + r) O(t, D)
dt

Ob

Z’ If OH(t, 2(t),Ob dt O.

Remarlc 1. In the above formulas all functions are supposed vanishing
for arguments greater than T. (We remember that functions f and L are
defined only for t, s in [to, T].) This allows us to write them in a uniform
manner.
Remark 2. The transversality conditions become much simpler in the

usual ease when and x0 do not depend on b and also when f and L do
not depend on b; this simplest form of the transversality conditions is

If go 0 we get

Og T oo,()
-0..,Xo- (D) + ,(

Ob

o()
Xm+" 0.

=1 Ob

3. Some preliminary computations. Let functions q be defined by the
systems

(l(t) -q.(t)A(t) q.(t + ri)Bi(t +

q,()g(, , )

q,(r A (r, t) dr q(r Bi(r, t) dr
+rl

d.i(t + ri)
t+r

K(a, a) da

and the conditions q(t) 0 for >- T.
Also let functions pi be defined by the system

$(t) -p(t)A(t) p(t + ri)B.(t + r.)

t+r

ft p(a)g(a, a, a) da

T

p() - A(, t) dr

p(r) - K(r,

0
p(f - Bi(f,

o, oe) d
/
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and the conditions

p(t) O fort > T,

p,(T).,__{ for

for iJ,i=j,
where the Ps are the coordinates of the vector

Define for , 0, 1, m,

F(s, , x, yl, y, z, u, vl, v, w, b)

L(s, r, x, yl, yk, z, u, vl, v, w, b)

d(s, a)yl c(s, a)x K(s, a)z

+ q(s)[f(s, s, a, x, y, y, z, u, v, v,, w, b)

A(s, s, a)x Bi(s, s, a)Yi K(s, s, a)z]

+ q(r) If(r, s, a, x, y, .-., y, z, u, Vl, "", v, w, b)

A (, s, a)x B(, s, a)y K(, s, a)z] d,

and for i 1, n,

F,+(s, , x, y y z, u, v v w, b)

Pi(S)(s, s, , x, y, y, z, u, v, v, w, b)

A(s, s, a)x B(s, s, z)y K(s, s, z)z]

+ P(r) (r, s, a, x, y, y, z, u, v, v, w, b)

A (, s, a)x B(, s, a)y K(, s, a)z] d.

It is clear that

OF (s, , (s) z(s ) z(s + ), a(s), a(s + ) b) 0
OX

and the same is true for OF,/Oy and OF/Oz, p O, 1,..., m, m + 1,
n.

Define further for 0, 1, m,

K(, ) @(, b) ds
0 to
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to

+ q,(s + ,)B(s + ,)4J(s, b) ds
o--rj

q- %(a)g(a, a, s- a) da @(s, b) ds
O--r

o--r +r]

N

and for i 1, ,
G,+i(b) oat(b) -at- pi(to)xo(b)

Let

b) ds.

F,(s,z,x(s),... ,x(s- r), x(s -t- ), u(s),

u s -I- r b) &rI ds,

p O, 1, ,m,m q- 1, ,m q-- n.

By a direct computation we see that Jr(u, b) Iv(u, b) for y 0, 1,
m, and Jm+i(u, b) x(7’) oa(b). We have thus transformed

the initial problem in such a way that the final conditions x(T) 0(b)
become new isoperimetric conditions Jm+(u, b) 0 and in the functionals
Jp the functions Fp have the property that OF/Ox, OF/Oyk, OFp/Oz vanish
along the optimal solution considered.

4. Proof of Theorem 1. To prove Theorem 1 we shall use the following
abstract multipliers rule due to Hestenes [4]. Let J e -+ R, p 0, 1,
.., q, and let p0 e. A set K of vectors (k, k) is a derivative

set for Jp at p0 if for an arbitrary set lcl, k2, kn of vectors from K
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there is a function p" [0, ti]N--+ e such that p(0) p0, the functions
f,,(e) Jp(p(e)) J,(po) are continuous on [0, ]N, differentiable for
e 0 and k.p Of(O)/O.
Let po be such that Jo(po) <= Jo(p) for all p for which J(p) <= O,

1 < p < q’ J(p) O, q < < q and let K be a derivative set for J,
Then there exist multipliers ho, h,... h, =o,2 0, h, => 0 for
0 =< 3’ =< q’ and ,, 0 if J,(po) < 0, such that =0 ),k _>- 0 for all
kK.

Thus, in order to prove the theorem we shall prove that a certain set of
vectors is a derivative set for our functionals.
We shall consider the set K of vectors with coordinates k given by

F(t, , 4(t), ..., (t rk), (t -t- a), u, (t

t(t A- ,), ) dz

t(t -t" r), u, t(t + r A- ), ) da

F,(t - r , 5c(t -t- r), (t -4- r), t(t),

a(t + + ), ) d

Fp(t -t- , 2(t -t- r,), 2,(t -t- r, -b ), a(t -t- r,),

u, (t(t -4- ’ -f- ), ) da

F,(t -4- , 2(t -t- ), 2(t -t- r, -t-- ), (t A- r),

(t(t), t(t -t- r + ), [) do-

F(t , , 2(t ), ..., 2(t r), 2(t), t(t ), ...,
(t(t r r), u, D) dcr

F,(t r, , 2(t ), ..., 2(t r r,), 2(t), t(t ), ...,
t(t o- r), t(t), [) do-
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for all u U and all t,. points of continuity of , to which we add the vec-
tors with coordinates/P given by k Kh, where

K , 2(t), ..., t(t + ), 8) daI dt

and h is arbitrary in the space of the parameters.
Let ]co, kl, kN be a set of vectors from K. We shall suppose that

just one of these vectors, say k0, is of the form k0p K h: if more vec-
tors are of this form the reasoning will be the same.
Then let

’ i F,(t , 2(t), ..., u, ..., t(t - (), 8) dz

f_o F,(t (, , 2(t ), (t), 8) da

(i.e., in/c, we take t. and u us U).
Suppose tl =< t -< __< t and choose ti such that t

if t < t+; let T h, T. t- el-l- + e._, 0
and let M(e) be the complementary set to [J[Ti, T - i] in [to, T].
Consider the couple (u(t, e), b(e)) defined by u(t, e) ui for ITs,
TyZ7 e), u(t, e) (t) for ff M(e), b(e) 8 + eoh, (co
e, ,r). Consider then the corresponding system

x(t) xo(b(e)) ft If-i f(t, s, (, x(s), u(s -t- o’, e), b(e)) drI ds,

Xto , "ttto ,
where which depends on b is taken in the point b(). lror e. sm11 enough
using the theorems on continuous dependence on prameters which are
true for general time-lag systems this system hs solution x(t, ) de-
fined on [t0, T] and such that lim0 x(t, e) 2(t). Let f(e) J(u(t,
e), b(e) J(, 8).
In natural smoothness conditions these functions will be continuous in

[0, g]+ and differentiable in the point e O.
We have to calculate the partial derivatives in this point.
In order to make clear how such calculation is carried out we shll con-

sider the cse k 1 and < .
Let ei 0 for i j > O; then T t, u(t, )= u for t [t,

t+ ), u(t, e) (t) for Its, t+ e), b(e) $. It will follow
that x(t, ) x(t) for t. We have further
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[F(t, r, x(t, ), x(t e), x(t + , ),. u(t, ),

u(t ), u(t -I- , ), ) F(t, , (t), .(t ),

We have

I(s)

hence
.0

11’ (0)

t-t

dt [F(t, a, x(t, ), 2(t ), 5c(t -t- a), us, (t ),

(t + a), ) F,(t, a, (t), ..., (t + a), $)] do’;

[Fo(ts, , 2(ts), 2(t T), 2(ts + ), us, t(ts T1),

t(ts + r), ) Fo(ts, (, 2(ts), ..., t(ts + ), )] d,

and further

[Fo(t, , x(t, ), 2(t T,), x(t + (r, e),
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u, t(t ), u, ) F(t, , 2(t), ..., t(t + ), )] do-,

F(t + , , (t + ), ..., t(t + + ), )] da
ti+ 0 ftdt [...] da,

and it is obvious that I’(O) O.
We have further

f+ f-I() dt [F(t, (r, x(t, ), 2(t ), 2(t + ), (t),

(t- ), (t + ), ) ,(t, , (t), ..., (t + ), ]

if"I’() ’ [o( + , ,( + , ),-.., g)

f,( + , , ( + ), ..., g)]

+ dt F(t, ,, x(t, ) (t ) )

We see that I(0) O; the first integral is vnishing since lim,o0 x(t, )
2(t), nd the second since (OF,/Ox)(t, , 2(t), ) O.
We hve then

I() dt [F(t, z, x(t, ) 2(t r) x(t + ,
(t), (t r), u, ) F(t, a, ..., ’(t + a), )] d%
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and we deduce that I’(0) 0 since limo x(t, ) 2(t) and

OF (t, o-, 2(t), D) =-- O, OF (t, (r, 5c(t) D) O.
OX OZ

Furthermore,

Hence,

Of(O, ...,0)

[Fp(t -at. 7"1, 0", (t] 2f_ T1), ;(tj), ;(tj + 7"1 + 0"),

and

1-1 2(t -P rI’(0) [Fp(ti -4- r, z, ), 2(t), 2(ti + rl -[- )

2(t), 2(t + + ), (t + 1), (t), (t + + ), 5)] dz.

We have then obviously I’(O) O, and in the sume way s above,
P

Is’ (o) J_ [F,(t + , , (t + ). (t). (t + + ),

a(t + ). u. (t + + ), )

--F,(t + , , 2(t + ), 2(ty), 2(t + + ),

(t + .). (t). (t + . + ). $)]d.

I’(0) O.
t+r

;o(O)
+,

[F(t, t t, (t), (t ), (t), (t), (t ), u, 5)

F(t, t- t, (t), (t- ,), (t), a(t), a(t- ,), a(t),

Z;(0) ;(0) (0) (0) 0.
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Fp(t + rl, o, 2(tj + r), 2(t), 2(t + + ), (t + r), (t),

(t + T + a), )] dz

+ [F,(t, t t, 2(t), 2(t ), 2(t), (t), (t r), u, $)

F(t, t- t, 2(t), 2(t- ), 2(t), (t), (t- ), (t), $)] dt.

The lst integral is written (if we do the change t z)

[F(t- , , 2(t- ), 2(t- r), 2(t),

(t ), (t ), u, 5)

F(t- z, , 2(t- ), 2(t- z ), 2(t), (t-

(t ), (t), $)] ,
nd we see that Of(O)/Oe k.
Now let e 0 for i > 0; then u(t, e) (t), b(e) + eoh. We

hve

(o, 0, ..., 0) (b())
T

+ ] [fo(, , z(, ), z( , ), ( + , ), (), ( ),

hence

Of (o,... O) ($)h

(t -t- o), b(e) Fp(t, o, ..., )]

OFp(t, s, 5c(t), c(t r), 2(t --t- s), t(t), t(t -), (t(t -{-- s), D)
ds hdt

Ob

K’h ko.
We have thus proved that the set K is a derivative set for our functionals.
By the theorem of Hestenes we have the existence of the multipliers
such that Xplc _>- 0 for every/ K. We get

’=o )’" Eb () --t- fro dt f_ ""Ob (--t-s), [)ds] O
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2(t -I- r -t- o’), (t + r), u, ..., (t + r -t- o’), $) do" -t’-
m+n fOzr- X Fo(t- r, a, 5c(t- a), ..., Z(t- (r r), 2(t),

z(t ), ..., z(t r,), u, ) d

f0>_- Xo
p--’-0

f_o
p=O

m+

p=O

Fo(t, , 2(t), ..., 2(t -+- (r), t(t), t(t r), ...,
(t(t + (r), D)

F(t -t- , , 2(t -t- r), ..., 2(t -t- r), 2(t -t- "t-
(t -t- r), (t), ..., (t --1- r -t- ), ) &r -t-

F(t r, , 2(t r), 2,(t), (z(t ), t(t), {)) d.

Remembering the definition of Fp we obtain
m-t- f

XoFp XptLo(t, a, x, y,, ..., yk, z, u, v,,
=o =o

v, W, b)

where we have written only the terms which contain u, vl,
Denote --Y’=o Xq =1 X+p ;we see that

m2

XoFo X,L, (t)f(t, t, , x, yl, "’’, Yk, Z, , Yl,
p=0 =o

,VkW,b.

,v, w, b)

( -f(, t, (r, x, Yl, "", Y, z, u, v, ..., v, w, b) d +
-H(t, , x, Yl, "’’, Y, z, u, v, ..., v, w, b) "l- "".
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The function is the sme s in the statement of the theorem nd thus
ssertion (b) in the statement is obtained.
The conditions of tmnsverslity re obtained if we write explicitly
,--0 hG nd use the fact that B is open.
The theorem is proved.

5. A system with variable lags. We shll consider now system with
variable lgs of the form

2(t) f(t, x(t), x(t- ra(t)), ..., x(t- r(t)), u(t), u(t- r(t)),
.., u(t r(t)), b),
o < (t) +(t) , > o, + <1,

X,o() (, b), [-(to), 0], U,o() ,(), [-(to), 0],

(, ) () + (, z(), ( () ),

z( ()), (), ..., ( ()), ) .
Leg () ri(l), 1 > O; hence ghe B() are increasing.

Denoge ghe inverse of B. We have Bi(()) and > ()
B+() + . Since ghe are defined on [t, T] ig follows ghag is de-

fined on [(10), B(T)]. We shall suppose gha B(0) < B(T); ghen on
[B(), (T)] all are defined. Ig is easy o see ghag here exists ’ > 0
such ghag +(t) -(t) ’ for [B(/o), +(T)], where ghe gwo
funegions , + are defined. Le

m inf [i( + ) i()];
[i(),+(f)l

we have ’ > 0 and +( + ) N (t) + ’. Leg

[fi(to), +(T)], s "Yi(t), s+ ,i+(t)

hence fi(si) f+(si+). We have i(si) >= ti+(si) + a; hence
i+x(si+) _-> t+(si) +. a. It follows that ’i+[ti+x(si+)] >= ,i_[.i+(s)

i.e ,+(t) > ,(t)-t- a] ,+[+(s)] -t- a hence s+ >= s + a,

Let now (, ) be an optimal couple, 2 the corresponding optimal solu-
tion. Denote

A(t) Of- (t, 2(t), 2[(t)], ..., 2[(t)], t(t), ..., [(t)], 5),

Of (t, 5c(t) t(,(t) ), D)B(t)

c(t) OL- (t, 2(t),..., ((t)),

d(t) OLy (t, 5c(t), t((t) ), )).
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THEOREM 2. [f , ) i8 optimal there exist multipliers Xo
with the following properties"

(a) o -b q- ,+ 0, k _-> 0 for 0 <- / <- m, 0 if
[(, ) < o.

(b Let be the solution of the system

(t) --b(t)A(t) -- (.(t) )B(.r(t) )z/(t) -- X,,[c,(t)

+ d.(,r(t) ),/(t)]

defined by the condition (t) 0 for > T, bs(T) --’hr+S, and let

H(t, x, y y u, vl v b)

(t)f(t,x, yx,...,y,u, vx,...,v,b)

L,(t, x, yl, y, u, v, v, b).

Then, for all u U and for all [to, T] in which qt is continuous, the fol-
lowing inequality (maximum principle) holds"

H(t, 2(t), 2(B(t)),..., 2(/(t)), u, (3(t)), ($(t)),

+ H(.(t), 2(,1(t)), 2(t),..., 2((’1 (t))), (,(t)), u,

(t(3(’l(t))), ) -- q- H(’r(t), 2(’r(t) ), 2(3(’(t) ), 2(t),

((t)), (t(,r(t))), ..., u, )

<= H(t, 2(t), 2(fl(t), ..., 2(3(t)), (t), (fll(t)), ..., (3(t)),

+ H(’r(t), 2(’r(t)), 2(t), 2(3(,x(t))), (-),l(t)), (t),

t(3(’r(t))), g) 4- -I-- H(.(t), 2(.(t)), 2(3(-r(t))), ..., 2(t),

(.),(t)), fi((5"(t))), (t), $).

c We have the transversality conditions"

Og, O(to ) + ( T) Oo(6)x () (t0)
8b Ob

"to .=o Ob

OH(t, 2(t), ..., t((t) ), 5)
dt O.

Ob

We remark once more that in all these formulas functions f and L, are
supposed vanishing for arguments greater than T.
We shall prove this theorem in the same way as for Theorem 1.



Let functions q, be defined by the systems

O,(t) -q,(t)A(t) _, q,(’(jt) )B(,(t) ).i,(t) c,(t)

d.j(,(t))#(t)

and the conditions q,(t) 0 for >= T.
Let also functions p be defined by the system

(t) -p(t)A(t) p(’),(t))B(,j(t))(t)

and the-conditions p(t) =---- 0 for > T, p.(T) i-.
Define for a O, 1, m,

F(t, x, yl, y, u, v:, vk, b)

L,(t,x, yl,...,yk,u,v:,..., v1, b) c,x-- d,yj

-t- q,(t)[f(t, x, y: y u, vl ,... ,vk b) A(t)x B(t)y],

and for i 1, n,

F=/(t, x, yx y u, vl v b)

p(t)[f(t, x, y,..., yk, u, v ,..., v, b) A(t)x B(t)y].

It is clear that Of/Ox and Of,/Oy identically vanish along the optimal
solution considered.

Define further for a O, 1, m,

G,(b) g,(b) A- q.(t0)(to, b)

A-- , f.(to) [d,.(s) A- q,(s)B(s)]((s)) ds,

and for i 1, n,

I "(t)G,,+(b) o (b) + p(to)(to, b) + p(s)B(s)((s) ds.

Let

J,(u, b) G,(b) q- F,(t, x(t), ..., x(,(t)), u(t), u((t)), b) dr.

As in the case considered above we see that

J,(u,b) I,(u,b) for a 0,1, ...,m,
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and

Jn-{(U, b) xi( T) oi(b).
We have indeed for c O, 1, m,

fr F,(t, x(t), ..., x(,(t) ), u(t), ..., u(l(t) ), b) dt

L,(, x(), ..., u(()), b) d + (q()x()) d

[d,.(a) + q.((r)B(z)]x(i(r)) d(r

()B.()x(.()) d.

We shall use again the theorem of Hestenes. Consider the set K of vectors
with coordinates k given by

k Fo(t, 2(t), 2(ilk(t)), u, (flx(t)), ,((t)), [)

F(t, 2(t),..., 2(fk(t)), (t), fi(/x(t)), ’5((t)), 8)

+ F(7(t), 2(,(t)), 2(t), 2((,(t))), (/(t)), u,

’t’(k(/i(t))), ) F(’),x(t), 5c((t)), (,(t)), (t),

(((t))), ) + + F(.(t), (./(t) ), ..., (t), (/(t) ), ...,
u, D) F(,),(t), 2(,),,(t)), ..., Yc(t), (,(t)), .-., (t), $)

for all u U and all t, points of continuity of , to which we add the vec-
tors with coordinates 1 given by lc K’h, where

KOG
Ob

(5) + (t, "2(t), ..., ([(t)), D) dt.

We hve to prove as above that K is a derivative set for our functionals
Jp(u, b). As above let

k Fo(t, 2(t), u, t(fl(tl) ), (t(,(l]) ), D)

F(’y(t), 2(’),(t) ), (t), )

md

ft I,’,+,(t, x(t), ..., u(,(t)), b) dt

t (p’(t)x(t)) dt
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We shll have

f(O, "", , "",0)
t

+
at+.

+
(t) (t+H)

and we see that Of(O)/Oes kj. The proof ends as for Theorem 1. Re-
mark that :(tj) > l(t + e) provided that es is smM1 enough since, in
our conditions for the lags, :(t) -(t) R a’ > 0.
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ANALYSIS OF STATISTICAL LINEARIZATION OF
NONLINEAR CONTROL SYSTEMS*

J. M. HOLTZMANf

1. Introduction. The method of statistical linearization due to Booton
[1] may be considered to be the random function counterpart to the method
of equivalent linearization for periodic functions. Contraction mpping
malyses have been found useful in comection with the ltter method (see
[2] and [3]). The purpose of the present report is to present a contractio
mapping type nlysis of statistical linearization. We adapt the techniques
used by Sndberg [2] for a space of periodic functions squre integrble
over a period to a Banach space of second order random functions. We ob-
tain conditions for convergence of the method of successive approxima-
tions starting with a statistical linearization approximation. A bound on
the error between the actual and approximate solutions is given. Our ap-
proach is similar to that given in n interesting recent paper by Kolovskii
de,ling vith Kazakov’s statistical linearizatioa method (see [4]); however,
we dwell more on some aspects of the mathematical analysis. The analysis
in the present paper yields the smallest contraction constaut i context
explained in [2, pp. 916, 917].

2. Preliminaries and notation. Bckground material on second order
stationary processes is given in Love [5, 34] and Doob [6, Chap. XI].
It is assumed that there is a fixed probability space (2, a, P). The re-
quired definitions and results are:

(i) We shall use the viewpoint that a random function z on
R (- , is a mapping of R to a spce of random variables on the
probability space [5, p. 498].

(ii) For second order raudom functions, the following fumtion exists:

r(t, t’) E[x(t)2(t’)],
where the overbar denotes conjugation. Second order stationarity is
defined here by r(t, t’) r(t t’) for 11 t, t’ R and E[x(t)] const.
(iii) Every second order stationary random function x which is con-

tinuous at any has the spectral representation

x(t) ex dy()), E dy(X) dF(X)

Received by the editors August 18, 1967, and in revised form November 22, 1967.

f Bell Telephone Laboratories Incorporated, Whippany, New Jersey 07981.
Throughout this report, continuity of a random function refers to continuity in

the quadratic mean.

235



236 .1. M. IIOLTZMAN

r(t t’) e
2(t-t’) dF(X),

where F is bounded and nondecreasing (and y has orthogonal increments).
(iv) If x is a continuous second order stationary random function with

spectral representation

hen a linear operaion z Lz is defined by

where H is measurable wigh respee o F and

(see [6, p.

8. The method of statistical linearization. Consider ghe feedback sys-
tem described by he equation

(3.1) x LN(r x),

where r is assumed to be a real stationary second order continuous random
function, L is a linear operation defined by its transfer function H(X)
and N is a time-invariant, zero-memory nonlinear operator defined by an
odd Lipschitzian real-valued function n of a real variable. The method of
statistical linearization replaces (3.1) by

(3.2) X0 LKea(r Xo),

where K,q is the constant that minimizes over all constants K the mean
square difference between n(r(t) xo(t)) and K(r(t) xo(t)). K, is
found to be given by the following formula"

E [(r(t) xo(t))n(r(t) xo(t))](3.3) Keq E Jr(t) x0(t)]

With this value of Keq, we have

E [n(r(t) xo(t)) Kq(r(t) x0(t))]
(3.4)

E [n(r(t) xo(t))]2 E{[(r(t) xo(t))n(r(t) x0(t))]} 2.
Ignoring the fact that x0 may depend on K.

E jr(t) x0(t)]
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Note that, as with equivalent linearization, Kq does not actually represent
a linear operator since Kq depends on its argument. Nevertheless, the
method is often not too difficult to apply (though usually requiring some
graphical procedure). The usefulness of the method has been experi-
mentally verified in some cases. Our objective is to investigate the method
mathematically using a Banach space of random functions.

In the above, it is assumed that we are given a statistical linearization
approximation whose accuracy is to be investigated, i.e., the existence of
Keq and of an x0 satisfying (3.2) is assumed. However, our analysis actually
shows convergence of the method of successive approximations starting
with any x0 (in a set to be defined) independent of that existence assump-
tion.

4. Spaces of random functions. Though spaces of random functions are
familiar to specialists in stochastic processes (see, e.g., [7]), they are not
apparently widely used in control theory. We thus devote a few words here
to a Banach space which is adequate for the present study but which may
not be appropriate for many other analyses.
The following results are given by Dieudonnd (see [8, pp. 12(3-129]):
Let A be any set and F a normed space. A mapping f of A into F is said

to be bounded in F if f(A) is bounded in F, i.e., if supt Ill(t)II < .
The set B(A.) of all bounded mappings of A into F is a vector space and

(4.1) IIf sup f(t)
tA

is a norm on this space. If F is a Banaeh space, B(A) is a Banaeh space.
Now let E be a metric space. Denote by C(E) the vector space of all

continuous mappings of E into the normed space F and denote by C(E)
the set of all bounded continuous mappings of E into F. In general, C(E)

C(E) ["l B(E). Consider CF(E) as a normed subspaee of By(E).
The subspaee CF(E) is closed in B(E).
The above results make it easy to construct a Banaeh space of random

functions. Iet F be the Banaeh space of second order random variables
(those with finite mean square values). Let x map R , into F.
If x is bounded according to the above definition, x is a second order random
function. Then By(R) is a Banaeh space of second order random functions
with norm

(4.2) x sup E/: x(t)I.
See [5, pp. 455, 456].
This Banach space does not contain all second order random functions but only

those for which there is a uniform bound on the mean square values of the random
variables x(t).
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CY(R) is now a closed subspace of second order continuous random
functions and when considered as a metric space by itself, it is complete.
We shall work in the subset of Cv’(R) consisting of (strictly) stationary

random functions. Appropriate conditions will be imposed on the operators
L and N so that this subset is mapped into itself. Our object is to show the
convergence of a sequence obtained by the method of successive approxi-
mations"

(4.3) x+l LN(r x)

with x0 being the statistical lineriztion approximation (actually, we shall
first modify the fimctions in the successive approximations). Each
will be a real, stationary, continuous, second order rndom function. With
stationarity, the norm of random function in the Banach spce becomes

(4.4) x

E1/2 x(t)[2 for any R,

and analysis reduces to that of random variables. That is, (quadratic
mean) convergence of the random variables at any implies convergence
of the random functions, with convergence of the random functions being
given a precise definition.

5. Successive approximations. As mentioned, we shall investigate the
convergence of the method of successive approximations

(5.1) x+ M(x),

where M is to be defined and with x0 being the statistical linearization
approximation and r being a real, stationary, second order, continuous
random function. The following four assumptions will be shown to ensure
the convergence"

(i) H(X) is the Fourier transform of a real function h satisfying

(5.2) h(t) dt

(ii) There re two rel constants a nd stisfying (a + ) 1 nd
such that

(5.3)
for 11 rel u u.

(iii)

(5.4) I+H(x)0, x(-,),
(5.5) + K,J(x) 0, x (-, ).
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(iv)

(5.6) sup
H(X) (--1) k2 < 1

x 1 + H(X)
Now define the operator as follows:

(5.7) N() x + (x)
or

(5.8) n(x(t) x(t) -t" Zt(x(t) ).

Then,

(5.9) x L(r x) -- L(r x)

(5.10) (1 + L)x LS(r x) + Lr.

With assumption (5.4), the operator (1 - L) has a bounded inverse
(1 -- L) -1 in the following sense. Let Xa be second order stationary and
continuous and

(5.11)

(5.12)

Then

x= (1 + L)x.,

xa(t) e’itx dye(X).

(5.13) xb(t) f_
and if

etx(1 + H(X)) dy,(X),

(5.15) x(t) e’tx(1 + H(X))--1 dye(X),

(5.16)

If we had not used the normalization 1/2(a - t) 1 for convenience, condition
(5.4) would be replaced by 1 -t- 1/2(a + t)H(X) 0, and condition (5.6) by

H(X)
sp 1-t- 1/2(a -k I)H(X)

( --c) < 1.

Since H(X) is a Fourier transform of an L function, it is easily shown that as-
sumption (5.4) is equivalent to infx 1 + H(X)[ > 0.

we have

(5.14) x(t) e2t’ dyb(h),
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Now we can write

(5.17)
x (1 -t-L)-IL-(r- x) -I- (1 -t-L)-Lr

=- M(x).

We shall look for a fixed point of M(x) near the statistical linearization
approximation x0. (The above manipulations exactly parallel those of Sand-
berg [2].)
We first wish to show that r being stationary, second order, and con-

tinuous implies that all the x of the method of successive approximations
are also stationary, second order, and continuous. We first note that if x is
stationary, second order and continuous, then Lx and N(x) are also station-
ary, second order, and continuous. All of the x are stationary, second order,
and continuous since each x is the result of combination of L and N
operating on r (see (3.2) and (5.1))

Xo (1 + KqL)-LKqr,

(5.18) x M(xo) (1 --L)- L(r- (1 -[-KqL) LKqr)-- (1 -[-L)-ILr,

(We use ssumption (5.5) to imply the existence of 1 -[- KL)-.) Further-
more, we hve, for 11 i, that [(r x) /(r x_)] is sttionry,
second order, nd continuous, since, s bove, [.(r x) h(r x_)]
is gin combination of L nd N operating on r.
With the sttionrity, second order nd continuity properties ssured,

we cn conveniently use the spectral representation. If

(5.19) (r(t) x,(t)) (r(t) xi-(t)) e2rit dyi(h ),

(5.20) E [(r(t) x(t)) (r(t) x-(t))] dF(X),

then

x+(t) x(t) etx(1 ’-t- H(X))-H(X) dye(X)

stationary, second order random function is obviously second order stationary.
H(X)(1 -t- H(X))-1 is the Fourier transform of an L1 function (see [9, pp. 31-32]).
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E1/2r (t)

sup

(5.22) sup

=< sup

1 -- H(h)

H(h)
1 -[- H(X)

H(h)
1 -k H(X)

sup
H(X)

1 + H(X)

E/[fi(r(t) xi(t) (r(t) xi-(t) )]

mx {(/ 1), (1 a)}E/[x(t) x-(t)]:

sup
i + H(x)

E’[n(r(t) xo(t)) Kq(r(t) xo(t))]:

The last expectation is the minimum root mean square error incurred in the
statistical linearization of the nonlinearity by itself (see (3.4)).

6. Discussion of results. The reason for the manipulations of 5 rather
than directly determining conditions for x+l LN(r xi) to be a con-
tracting sequence is that the latter condition would require the "open loop
gain" to be less than unity, a most severe restriction. The condition of as-
sumption (5.6) of 5 refers to the closed loop system and is much less re-
strictive. However, the conditions are still quite restrictive. For example,
we have disallowed the common case of the transfer function possessing a
pole at h 0. Further work to extend the results would be useful)

x* is clearly q.m. continuous since C (R) is closed. It is second order stationary
since it is easily shown that the limit of second order stationary random functions
is second order stationary.

10 The "pole shifting" transformation used in some stability analyses might be
used to get around this restriction (for > 0).

(5.23)

I/[X*(t xo(t)] _< E/:[x(t) x0(t)]
1 12

Thus, using assumption (5.6), we have a Cauchy sequence and there is a
limit x* of the sequence x .9 (For the details of this familiar argument see
the proof of the contraction mapping fixed-point theorem in almost any
book on functional analysis.) Furthermore,
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Note that we have only shown the convergence of the method of succes-
sive approximations. It is not clear whether we get the uniqueness associated
with a global contraction. We have not shown that M (see (5.17)) is a
global contraction in C(R) since we have not considered its properties
with the nonstationary random functions in C(R). Note that the subset
of stationary functions is not a linear space since the sum of two stationary
functions need not be stationary. Thus, if xl and x2 are stationary,
LN(xl) LN(x2) need not be, and the spectral representation cannot be
used as above. Conditions for LN (or M) to be a contraction in Cy(R)
could be stated in terms of the convolution kernel (impulse response func-
tion) h(t) associated with H(X).11 However, it then does not appear that a
convenient relationship can be stated in terms of H(X) since we have an in-
equality in the wrong direction (with h L and H(k) the Fourier trans-
form of h(t) ):

sup H(X) =< Ih(t) ldt.

In view of our proof not (obviously) giving uniqueness, it is of interest to
mention the results of [9]. With a system closely related to that used in the
present paper, it, is shown in [9] that there is
equivalence) to an input z which satisfies the "weak finite power" condition

lim sup
1 z(t)

T - T

Analysis of the relationship between the sample function and mean. square
properties of these feedback systems would be of interest (see, e.g., [6,
p. 5181).

It is clear from the above remarks that this report is far from being the
last word on statistical linearization. Rather, it is hoped that it will stimu-
late further analysis of the method which is of such great practical utility.

n That is, to determine conditions for LN to be a contraction, let N(x)(t)
N(x)(t) z(t). Then (with conditions to justify the manipulations),

LN(x) LN(x)[[ sup Ell h(t )z(r) dr h(t s)z(s) ds

sup E

<= fl h t) dt [[x-- x

where is a Lipschitz constant.



STATISTICAL LINE)RIZ,TION 243

Acknowledgment. The comments of V. E. Bene and W. L. Roach are
greatly appreciated.

REFERENCES
[1] 1. C. ]OOTON, JR., The analysis of nonlinear control syslems with random inpuls,

Proc. Symposium on Nonlinear Circuit Analysis, Polytechnic Institute
of Brooklyn, New York, 1953, pp. 369-391.

[2] I. W. SANDBERG, On the response of nonlinear cortrol systems to periodic input
signals, Bell System Tech. J., 43 (1964), pp. 911-926.

[3] J. M. HOLTZMAN, Contraction maps and equivalent linearization, Ibid., 46 (1967),
pp. 2405-2435.

[4] M. Z. KOLOVSKII, Estimaling the accuracy of solutions obtained by the method oj"
statistical linearizalion, Automat. Remote Control, 27 (1967), pp. 1692-
1701.

[5] M. LovE, Probability Theory, 3rd ed., Van Nostrand, Princeton, New Jersey,
1963.

[6] J. L. DOOB, Stochastic Processes, John Wiley, New York, 1953.
[7] A. V. SKOROKHOD, Sludies in the Theory of Random Processes, Addison-Wesley,

Reading, Massachusetts, 1965.
[8] J. DIEUDONN], Foundations of Modern Analysis, Academic Press, New York,

1960.
[9] V. E. BENE, A nonlinear integral equation in the Marcinkiewicz space , J.

Math. Phys., 44 (1965), pp. 24-35.
[10] A. A. PERVOZVANSKII, Random Processes in Nonlinear ontrol Syslems, Act-

demic Press, New York, 1965.

general reference (with bibliography).



SIAM J. ColTaoJ
Vol. 6, No. 2, 1968
Printed in U.S.A.

SYSTEM IDENTIFICATION AND THE PRINCIPLE OF
RANDOM CONTRACTION MAPPING*

K. G. OZAf AND E. I. JURY{

Abstract. The problem of identifying a linear discrete system is considered where
the input-output data is noise-corrupted. An iterative lgorithm is suggested which
converges in a statistical metric. This convergence is obtained through the principle
of random contraction mapping.

1. Introduction. The problem of identifying an "unknown" system
among a class of systems is very important for the adaptive control of the
system. It is assumed that the unknown system is characterized by a dif-
ference equation relating the input time series {u (k)} and the output time
series {x (lc)} through an unknown parameter vector a. The input u (lc)
and the output x(lc) are additively corrupted by noise processes nl (lc)
and n2(lc), respectively. This noise-corrupted data is supplied to the
identifying computer which finds out the explicit error on the basis of this
data and the estimate , of the parameter vector a. In order to obtain an
asymptotically unbiased estimate of a, an implicit error is defined and a
positive definite quadratic form J is obtained from this error. An iterative
algorithm is suggested which searches the root,a of the equation Va J 0.
The convergence of this algorithm is obtained using some results of time-
series analysis and the principle of random contraction mapping. Finally, a
modification of this algorithm is suggested for practical convenience and
the modified algorithm is shown to be related to the stochastic approxima-
tion method.
The stochastic approximation method has recently been used by Sakrison

[1] for the system identification problem. There the requirement of condi-
tional independence in the usual stochastic approximation is replaced by an
equivalent condition on the prediction error of the processes involved.
In the present paper, the processes are required to be wide-sense stationary
up to order four and a finite-time dependence is allowed. Another recent
approach to the system identification problem is the instrumental variable
method [2], [3]. Unlike this approach and similar to Sakrison’s work, we
require a knowledge of the correlation functions of the noise which is also

* Received by the editors May 16, 1967, and in revised form November 13, 1967.
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AFOSR-292-66.
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73069.

{ Electronics Research Laboratory, Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, California 94720.
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required for the least squares method [4]-[6]. The algorithm proposed in
this paper is useful for on-line identification and is computationally con-
siderably simpler than either the instrumental variable or the least squares
method and at least as simple as the stochastic approximation method.

2. Statement of the problem. Since the concept of a system about which
we know nothing is as meaningless as the idea of "complete ignorance"
which confuses the whole field of inductive reasoning, we assume that the
system to be identified is described by a difference equation

() + x( ) .++u( j),
i=l j=0

where {u (/c)} input time-series to the system, /x (/)} output time-
series to the system. We shall consider the time index k ranging over the
set of nonnegative integers and assume that the necessary initial states are
known. The method to be presented remains valid even if the initial states
are unknown, provided the identification starts at the time N n. The
above system will be called S ().

Let S(a) be the given system where a (al, ..., an, a+l, ...,
a,+m+) is n unknown vector. Thus the cluss of the system S (a) is
identified with the (n + m + 1 )-dimensional spce nd the system S (a)
is point in this spce. Since we re going to estimate this point on the
bgsis of observations (realizations of rndom vribles), the class $ will
reMly be the spce of (n + m + 1 )-dimensional rgndom vectors. Assuming
that sll the rndom vribles involved re second order, we cn define
a statistical metric d in this spce by the following"

(2) d (, ) E I,
where

n+m+l

(3) 1-11= i-
i=1

Let v (lc) and y (k) be the noise-corrupted input and output data, re-
spectively. Thus

(4) () uq) + nq),

y (k x (/c -t n2 (lc ).

Let the identifying computer assume that the given system is S () with
the input v (lc)}. Hence the output of the system S () will be (/c)}
given by the equation
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In the real-time identification procedure, the vector is adjusted se-
quentially as the new data v (/) and y (/) are obtained. Thus the problem
is to deduce an algorithm generating a sequence /s (/)] which converges
to the point a in some sense.
The sequence {(/)} generated by the algorithm given in this paper

converges to a in the metric (2).

3. Definitions and preliminaries. Now we shall define several terms,
make some assumptions, give certain results without the algebraic deriva-
tions and finally reduce the problem to a form to which we can apply the
principle of contraction mapping.

DEFINITION. The explicit error ee (k) is defined as the difference between
the output data y(l) and the output of the system S(), i.e.,

(7)

DEFINITION. The identification error e is defined as the difference be-
tween the vectors and a, i.e.,

(8) e,= u--a.

Since the system S () uses its own past output to calculate the present
output n (/) and since it looks in the past as far back as n instants of time,
we are motivated to define the virtual or implicit error ei (/c) as the weighted
sum of the explicit errors, ee(l j), j O, 1, n. The weights in this
sum are chosen in order to get eventually a positive definite quadratic form
J in the variable e.

DEFINITION. The implicit error ei (k) is defined as

(9) + i),
i=l

where
ASSUMPTION 1. The random processes

are mutually uncorrelated, zero-mean processes.
ASSUMPTION 2. /U (k)}, {n (1)/ and {n (l)} are wide-sense stationary

of order 4; that is, the covariance functions

R(j) Elu(k)u@ + j)},

(10) R,, (j) E{nl (k)n (k + j)},

and the fourth cumulant functions

Q (j j: j

R, (j)R,, ( j) R (j)Ru (j j) R(j)R (j j,,.)



SYSTEM IDENTIFICATION AND CONTRACTION MAPPING 247

and QI (jl, j2, ja) and Q (jl, j2, j3) (obtained by replacing u in the pre-
ceding expression by nl and n2 respectively) are independent of k.
ASSUMPTION 3. The covariance functions and the fourth cumulant func-

tions of u (k,) }, {n (k) and /n (/) satisfy the following conditions for
jl 0,1,

N--1

(i) lira
1 R (2) 0 for u, nl,n2;

(ii) lim
1 -1-

woo -" Q(fl’ j’jl-l-j) 0 for u, nl,n..

Assumption 1 is made to facilitate many of the derivations that follow and
Assumptions 2 and 3 are needed for the consistency of sample covariances
and cross-covariances. None of these is too severe a restriction to be
satisfied in practice.
ASSUMPTION 4. The two-sided Z-transform [7, pp. 160-163] of the

covariance function, R (j), of u (k) is strictly positive on some part of the
unit circle in the z-plane, i.e., q) (ei) 0 for some co-set of nonzero meas-
ure in (-r, r).
Now we shall use some vector and matrix notations listed in Appendix A.

In terms of these notations, it is shown in Appendix B that

2(/)} eRe + mi(a) -- m(),(12) E{e

where e a, and

(13)
k[..=o

(14) ra.() E a,n(k i) + n(k)
il

LEMM 1. Under Assumption 4, R is positive definite and consequently
the function
(15) J (e) e[Re
(16)

has a unique minimum at e 0 or a.
The components of q(k) are linearly ittdepettdeat with probability ote

under Assumption 4 (see [16]), attd then Lemma 1 follows [8, p. 87]. It
should be noted that we do not require the coeificient am to be nonzero and
this in turn eliminates the need of the a priori knowledge about the order
of the system S (a).
The minimum of J (e) can be found by taking the gradient with respect
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(/) exists, we cn tketo and equating it to zero. Assuming that grad
the gradient of (16), interchange the order of differentiation and expecta-
tion and obtain

(17) M() VJ(ei) 2Rq(a a).= 0

(k) grdm () gradm () O.(18) El grad ei

It can be shown that

() ()P ()(19) grad e

and

(20) grad

(Appendix B). Using (19) and (20), (18) can be rewritten as

(21) (Rp R,)n q- (rp r) 0.

The solution of this equation is clearly a and an iterative scheme to
find this solution is suggested in the next section. It is worthwhile to note
that the covariance matrix Rp and the covariance vector rp in (21) are
unknown since they depend on the vector a and also on the probability
distribution of the process [u (/)}.

Finally we assume that the autocorrelation functions of the processes
{nl (/)} and {n2 (1)} are known.

4. Contraction mapping, random transforms and algorithm. A mapping
T of a complete metric space X into itself is said to be a contraction if
there exists a number c such that 0 < c < 1 and

(22) d(Tx, Ty) <= cd(x, y)

for any two points x, y X, where d is the distance function on X [10,
p. 43].

Defining

(23) T0(a) y[(R R.) q- (rp r.)]

and choosing , such that

(24) I u R=) -< c < 1,

it is clear that To is a contraction mapping on the space of . Since

R R. Rq is a positive definite symmetric matrix, its eigenvalues are
strictly positive; let 0 < },, < < M++, be the eigenvalues of R.
Then the condition

(25) 0 < ll --ukl -<- c < 1, i 1, ..., n q- m q- 1,

is equivalent to the condition (24) where c is arbitrary.
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If we denote the ith element of the vector p (k) by pi(/), i 1, 2,
n -t- m 1, then the matrix Rp has elements of the following form:

(26) rij(t) E{p(lc)p(t t)l.

From a sample of N observations on p (/), we can consistently estimate
rj (t) by

(27) 1pi(t) p(lc)p(k t),
kl

which converges to r (t) in the mean of order two as N -- if

(28) lira
1 --(R) - ,---o

E{p(t + s)p(t)p(s)p(O) r(t).

A sufficient condition for the convergence in (28) is that p(t - s)p (s)
and p(t)p(O) be independent for s > some integer s0 [13], pp. [14, pp. 30-
32].

Let 6tp (N) be the matrix [pi" (t)], where i, j 1, ..., n - m q- 1 and
0, 1, ..., m or 0, 1, n. Similarly, a consistent estimate o (N)

can be defined for r. Now we can define a sequence of random transforms

(29) T() [((R (N) R) -k ( (N) r)],

which converges to To (a) in the metric defined by (2) for any given value

THEOREM. The sequence of random vectors v} generated by the algorithm

(30) a+ T(a)

with an arbitrary converges to a in the metric (2) as N --The proof of this theorem is given in Appendix C. The convergence with
probability oae can also be proved following Han [11]. The matrix
and the vector (N) satisfy the recursive relationships

(31) 16p(N) (Rp(N-- 1) --- [p(N)p(N)’- (R(N- 1)]
/

(32) 1e(N) o(N- 1) +r [y(N)p(N) v(N- 1)],

which show that a large storage capacity is not required for the algorithm
(30).
The algorithm (30) calls for a value of /constrained by relation (25).

Since the eigenvalues of the matrix Rq depend on the vector a as well as
on the auto-correlation function of the process {u (l)}, it is not practical
to satisfy (25) in the present case. For actual computation, therefore, the
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constant in (30) can be replaced by sequence IN} I,A/NI, where A
is a positive real number. So we have the algorithm

A(33) N+ [((N) R) + ()(N) r)].

In order to ensure the convergence of (33), we note that there exists n
integer N0 (A, ,++) such that for ll N N0 the following is true"

(34) 0< (1-- A,+), T0()-To(a),, < (1- )< c.

Thus To is still a contraction mapping for N No and the sequence of
random transforms T with replaced by A/N still converges to T0.
Hence the algorithm (33) is convergent. Specifically, we have

k==No

and, since A > 0, 1 > 0 and

1

we conclude ghag d(+t, a) converges go ero as N gends go infinigy.
Alghough ghe algorighm (aa) looks similar go ghe usual sgoehasgie

proximggion procedure, ig is differeng from ghe lagger as shown below.
Leg us consider ghe random process Y (N, ) defined by

(36) Y (N, ) F (N) + f (N),

where

(37) F(N) p(N)p(N’) R., f(N) y(N)p(Y) r(N).

Then (21) is a regression equutiou for the process Y (N, ). The usual
stochastic approximation procedure dictates the Mgorithm

for finding the root of the regression equation (21) and requires the con-
ditional distribution of Y (N, ) given , ..., a to coincide with the
distribution of Y(N, a) given only (see [12]). Recently, Sakrison [1]
has proposed an ulgorithm like (37) to solve the system identification
problem where the requirement of conditional independence of Y (N,
is replaced by the condition that the minimum mean square prediction
error of the processes involved must decrease at least as fast as 1/r for
large values of the prediction time.
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Now, in view of (36) and (37), the algorithm (33) can be rewritten

(39) N+I N-- ’N F(k)v--l-f(/)k=l k=l

Assumptions 2 and 3 are required for the mean square convergence of the
averages appearing in (39). Since the process Y (N, a) does not satisfy
the requirement of conditional independence, we "average out" the process
over the observation interval at each stage of the iteration. The recursive
relationships (31) and (32) eliminate the need of storing all the data for
taking such averages.
To further elucidate the difference between the present approach and the

stochastic approximation approach taken in [1], we formally consider the
continuous version of the algorithm (33). Let Y (t, ) be the continuous
random process corresponding to (36). Then one can pick (0) arbitrarily
and generate the estimate (t) by the integro-differential equation--- 7(t) Y(r, a(t)) dr

where the function (t) must satisfy

One can compare (40) with the algorithm proposed in [1].
The rate of convergence of (33) will depend on A as well as on oUmr

factors, as it does in the usual stochastic approximation procedure. The
computational results which show the convergence of (33) in a reasonable
amount of computer time are given in [16], where the convergence of (33)
with probability one is also established. In particular, the rate of mean
square convergence is of the order of 1IN when 2XA > 1. Thus, it is im-
portant to make a proper choice of the gain parameter A. This can be done
by observing the behavior of the estimation procedure and increasing A if
the convergence seems sluggish, or decreasing A if the behavior is highly
oscillatory.

5. Conclusion. Aa algorithm based on the random contraction principle
is given for the identification of a linear discrete-time system. Since it
allows the finite-time dependence of the random processes involved, it
could be utilized without any difficulty for a finite memory system. An
analogous treatment can be carried out for linear continuous time systems
and for certain nonlinear systems and also for specific time-varying systems.
Since the algorithm presented looks similar to the stochastic approxima-
tion procedure, it is compared witch the ltter and the differences are
pointed out.
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Appendix A. A list of vector and matrix notations.

denotes the transpose.

a (al, an, an+l, a+m+l)
q(/) (x(/c- 1),...,x(/-n),-u(),...,
p(/) (y(- 1),...,y(-n),-v(]c),...,
n () (n ( 1), ..., n, ( ), -nl(),
Rq covaraince matrix E{q (/)q (/)’},
Rp cowriance matrix E{p (k)p (k)’},
Rn covariance matrix E{n (]c)n (k)’},
r covariance vector E{n2 (l)n (l) },
rp covariance vector E{ y (]c)p (]c) },

p (N) sample covariance matrix [pi" (t)],

where
(i) for i,j 1,..., n,

pii(t) y(l i)y(ta j),

t=

(ii) for i 1,..., n, j n + 1,..., n q-m q- 1,

;(t) - u(c. i),( j )

and

i-a

-u( m))’,
-v( r))’,-( m))’,

(iii) for i n q- 1,..., n -k m q- 1, j 1, ..., n,

pi(t) --- v(l i n)y(k j)

and
t= [i--j--nl;

(iv) for i, j n q- 1, ..., n q-m q- 1,

p(t) v(k i- n)v(lc -j n)

and
t=[i-j[.

pp (N) sample covariance vector [pi (t)],
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where

(i) fori= 1,

and

(ii) fori= nA- 1,

n,

, (t) ,( i),()
k-=.l

Pi

t- i;

...,n+m+l,
N1 ( i- n)u()(t)
=

t=i--n.

Appendix B. From (4)-(7) and (9) and from the definition of the system
S(a), we have

() ( a)( i) (++ ++)v( -j)
i=1 5=0

(B1)

+ n(k) + ai n(l i) a++ n(k -j),
i=1 j=o

i= =0
(82)

+ n(k) + n(k i) ++ n(l j),
i= j=0

(k) (- a)’q(/) + n() +(B3)

Therefore,

(84) ((z a)’E{q(lc)q(l)’} (a a) -t- ml() -4- m(u).

(B5)

Expanding expressions (11) and (12), we get

ml () + m2(() E OlJlq-nq-lOlj2ffnq-l{’l (] j)n (lc j2)}
Jl J2

+ alai2E{n2(k il)n2(k
il

a’R,,a q- 2rffo q- R (0).
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(B7)

Therefore,

Hence,

(B6) grad ml (a) + grade m2 () 2Rn + 2rn.

Equation (81) can be rewritten as

e(l) (a a)’p(/c) + n2(k) + a’n(/c).

() q) v.q)grad e
(B8) ,()p ().

Now, using B6) and (88) in (18), we obtain

(89) E{ e (/c )p (k R,a r. 0.

Upon using the definition of S(a) in (1) and crrying out some simplifica-
tion, substitution of (87) into (B9) yields

(810) (R, R.) + r, r. 0,

which is (21).

Appendix C. The theorem is proved by use of the following lemmas.
LEMMA C1. If condition (24) (equivalently condition (25)) is satisfied,

then the random transform T0() is a contraction mapping with respect to
metric (2).

Proof. For ay two rndom vectors and , we have

Since for any constant mtrix A and my random vector ,
the order-preservation of expectation (Love [15, p. 119]) implies

because A is not a random variable. Application of this fac to (C1)
yields

Equivalence of (24) nd (25) follows from the fact thut, for any mtrix
A, A is the l:rgcst eigenwfluc of A’A nd, if A is symmetric, the lnrgest
cigcnvalue of A’A is the squrc of the lrges eigenvlue of A. Applying



SYSTEM IDENTIFICATION AND CONTRACTION MAPPING 255

this fct to the symmetric mtrix [I , (Rp Rn)], the desired result is
obtained.
LEMMA C2. For a given random vector 6, Tc(&) converges to T0(&) in the

metric (2).
Proof. It follows from the triangle inequality that

d(W(&),Wo(&)) E{IIT[((Rp(N) Rp)- (pp(N)
(c3)

[E [ (N) ] 1} + e (N) r ]].
Now it cn be shown by using the Schwrz ud triangle inequalities that

i,j=l

If Assumptions 2 nd 3 re stisfied nd if n, the order of the system S (a),
is finite, the condition (28) is stisfied nd ech term in the ]st sum goes to
zero as N . Similarly,

E] e(N) r(N)} El e(N) r l}

o(t) (t) .=
n+,,, +1

goes to zero as N .
LEMMA C3. FOr an arbitrary > O, there exists an integer N such that

(C4) d(a,a) e for all N N

where is the sequence generated by the algorithm (30).
Proof. It follows from Lemm 3 that there exists n integer N such that,

for every

(C5) d(W(),W0(a)) e forll N N.
Let be less thn (1 c).

If there exists positive integer N N such that

(c6) d(a., a) -<_ ,
then

(C7)

d(a3+l, a) -< d(T3 (3), T0(aN3)) -I-- d(T0(), a)

<= J + cd( a)

__<(+c)<.
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By repeating the argument,

(C8) d(N,a) --< e for all N >-

Assume that there does not exist any N3 such that (C6) is satisfied. Then
for every integer N >= N2,

(C9) d(, a) >
In particular, for some integer f > N., we have

-< v{ll Ts(s) T0()l[}

<= 2 -t- cE{l[ ali} (from (C5) and Lemma C1)

_<_ (e -b c)E{ as a ][} (by hypothesis (C6)).

Since 0 < e -t- c < 1, there exists an integer i such that

-N/ a I1} --<-- ( + c)*E{

This is a contradiction with the hypothesis. Hence, there must exist at least
one integer N1 >- N2 such that

But then (C8) holds with N. N1.
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FURTHER EXTENSIONS OF FIBONACCIAN SEARCH TO
NONLINEAR PROGRAMMING PROBLEMS*

PATRICK D. KROLAKf

1. Introduction. In two earlier papers [1], [2], the author described a
possible extension of Fibonaccian search to several integer variables and
showed that this extension was optimal when compared to a limited class of
searches. In this paper, a class of extensions of Fibonaccian search is de-
scribed. These extensions have the property that under some conditions
they are able to accelerate the rate of convergence over previous methods,
while in the worst conditions they require no more functional evaluations
than the previously described search. In some sense these new extensions
are like the set of optimal policies in a game. The second player may hold
the first player to the expenditure of a given number of functional evMua-
tions in order to locate the maximum, but if the second player does not
choose an optimal strategy, then some of player one’s optimal strategies
may cost fewer functional evaluations.

2. Theory. This article concerns itself with methods of finding the maxi-
mum of a strictly unimodal function over a hyperrectangular lattice of
points. In an earlier paper [2] the following terms were defined" vertical
ridgeline, strictly unimodal function, connected path; the author will use
these terms in the same sense as in the original paper.

Let Lm.....,. be an n-dimensional hyperreetangular array of points
such that:

(i) a function G(i, i) is defined at every point;
(ii) L,.....,, will have points defined for arguments 0 <

-1, m, _>- 2, for all lc 1, n. We shall call such a lattice a maximum
lattice of dimension n. Define VRi. to be the connected subset of all lattice
points belonging to L.... ,, and having their jth coordinate equal to 1.
Now VR,I Lml, ,m’_,mi+,-" ,m, and it is also a ridgeline. In the pre-
vious paper we showed how to search such a subset in the required number
of functional evaluations. We shall refer to such a set of points as a hyper-
plane.
LEMMA 1. If n,,.....m is a maximum lattice and G(i,... i,) is a

strictly unimodal funciion, then we can search L, ...,, by comparing the
maximum values tha G takes on over VR, and VR, where tc and dis-
carding those points of the lattice which are disconnected from the maximum of

* Received by the editors June 9, 1967, and in revised form December 5, 1967.
Applied Mathematics Department, Washington University, St. Louis, Missouri.

Now at Business Division, Southern Illinois University, Edwardsville, Illinois 62025.
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(i, Fm2+l-l)

X2

Fro. 1

these two sets when the points of the hypcrplane nol contaimng this point arc

removed from the lallice (see [2]).
We shall call such a search a parallel hyperplane search.
LEMA 2. If L,1, ,m, is a maximum lattice, and G(il, in) is a

strictly unimodal function, then L,I, ,, can be searched in exactly II2m
functional evaluations using parallel hyperplanes.

This search technique will be referred to as the minimal parallel hyper-
plane search (MPHS) method; this search is developed in detail in [1]
and [2].
TEOnE. If L,n, ,n is a maximum lattice and G(i, i,) is a

slrictly unimodal function and if the maximum value of G over VR, is located
at X* (l, " *, ," *), then we can search L,I, ,, by comparing the

.$
maximum of VR, where 1 . and the maximum of VR, and discard-
ing all points disconnecled from the greater value when the subset of points
associated with the lesser value is removed from the latlice.

Proof. Suppose max(VRl,) > max(VR,); then max(VR,..)
>= max(VR,) due to the fact that X* - VR,:. implies that max(VR,:.)
> max(VR,). Now since VR,. and VR,, are parallel hyperplanes,
VR,. VR, 0. Further, by the definition of a strictly unimodal
function, if we remove VR, from L, ,m,, a path must still exist
between max(VR:,.) and max(L, ,,), but VR,.. is connected
and X* VR,:.. Therefore path exists between max(VR,) und
max(L, ,m).
We shall call such a search procedure a perpendicular hyperplane search.

It is important to note sets V/I, and VR,; hve nonempty intersection.
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Consider the following perpendicular hyperplane search of a two-dimen-
sional maximum lattice L., over which is deSned a strictly unimodal
function.. ]?or this special case VR1 and VR correspond to vert,ical and hori-
zontal lines. Assume we arc limited to the expenditure of aii most m X m
functional evaluations. First, find the maximum of VR,,, using the usual
Fibonaccian search over an integer variable, where Fm is the mth Fibo-
naccian number. In doing so, we must evaluate (F,, F,) and (F,
F:_) which we shall call points X and X., respectively (see Fig. 1). Now
the location of the maximum value of this line (Xm,) can be in any one of
5 regions"

(i) Zmax > Zl,
(ii) Zm, X,
(iii) X. < X, < X,
(iv) Xmax X2,
(V) Xmax " X2.

If either condition (i), (iii) or (iv) occurs, search VR2,.,,,. if not, search
VR2,.,,2_ Now suppose it happens that we are to search VR2,F,; in order
to do this we must evaluate the point X1 but since we have already done
this we can search VR..Fm2 in ml- 1 functional evaluations instead of
the usual ml.
Compare max(VR,.,,,:) and max(VR,.,1). Suppose max(VR,.,,,)

> max(VR,ym.) ;that is, the maximum value of these two lines is on the
vertical line. At this point we could discard all those points not connected
to max(VR) and repeat the above procedure or we could discard the points
and use the parallel hyperplane procedure since the points remaining form
a maximum lattice and the ridgeline is correctly placed to initiate the
search.
Why should we want to use such a search procedure as we have just

described? Consider the following possibility that could occur at the time
of the first discard:the maximum of the two lines occurred on the vertical
line with Xm, > X1. Until now we have used m + (m2 1) functional
evaluations but we have only discarded m + 1 of these. The lattice we
have left is a member of Lmi,m-2 which can be searched in m X (m2 2)
functional evaluations by MPHS. The m- 2 points we have already
evaluated and not discarded make up the "first line". Hence we need only
(m 1) )< (m2 2) more functional evaluations to complete the
search. Thus, for this case we could have searched the lattice in a total of
m m2 2) + m + 1 ml m2 m + 1 functional evaluations, or

m 1 fewer than if we had used the ]\./[PHS, which would have taken
m X m2 functional evaluations. Now there are 10 possible cases to consider
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TABLE 1

Maximum
located line Region

1
2
3
4
5

Functional evaluations
used and discarded

(ml + 1)
ml

ml

(,ml + 1)

(m. q- 1)

(m2 q- I)

Functional evaluations needed
to complete search

m: (ms 2)
m:(m 1)
ml(m2- 1)
m(m- 1)
9/1 (m2 2)

mg.(ml- 2)
/2(ml- 1)
m.(ml- 1)
m(m- 1)
mZ(ml- 2)

Net gain

ml 1
o
o
o

m,-- 1

m2 1
o
o
o

m.-- 1

and the analysis is similar to the above in every case. The results appear
in Table 1. Note in every case the method of perpendicular hyperplanes
requires no more than MPHS and in 4 cases requires less. Since this situa-
tion repeats itself at every discard the perpendicular method requires at
most ml.m2 functional evaluations and, in actual practice, usually far fewer.
The above method describes a search of a two-dimensional lattice, i.e.,

a function in two integer variables. Now we shall call a search which holds
all variables fixed except one a one-variable pattern search, and a search
which varies k variables and holds all the other variables fixed, a k-variable
pattern search.
The MPHS is a one-variable pattern search and the search just described

is a two-variable pattern search. It is clear that we can search a 2N-dimen-
sional lattice with an associated unimodal function G(xl,..., xv) by
defining a new set of functions"

f(Xl, X) max f_(x, x:, xa, x4),
8,X4

f(x z) max G(x x_ z,,),,
x2 N’_1,x2l"

and using the two-variable pattern to maximize the above function.
It is evident that we can construct a k-variable pattern search similar to

the two-variable one by constructing vertical ridgelines in a k-dimensional
lattice which are perpendicular to each other and whose intersection does
not include both their maxima. If we use care in selecting our second ridge-
line we can realize a possible saving similar to the two-variable pattern, or
at most, use the same number of functional evaluations as the MPHS.
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The procedure for the/C-variable pattern search is as follows:
1. Search Vk,’mlo using a (/c 1)-variable pattern search:

(a) store location and value of the maximum;
(b) store complete information on the (k- 2)-dimensional ridge-

lines and record them in the order of discard;
(c) call Vk,’mk hyperplane I.

2. Next determine the set to be labeled hyperplane II. Examine the first
two discarded (k 2)-dimensional ridgelines of hyperplane I. Either these
two ridgelines are perpendicular or they are parallel. If they are perpen-
dicular, define hyperplane II to be that hyperplane perpendicular to hyper-
plane I whose intersection is the first discarded (k- 2)-dimensional
ridgeline. If the ridgelines are parallel and if they are the tirst two hyper-
planes of an MPHS, then hyperplane II is the hyperplane perpendicular
to hyperplane I whose intersection is that ridgeline of the first discarded
pair, and which is closest to the maximum of hyperplane I; if not, then
define hyperplane II as before.

3. Construct hyperplane II as in step I using the information in the inter-
section set for the first (It 2)-dimensional ridgeline.

4. Compare maxima of the two hyperplanes and discard in the same man-
ner as in step 2.

5. Relabel the surviving hyperplane.
6. Either you have eliminated all possibilities, in which case you are

through, or go to step 2.
The above procedure allows a greater possible savings in functional evalua-
tions as k increases, but as/c increases so must the amount of information
we must record. The lower bound on the number of functional evaluations
needed to search a/c-dimensional hyperlattice cube is of the order ink//2k-i
for large m.

3. Results. A computer program was written in FORTRAN IV for an IBM
7044 for the one-, two- and three-variable patterns. It solved integer non-
linear programming problems of up to nine variables. The results in general
agreed with the theory that a three-variable search will require fewer func-
tional evaluations than a one- or two-variable search. However, for the
unconstrained case, the number of functional evaluations still grows too
fast to solve large problems.
A slight modification of the code may have a use, however, for solving

certain nonlinear problems which have very tight constraints, i.e., a small
feasible region and a space occupation matrix. The occupation matrix is a
0-1 matrix associated with the inequalities which make up the constraint
set. If there are m inequalities and n variables, then define the occupation
matrix to be that m X n matrix whose elements m. 1 if the jth variable
is involved in the ith inequality, and m- 0 if not.
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In order to use the modification, it will be necessary to recast the con-
strained optimization problem into a new form. A new obiective function is
defined (which may not be strictly unimodal even if the original problem
was strictly unimodal), which will be a vector instead of a scalar.

Let the original problem be"

max z f(x),

gl(x) -< bl,

gin(x) _-< b,,

where L =< x =< U and x is an integer n-vector.
Now define the new problem to be:

max 2 F(i, ),

where L =< x =< U and x is an integer n-vector, and we maximize in the
lexicographic sense. Here F(i, ) is defined to be a two-component vector
with the first component i equal to the first constraint not satisfied by the
vector x and the second component equal to bi g.(x). Of course, if x
satisfies all m constraints, i m + 1 and f(x). The usual definition
of lexicographic comparison is here employed, i.e., F(i, 1)
implies either il > i2 or il i2 and > . For this new problem
formulation it pays to reorder the constraints. The reason is that if a/-
variable pattern search is used, then after one sets the first k variables a
check can be made on the first constraints that involve only the first
variables to see if a feasible point is possible. If no feasible point is possible,
then we have evaluated F(i, ) for all x having those first k components,
and we can move to another point in our/c-variable pattern search. If
feasible point is possible for those fixed values of the first/ variables, then
we drop down to the second set of/ variables and continue until we can
assign a vector value to the point in the first level search. Note the effi-
ciency of this procedure in that we do not have to set all variables before
we arrive at a vector value in the first level. This may reduce the amount
of necessary work by many orders of magnitude.

This approach is extremely simple but it worked well on ten problems
which were in part taken from the literature of continuous nonliaear func-
tions, and of which the following is an example.
Example.

max z x + x_ xxxx -t- xxs
(x- 2) + (x- 2)

< 10,
i=4
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x, + 4xx <- 9,

x - x <- 4,

2x W x. <- 15,

1 <= x <= 4, i 1, ,9,

x is an integer.

The problem was solved in 190 functional ewluations using the modified
three-wrible pttern search. If the one-, two- or three-variable pattern
search without the vector functional had been used it would have required
pproximately 20,000, 12,000 and 10,000 functional evaluations, respec-
tively. Since the lattice has 262,144 points on it, the possibility of finding
the optimum by Monte Carlo methods in 190 functional evaluations would
seem remote. For the 10 problems attempted these results are typical and
indicate that the modified search does not require work which grows ex-
ponentially with the number of variables. Thus for problems meeting re-
quirements mentioned earlier the modified k-variable pattern search would
seem to be far superior to the/c-variable pattern search.
A few comments are in order before proceeding. It is a trivial result to

show thut if F(i, ) is u strictly unimodal function and if the original prob-
lem has a feasible solution, then the maximum of will be the optimal solu-
tion to the original problem. However, the author has not found the condi-
tions under which F(i, ) will be strictly unimodal. An efficient algorithm
which relubels the variables and reorders the constraints in the manner
described above, i.e., places the occupation matrix into row echelon form,
has been coded. The algorithm is based on the work of 5ewell [3].
The program does not always find a global maximum if the function is

nonunimodal, but will find u local maximum since it must ewluate all of
the feasible neighbors surrounding the local maximum. The program takes
about 1-10 minutes for nine-variuble problems on an IBS[ 7044. It would
appear that computing times would depend heavily on the type of
constraints encountered, but it seems reasonable to be able to solve 20-30-
vuriuble problems. Further suggestions for the improvement of this lgo-
rithm are to be found in u recently completed study [4].

4. Conclusion. These results represent first attempt at solving non-
linear integer programming problem with a moderate number of con-
straints and, as such, is of interest. They my also lead to better search
techniques. The FORTRAN program and the associated flow chrts re
available.
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FINITE STATE CONTINUOUS TIME MARKOV DECISION
PROCESSES WITH A FINITE PLANNING HORIZON*

BRUCE L. MILLER
Abstract. The system we consider may be in one of n states at any point in time and

its probability law is a Markov process which depends on the policy (control) chosen.
The return to the system over a given planning horizon is the integral (over that
horizon) of a return rate which depends on both the policy and the sample path of
the process. Our objective is to find a policy which maximizes the expected return
over the given planning horizon. A necessary and sufficient condition for optimality
is obtained, and a constructive proof is given that there is a piecewise constant
policy which is optimal. A bound on the number of switches (points where the piece-
wise constant policy jumps) is obtained for the case where there are two states.

1. Definition of a policy. The system we consider may be in one of n
states labeled 1, 2, n, at any point in time. The system operates from
time zero to time T, where T < . When the system is in state i, an action
a is chosen from a finite set Ai of possible actions and a return rate r(i, a)
is received which depends only on the current state and action taken. The
evolution of the system from state to state is described by a probability
law, to be given later, which depends on vectors whose components are
q(j i, a), j 1, 2,..., n. These components have the property that
0 <- q(jli, a) < ,j i, and q(jli, a) O. The component
q(jli, a), j i, can be thought of as the transition rate from state i to
state j, i.e., the probability that the system will be in state j at time
0 <- A < , > 0, given the system is in state i at time and action a A
is always used in the interval [t, W ) when the system is in state i, is
q(j i, a)At +

Let F i= A. A policy v is a function of time on [0, T] into F. Using
policy r means that if the system is in state i at time t, the action chosen is
r(t), the ith component of r(t). In all cases we require that be a measur-
able function where measurable is understood throughout to mean Lebesgue
measurable. For any f F, we let r(f) be the n >< 1 column vector whose
ith element is r(i, f) and Q(f) be the n >< n Markov infinitestimal gener-
ator matrix whose (i, j) element is q(j[i, f).

2. The Markov process. Let S be the state space 1, 2, n} and be
the set of all step functions on [0, T] into S. We write $ for the -algebra of
sets in the space 2 generated by the sets {" (t) i}, where o 2, for

* Received by the editors June 23, 1967, and in revised form October 27, 1967.
Logistics Department, The RAND Corporation, 1700Main Street, Santa Monica,

California 90406. This work is part of the author’s doctoral dissertation in the Opera-
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all [0, T] and all i, 1 <= i <. n. When the measurable policy r is used and
/ is the initial state of the system, we define the Markov process of our
system by the probability triple (t, 5:, pk), where pk is a probability meas-
ure such that o(0) k, 2, and the probability transition matrix func-
tion of the process is the unique absolutely continuous (in for fixed s)
Markov transition matrix function satisfying the condition that for almost
all s in (0, T),

(1) P(s, t) I + Q(r(s))(t- s) + o(t- s),

where s.

Two questions must be answered in order to justify this definition. The
first is whether, given a measurable matrix function Q(r(. )), there is a
unique absolutely continuous Markov transition matrix function which
satisfies (1) almost everywhere. The second is whether there is a proba-
bility measure Pk such that the process (, if, P) has the given absolutely
continuous Markov transition matrix function, the point being whether
is a large enough class of sample functions.
The first question is answered in [9, Theorem 2.12] by showing that the

solutions to the differential equations of the form

(2) d__ P(s, t) P(s, t)Q(r(t)
dt

with the initial condition P(s, s) I and s assuming all values in [0, T]
determine an absolutely continuous Markov transition matrix function
stisfying (1) almost everywhere. Uniqueness comes from the requirement
that the Markov transition matrix function be absolutely continuous. The
second question is answered in the affirmative by using the result of Dynkin
[5, p. 160]. Dynkin’s result requires only that the given Markov transition
matrix function be continuous.

3. The objective function. When 0(.), 0 , is a sample path of our
system and the policy r is used, the return to the system is defined to be

T

fo r(w(t), (t) dr.o(t)

Our objective is o choose measurable policy - which mximizes he ex-
pected value of his integral for any initial eondiion of he system.

It is desirable o interchange he integral and he expectation and we can

The (i, j) elemen of he mtrix P(s, t) is defined s P{o" o(s) i, o(t)
j}/P{o" w(s) i}, he conditional probability the system is in state j ime

given he system is in se ime s. This conditional probability is undefined if
P{o" o(s) i} 0.
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do this from Fubini’s theorem if R(, t) r((t), r(t)(t)) is measurable
with respect to (ff X M), where the M are the Lebesgue measurable sets
in [0, T].
We tirst establish that the stochastic process (2, if, p1:),/c S, is measur-

able with respect to ( X M). Since all of the sample functions of our
stochastic process (2, :, pk) are step functions, it follows easily from the
definition (Chung [3, p. 143]) that each is separable with respect to any
dense set. This implies (Chung [3, Theorem 1, p. 143]) that the process
(2, 5:, Pk) is separable with respect to any dense set, hence it is well-
separable. Since each sample function has only a finite number of discon-
tinuities, our stochastic process is continuous almost everywhere almost
surely. From Doob [4, Theorem 2.5, p. 60] these facts imply the stochastic
process (2, if, P) is measurable with respect to (ff X M).
The function R (.,.) is measurable with respect to (ff X M), since for

each state i and action a A the set of points such that the system is in
state i and action a is used is (0, t): (t) i} l (, t): ri(t) a}, which
is measurable with respect to (ff X M).

IIence we seek the policy among the class of measurable policies which
maximizes the vector

T

(3) v ] P(t)r((t)) dt
J0

in all coordinates (each coordinate corresponding to a different initial state)
and this policy is called the optimal policy. Here we have suppressed s
(which equals zero) in the notation for the transition matrix.

4. Necessary and sufficient conditions for optimality.
THEOREM 1. A necessary and su.cient condition for a measurable policy

r(. to be optimal is that for almost all [0, T],

(4) r(f) + Q(f)(t)

is maximized over the set F by (t), where the column vector b(t) is the unique
absolutely continuous solution to

d
d--t r(r(t)) + Q(r(t)),

(T) O, O<_t<__T.

Proof. Let r’ be any measurable policy. In the following we distinguish
between P, Q, v, and r for r and v’ by writing, respectively, P, Q, v, r, and
P’, Q v, r. We now establish

(6) v- v P’[r - Q r’ Q’] dr.
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To see this we note first that since P(0) P’(0) I and (T) 0, we
h&ve

[,’(T) P’(.’)](T) [’(0) P’(0)](0) 0.

Since P’(.), P(.) and (.) are absolutely continuous the function
[(P(. P’(. ))(. )] is absolutely continuous (Graves [6, Theorem 25,
p. 203]) and therefore this function equals the integral of its derivative.
Hence,

0 7t [(P )1 dt t (P P’) q- (P P’) " dr.

By substituting (2) nd (5) into this formula we get
r

[(PQ P’Q’) q- (P P’)(-(r q- Q))] dt

T

fo [(P’- P)r -k P’(Q Q’)] dr.

Using this fact it follows that

v- v [Pr P’r’] dt [r q- Q,, r Q’g,,] dt,

which proves (6). Now if r maximizes (4) almost everywhere, the integrand
of (6) is nonnegative .e. so that r is optimal. The necessity also follows
from (6). Let r’ be a policy which maximizes (4) almost everywhere nd
assume that rr does not. The existence of such a policy r is not an issue
since (. in (4) depends on r(. which is fixed, but r’ is not necessarily
measurable since, for example, if two elements of F both maximize (4) over
the same set of positive measure, then each element might be chosen on a

nonmeasurble subset.
In order to exhibit measurable policy r’ maximizing (4) almost every-

where, it, is convenient to enumerate the elements of .F as f(1), f(2), f(N).
For fixed f F, r(f) q- Q(f)(t) is continuous nd hence measurable
function of time so that the sets Ti’ {t" f(i) maximizes r(f) q- Q(f)(t)
over f F} are measurable. If we define the mutually exclusive sets Ti by

rv l\ Ill-1 T{, r’Ti * \,=1 then the policy r’ defined by (t) {’(i)" Td is
both measurable and maximizes (4) almost everywhere. For this policy r’ the
integrand of (6) is nonpositive and strictly negative on a set of positive
measure since P’ => 0 and the diagonal elements are strictly positive. The
strict positivity of the diagonal elements is established in [9, Lemma 2.51
using a nonprobabilistic argument based on the solution of the differential
equations (2). It is a well-known result of analysis that if a nonpositive
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function on set is negative on subset of positive mesure, then the
integral over the set is negative. Therefore the return using ’ is higher than
the return from using which establishes the necessity nd completes the
proof.
The condition that (4) be maximized a.e. is equiwlent to

d(7) --d- b- max It(f) -t- Q(f)(t)},
fEE

(T) 0. Bellman considers the finite horizon Markov decision problem
in [1, Chap. 11]. He defines his system by (7) instead of deriving (7)
optimality condition.
The sufficiency of maximizing (4) lmost everywhere follows as special

case of the 2-person continuous time Markov games results of Zachrisson [11,
Theorem 11]. Zchrisson lso proved the existence of an admissible (mes-
urble) strategy maximizing (4) everywhere. However, the sufficiency of
maximizing (4) everywhere does not follow from the results of
[7] since no component of the state differential equations or the objective
function is concave in (P, Q((. or (P, r((. ), respectively.
The necessity part of Theorem 1 follows from [10, Theorem 8], where the

functions (. are the auxiliary functions of the maximum principle.
The solution of (5) can be determined explicitly by elementary methods

after noting that (2) and (5) are adjoint systems of differential equations.
THEOaE 2. For any measurable policy

T

b(s) P(s, t)r((t) dt.

From this theorem we have the interpretation of (t) as the expected
return that will be obtained on the interval [t, T] when policy is used and
the system is in state i at time t.

5. A piecewise constant policy is optimal. We now come to a main result
of this paper: a piecewise constant policy is optimal. This result holds for
other types of control problems. Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [10, Chap. 3] prove that a piecewise constant policy is optimal
for the linear time-optimal problem. There the differential equations associ-
ated with the state variables are linear in x, the state variable vector, in u,
the policy, and in (x, u) iointly. In this case, the auxiliary functions are
independent of the policy u and are analytic functions. The proof in [10,
Theorem 9, p. 117] is based on the auxiliary functions being analytic.

In our problem the differential equations associated with the state
variables are linear in P nd in Q(r(. )), but not in (P, Q((.)) jointly.
All that can be sid about the auxiliary functions is that they are absolutely
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continuous, as the solution of a system of differential equations. A useful
property possessed by an analytic function but not an absolutely continu-
ous function is that it can have only a finite number of zeros on a finite
interval.
Our proof culminates with Theorem 6. Lemma 3 is used in the proofs of

Lemmas 4 and 5. We begin with some well-known results for linear differ-
ential equations with constant coefficients. Let the vector function v(. be
defined by the following differential equations and terminal conditions:

(8)

where

v(T) ,
d__ v(t) r -t" Qv(t)
dt

v isan n X 1 vector,

Q is an n Xn matrix,

and [0, T]. Then

(9) v(t) ce

is an n X 1 vector,- rf(Q, T t) for Ot<_T,

where

Q.f(Q,t) + ..Q + . --satisfies (8) everywhere. Equation (9) can be confirmed by direct differ-
entiation.
We can write v(t) in terms of the derivatives at T by direct substi-

tution into (9) so that we have

(10) v(t) V(’) + E v(m)(/’) (t- /,)m

]EMMA 3. Let v(. and v’(. be two n X 1 vector functions defined by the
following differential equations and terminal conditions"

v( T) c, v T) c,

where

d
d-t v(t) r - Qv(t),

Q and Q’ are

r and r are

d ’(t) r’ -- Q’v’(t),d--t v

is an n X 1 vector,

n X n matrices,

n X 1 vectors,
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and [0, T]. Then if v(’)(T) v’(’)(T) for m 1, 2,..., n - 1,
v()(T) v()(T) for all positive integers i and v(t) v’(t) for [0, T].

Proof. The n-dimensional vectors, v()(T), i 1, 2, n + 1, must be
linearly dependent. This implies that for some integer j, 2 j n + 1,

.i- -v() T) dv() T) v’() T) dv’() T).
kl kl

We show by induction that for all i j,
il

v()(T) g+_,()(T)

v’()(T)

a+_v T).

Our equations hold for i j from the above equations. Now we assume
that they hold for i j, j 1, m 1, and show that they hold for
i=m"

v() T) -Q(’-" T)
2 . [(k) ,)

k:m--j

ml

- () v(i) T)In the same way v’(")(T) =,_+ d+_v (T). Since (
v((T) for i 1, 2, j 1, by the hypothesis of the lemma, and

for i j,j 1, ..., m- 1, by the induction hypothesis, v(’)(T)
(m)v (T). From representation (10) this result implies v’(t) v(t) for

all [0, T].
A method for choosing policy will now be described. It will be shown by

Theorem 6 that there is an optimal piece.so constant policy based on this
method of choosing u policy.
The intuitive ide of this choice rule is that for each point in time we

pick the set of actions which maximizes the first derivative of the vector
function and thereby stisfies the optimality conditions at this point. If
there is a tie we break the tie by considering the second derivative, etc.
Lemmu 3 is important because it says we need consider only the first n 1
deriwtives.
Given an n X 1 vector function v(t) we cn define the n 1 sets"

F(t) {f:f Fo(t) F, f mximizes v()(t,f)},
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F2(t) lf" f Fl(t),

F+(t) {f: f (t),

where

f maximizes --v(2) (t, f) 1,

f maximizes 1)nv(n/l) (t, f) },

v(1)(t, f) r(f) + Q(f)v(t),

v(J)(t, f) Q(f)v(J-1)(t
v(-" () (-)(, f)

for 2<__j<=n+l,

for any f Fj_(t).

In order to ensure uniqueness for our selection procedure it is necessary
to enumerate the finite set F as

(11) f(1), f(2), ,f(N).

We say that f satisfies the selection procedure based on v at time if f is
the element in Fn+x(t) with the lowest index according to the enumeration
(11). Usually we shall be concerned with the case v , where cor-
responds to some policy r and is defined by (5).
],EMMA 4. Consider the arbitrary measurable policy r defined on the interval

(t’, T]. The corresponding vector function is therefore defined on It’, T] (the
interval is closed since (.) is continuous). Letf* be the vector of actions picked
by the selection procedure based on (t) and set equal to f* on some interval
It", t’], t" t’. The vector function is also now defined on [t", t). Then
satisfies the selection procedure based on for It , ] for some , where
0 e t".

Proof. The first half of the proof consists of showing that if f’ FF+(t’),
then f’ F(t) for any (t’ e(f’), t’), 0 < e(f’) < t’ t", and hence
is not chosen by the selection procedure on that interval.

Since a constant policy is used for t" < < t’, the vector function #(.
is of the form (9), where T t, c (t’), Q Q(f*) and r r(H),and
therefore is infinitely differentiable so that for any l, any f F, t" N N t,
we can write the Taylor’s expansion of r(f) + Q(f)(t)"

r(f) + Q(f)(t) r(f) + Q(f)(t’)
(2)

f)() t’ (t t’ t’ ++ Q( + Q(j.)(/+l)(tf) (t
= k (1 + 1)!

where t t’. Let be the largest integer such that f’ F(t’) (where
0 n, since f’ FE+(t)). If > 0 the value of

I-

r(f) + Q(f)(t’) + Q(f)()(t’) (t-
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is equal for both f’ and f* since both are elements of the sets Fo(t’),
Fl(t’),..., F(t’). Since f’ if_ F+(t’) and f* F+(t’), the value of
(-1)Q(f)b()(t’) is strictly greater in some coordinate for f f* than
f f’ and we let this vector difference be tif’. When 0 the value of
r(f) -+- Q(f)(t’) is strictly greater in some coordinate for f f* than
f f’ and we let f’ be this vector difference. The vector function (+1)(.
is uniformly bounded in t, t" -<_ =< t, for fixed so that there is an e(f’) > 0
such that

f’ (- t’)
(--1) l!

is strictly greater for 11 t, t’ e (f’) _<_ __< t, in some coordinate than

{Q(f’)(+’) (t,) Q(f*)k(+)(t.)} (t tt) TM
(+ )

where _<_ t],, t], __< t’. This implies, using the representation (12), that
r (f*) + Q (f*) (t) is greater in some coordinate than r (f’) + Q (f’) (t)
for all (t’--(f’), t’), which proves f’

_
F (t) fort (t’ (f’), t’).

The e of our lemma is

if’rain / )/,
fF\Fn+l(t’)

which is strictly positive since F is finite.
We now consider f’ F+ (t’), f’ f*, and the differential equations

d f,[l-t C’(t) r( -t-Q(f*)f(t) for t" -< =< t,

’ (t’) (t’),
d f’ f’ t"_ t’.-d-t f r( "4- Q / for _< t=<

Since both f’ and f* F+ (t’), the first n q- 1 derivatives of k’ and ff
are equal at t’ and Lemma 3 applies so that if’ (t) ff (t) for t" <- <= t’.

This implies for all t (t", t’) that r(f*) -t- Q(y*)(t) ()(t)
=b’() (t) r(f’) -4- Q(f’)tp’ (t) r(f’) -t- Q(f’)k(t), and for 1 __< k =< n,
-Q(f*)() (t) //(k+l)(t) //t(k+x)(t) -Q(f’)’)(t) -Q (f’ )() (t ).

t’But this means the set F.+ (t) is constant for (t’ e, ). Therefore,
t’f* satisfies the selection procedure based on ff for (t’ e, ), which

proves the lemma.
In order to establish Lemma 5 it is necessary to consider a revised selec-

tion procedure. The revised selection procedure is used only to prove Lemma
5 and the original selection procedure will continue to be called the selec-
tion procedure.
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Given an n X 1 vector function v (t) we can define the n -- 1 sets"

(t {f" f F, f maximizes v() (t, f)},

’2 (t) {f: f ’I (t), f maximizes v(:) (t, f)},

F+ (t) {f: f F (t), f maximizes V
(n+l) (t, f)},

where v(1) (t, f) r (f) - Q (f)v (t), v() (t, f) Q (f)v(’-) (t), 2 __< j _<_ n + 1,
and v’-) (t) v(-) (t, f) for any f F_ (t). We enumerute the set F
as before by (11). We say that f stisfies the revised selection procedure
based on v at time if f is the element in F+I (t) with the lowest index
according to the enumeration (11).
LEMMA 5. Let be a policy which satisfies the selection procedure (original)

based on its corresponding vector function for (t, T], T. Then r

must be constant on the interval (t, - e) for some e > O.
Proof. We shall establish Lemma 5 by exhibiting the f F such that
(t) f on the interval (t, t’ + ) for some e > 0. Since (.) is continuous

it is defined also at t’, and we let f* be the unique element of F chosen by
the revised selection procedure based on (t’). Now consider the vector
function v (.) defined by the differential equations

v(t’) (t’),
d f. f.-d-iv(t) r( -q--Q( )v(t)

fort’-<_ t-<_ T.
We now show f* satisfies both the revised and original selection procedure

based on v for (t’, t’ -- e) and some e > 0 (even though f* does not
necessarily satisfy the selection procedure (original) at t’). Using the same
argument as in Lemm 4, if f ( Y+ (t’), then f Y (t) for (t’, t’ + )
and some e > 0, and if f F,+ (t’), then f F+ (t) for (t’, t’ + e) so
that f* satisfies the revised selection procedure on this interval. Also for

(t’, t’ q- e) either f ( ’1 (t) or f ’n+X (t) so that F (t) F (t)
F,+ (t). We now prove by induction on i that F(t) F(t) for 1 =< i

=< n q- 1 and (t’, t’ q- e). Fx (t) Fl(t) since both sets are defined
identically. Now we assume F(t) F(t) for i 1, 2, -.., 1, and
show it holds for i 1. The relation v(1) (.) v(1) (.) on (t’, t’ -t- e) and
the induction hypothesis imply v(t-) (.) v(-a) (.) on (t’, t’ -t- e). Since
F (t) F_ (t), the value of Q (f)v(t--) (t)} must be the same for all
f F_ (t) which implies the value of (- 1 )--1Q (f)v(-) (t)} must be the
same for all f Fz_ (t). Therefore, since F_l(t) Fz_ (t) and v(-) (t)

v(t-l) (t), (- 1 )-Q (f)v(-) (t)} must have the same value for all
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f F1_1 (t) so that F (t) F_I (t) F_ (t) F (t). Hence we can con-
clude that F+ (t) F+x (t) for (t’, t’ + e) and silce f* satisfies the
revised selection procedure o that interval, it satisfies the selection pro-
cedure (original) on that interval. We shall have shown that (t) f*
on (t’, t’ -t- e) if we can prove that v (.) (.) on this interval because
the selection procedure is unique.

Since f* F1 (t) for (t’, t’ -t- e), the differential equations defining
v(.) can be written

v(t’) (t’),
d
d--t v(t) mx (r(f) -[- Q(f)v(t))

for (tp, + e). But by hypothesis - stises the selection procedure
(original) on (t’, T) so that (t) F (t), F (t) being bsed on (.), nd
(-) lso stisfies the bove differential equations. The uniqueness of the

solution of these differential equations (see [1, Theorem 1, p. 321]) implies
p v on (t’, t’ -- e) nd completes the proof.
THEORE 6. There is a piecewise constant (from the left) policy defined

on [0, T] which maximizes (4) everywhere. This policy is optimal.
Proof. The proof is by contruction. Consider the following lgorithm

which goes through the steps (13)-(17) consecutively"

(13) Initialization; set t’ T nd (T) 0.
(14) Use the selection procedure bsed on (t’) to determine -(t’).
(15) Obtain (t) for 0 -<_ =< t’ by solving the differetil equtio

d (t) r((t’)) + (((t’))(t),

using the previous wlue of (tp) s the terminal condi/ion.
(16) Set ’ inf It" " (t’) stisfies the selection procedure on the in-

terwl (t, t’) bsed on the vector function (t)/.
(17) If t" <= 0 terminate; if t" > 0 go to step (14) with t’ t".

Because of condition (16) the policy - stisfies the selectio procedure
corresponding to " everywhere nd hence lwys lies in the set F1 (t)
for 11 t. This condition is equivalent to mximizing (4) for 11 so that
(Theorem 1 is optimal where it is defined. It remains to be shown that
there is , finite number of switches when this lgorithm is used, that the
Mgorithm goes through stels (13)--. (17) a finite number of times. From
step (16) and Lemma 4 we note that the points t,,:’, corresponding to the
value of t’ i the algorithm t the ith iteration, are strictly decreasig.
Suppose the algorithm is not finite. Let t* inf/tl. Then the policy
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(.) defined by the algorithm on the half open interval (t*, T] satisfies the
hypotheses of Lemma 5. Thus there is an e > 0 such that r (.) is constant on
(t*, t* W e), which contradicts the fact that infinitely many t lie in (t*,
t* W e). Therefore the algorithm must terminate in finitely many steps,
which completes the proof.

It should be pointed out that the implied algorithm is not practical be-
cause of the difficulty in carrying out step (16). In [9, Chap. 4] an algorithm
is presented which uses a fixed interval for the length of time the newly
obtained vector of actions 7r (t’) holds instead of the length of time deter-
mined by step (16). It is shown that by making these intervals small
enough one can obtain a policy which yields an expected return within e

of the optimal policy. This result was obtained independently by M:artin-
Lof [8] in a recent paper.

6. A bound on the number of switches when there are two states and
both communicate. In Theorem 6 it was shown that there is a optimal
policy for the finite horizon problem which has only a finite number of
switches. In the case where there are two communicating states we show
(Corollary 12) that the number of switches of the policy obtained using
the algorithm of Theorem 6 is bounded by the number of elements of F.
Whether such a result holds for the case n > 2 is au open question.
The hypothesis that both states communicate is ambiguous since two

states may communicate for one element of F but not for another. Here
we say both states communicate if there is one element f in F such that
both states communicate. This is enough to ensure that there is a y such
that the equation

(18) max (r(1, a) -t- q(21 1, a)y) max (r(2, a) q(1 12, a)y)
aE A1 aE A2

holds since the right (left) side of (18) goes to as y goes to
( and is a continuous monotone decreasing (increasing) function of y.
In [9, Chap. 5] the constant y is shown to be the expected advantage from
being in state 2 than in being in state 1 when the horizon is infinite and the
discount factor goes to zero.
From Theorem 2 we have the interpretation1 of 2(t) /1 (t) as the

expected advantage from being in state 2 than from being in state 1 at
time in the finite horizon problem. We shall show that / (.) hl (’)
moves monotonically toward the steady state value y as goes from T to 0.
From the monotoneity of :(. / (.) we can establish our desired
result that if a decision vector f is optimal at time t nd not optimal at
time t2, t2 > t, then f is not optimal for any time t, > t:. In summary, we
assume that n 2, both states communicate and y refers to the solution
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of (18). We let and . be the auxiliary functions associated with the
optimal policy obtained using the algorithm of Theorem 6.
LEMMA 7. For all [0, T],

(d d ){<0 if 2(t)--bl(t) <y,
0 ff (t) (t) y.

Pro@ The lemma is proved for the case y (t) (t) only,
since both proofs are the same. Since satisfies the optimality condition
everywhere, (5) is satisfied everywhere (the right-hand side is continuous)
aad

d
d(t) max (r(2, a) q(l[2, a)((t) (t)))

aA2

everywhere. By hypothesis y (t) (t) so that

d
dt

2(t) > max
aA2

>_ mx
aEAi

(r(2, a) q(l12, a)y)

(r(1, a) -{-q(211 a)y)

(r(1, a) d- q(2 1, a)(b2(t) 1(t)))

which completes the proof.
LEMMA 8. If f has a continuous first derivative which is nonpositive when-

ever f (t) < 0 for (a, b), then f (b) 0 implies f (r) >= 0 for [a, b].
Proof. Assume the contrary and apply the mean value theorem.
LEMMA 9. For [0, T],

.(t) --bl(t) --y >_. 0 if y >- O,

2(t) --(t) --y >__ 0 if y <= O.

Proof. The function 2 (t) (t) -+- y of satisfies the hypothesis of
Lemma 8 using Lemma 7 and is therefore nonnegative. The same thing
applies to the function 2 (t) 1 (t) y.
LEMMA 10. The function 2 (t (t) is monotone on [0, T].
Proof. If y >__ 0, then from Lemma 9, 2 (t) 1 (t) <- y for all [0, T]

which implies (d/dt) (t (d/dt) (t <= 0 using Lemma 7. In the
same way 2 (t) 1 (t) is monotone when y _-<_ 0.
THEOREM 11. Let " (i be the value of - obtained using the algorithm defined

in the proof of Theorem 6 at iteration i. Then if i > 1, r (i) -(m for all
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Proof. For the algorithm of Theorem 6 to switch from (i 1) to
(i) at some time t we must huve for some state j and some derivative

1 _<_ lc <__ n -t- 1, (-1)-() (t, f)strictly greater for f (i)than
f (i 1 and equal for all derivatives l, 0 -<_ /. To be specific, let
j 2 so that we huve the strict inequalities

r(2, (i)) q(112, (i))((t--) (t--))

> r(2,(i-- 1)) q(ll2,(i-- 1))((t, --) (t--))

and

r(2, .(i)) q(1 12, (i))((t +) (t +))

< r(2,(i- 1))- q(112,(i- 1))((t+) -(t+)).

The function (t) (t) is monotone by Lemma 10. This fact and the
two previous inequalities imply that

r(2,z(i- 1)) q(112,(i- 1))((t) -(t))

> r (2, (i)) q (1 2, (i)) ( (t) (t)

for all (t, T]. Hence (i) (m) for all m < i.
COROLhRY 12. An upper bound on the number of switches is F, the range

of the function r.

It is of interest that no such result holds in the discrete time Markov
decision problem. Brown [2, p. 1282] gives an example of a two-state finite
horizon problem where the optimal policy changes bck and forth between
two elements of F.
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A CLASS OF NONSTANDARD OPTIMAL CONTROL PROBLEMS
WITH APPLICATION TO NUCLEAR REACTOR ECONOMICS*

PAUL NELSON, JR.f AND GALE YOUNG:
1. Introduction. The problem to be studied herein is thtt of minimizing

the functional

(1) J (Xo, u) Cxo nu k(t)u(t) dt

subject to the constraint

(2) 0 <-_ u(t) <-_ min {x(t) -r(t), h(t)}, 0 -< _-< T,

where the function x is defined on the nontrivial interval [0, T] by the
initial value problem

(3) x’(t) g(t) + b(t)u(t), x(O) xo,

the functions k, r, h, g and b are given on [0, T], C is a nonnegative constant,
and x0 is constrained to lie in the given interval I, I [ql, q:] or
I [ql, for some nonnegative real numbers q, q2. The present interest
in such problems arose in connection with a study of economic models of
nuclear reactor power systems, and the primary objective of the present
work is to formulate a computationally effective algorithm which yields
a solution of the problem under conditions on the data which are satisfied
in most such models. It seems likely that the results presented will have
application to quite general economic models, but our examples will be
restricted to models drawn from reactor economics. The algorithm we
present accomplishes the above objective, and furthermore, gives a clear
picture of the structure of the solution and yields the unique solution to
the problem under only slightly specialized hypotheses. The problem is
essentially reduced to that of solving a collection of initial value problems
for certain first order nonlinear ordinary differential equation. Problems
of the latter type are, of course, quite easily solved computationally.
Throughout this work we shall make the following assumptions, in

addition to those described above, except where otherwise noted"
(HI) The functions b and k are real-valued, bounded and measurable

on [0, T] with b positive,/c nonnegative and lc/b nonincreasing.
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(H2) The function h has values in. the extended nonnegative real ium-
bers and is measurable on [0, T].

(H3) The function r is real-valued, piecewise constant and everywhere
continuous from the right in [0, T].

(H4) The function g is Lebesgue integrable on [0, T] and is such that
g-l[(_ , 0)] has finitely many topological components (i.e., maximal
connected subsets).

In the hypotheses and elsewhere, measurable means Lebesgue measura-
ble. The requirements of measurability and integrability in these hypotheses
are technical in nature. The assumptions regarding sign and monotonicity
in (H1) are reasonable in economic problems and are essential for our
results. The hypothesis that r is continuous from the right is a normalizing
assumption which is not really essential to the results, but is merely con-
venient to avoid complicating the notation. The requirements that r be
piecewise constant and g-l[(_ , 0)] have a finite number of components
can probably be relaxed somewhat, but the present assumptions seem
adequate for problems of practical interest. The hypothesis (H4) is satis-
fied, for example, if g is piecewise continuous and its graph crosses the axis
only finitely many times (i.e., g-l(0) has a finite number of components).
The problem of minimizing (1) subject to the constraints (2) and (3)

has the appearance of an optimal control problem with state variable x,
control variable u, control parameter x0 and the rather unusual feature
that the control constraints (2) depend on the state variable. A pair (x0, u)
such that x0 I, u is a nonnegative measurable function on [0, T], and the
constraints (2) are satisfied with x given by the generalized state equation

(3’) x(t) xo + g(r) dr + b(r)u(r) dr, 0 <= T,

will be called an admissible control, and au admissible control which mini-
mizes the functional J in the class of admissible controls is an optimal
control.
We note that the problem of minimizing (1) subject to (2) and (3) is

transformed into an equivalent problem of the same type if x is replaced
by x G, G an absolutely continuous function. For the transformed prob-
lem the state variable is y x G, g is replaced by g G, r by r G,
and the remaining data are unchanged. It is obvious that (H1) and (H2)
are stisfied by the transformed problem if they are satisfied by the original
problem. This shows that the results obtained under the hypotheses (H1)-
(I-I4) actually can be applied to seemingly more general problems of the
form (1)-(3) in which (H1) and (H2) are satisfied, and r can be decom-
posed into the sum of a piecewise constant function and an absolutely
continuous function G such that g - G’ satisfies (H4). This observation
will be quite useful in the applications.
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Optimal control problems with constraints which depend on the state
variable have been studied by several authors. Cesari [4] gives an existence
theorem which is sufficiently general to apply to the present problem.
Berkovitz [2] extended the maximum principle to problems with constraints
containing both state and control variables, with essentially the restriction
that each constraint either contain the control variable explicitly or be
defined by a strict inequality. He later [3] generalized these results to in-
clude problems with one constraint containing only the state variable and
defined by a weak inequality. Hestenes [6, Chap. 7] gives a form of the
maximum principle for problems which he calls the general control problem
of Mayer, his treatment being essentially limited to the same restrictions
as the first mentioned article of Berkovitz. Guinn [5] has studied the possi-
bility of extending Hestenes’ results to include problems with an arbitrary
number of state space constraints. None of these extensions of the maxi-
mum principle applies to the present problem because equality holds on
both sides of the constraint (2) at any point of the form (t, x, u)

(t, r(t), 0), and arcs through such "singular" points are excluded from
consideration in all of the works cited above. Particularly, in regard to
Hestenes’ work, there is no program [6, p. 303] associated with any such
point. One of our main results (Theorem 6) is to the effect that, under
certain conditions, the optimal control necessarily contains such singular
points.
The problem can be given an equivalent formulation without explicit

mention of the variable x by using (3’) to replace x in the inequalities (2).
For the special case h -- and I a singleton set {x0}, this leads to a
continuous linear programming problem as studied by Tyndall [11] and
by Levinson [7]. Tyndall’s existence theorem applies only to the special
case in which b and r are constant and

xo + () d + r(t)

is nonnegative for [0, T]. The existence result of Levinson applies to
the special case described above under the hypotheses (H1)-(H3), with
(H4) replaced by the requirement that g be merely Lebesgue integrable
on [0, T]. Thus Levinson’s theory gives a more general existence theorem
for the continuous linear programming cse thaa results from the construc-
tion we describe. Tyndall [12] h.s recently extended his results in such
manner as to avoid the restriction to constant b nd r.

Bellman, Fleming and Widder [1] consider a problem with constraints
of the type (2) with r - 0, h + , general integral cost functional (1)
and autonomous nonlinear state equation (3). Their results on the struc-
ture of the solution are perhaps nearer in spirit to those of this article tha
are the results of any other reference.
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A maximum principle would not be particularly interesting for problems
of the exact type we consider, since the solution is described by our algo-
rithm in considerably more detail than would be afforded by the first order
necessary conditions of such a principle. However, an extension of the
maximum principle to include problems with constraints of the type (2)
might be of interest for more general state equations. In particular, we note
that the construction we describe yields an optimal control which is a
"bang-bang" control in the sense that equality holds on one side of the
inequality (2) at all times. It would be interesting to know whether this
result holds for general linear state equa.tions.

In 2 we find necessary and sufficient conditions for existence of admissi-
ble controls. Section 3 contains a description and proof of effectiveness of
the algorithm for the special case k/b <= C, and 4 contains the extension
to the general case. Section 5 is given over to a proof that the optimal
control constructed in 3 and 4 is the unique optima], control if l/b is
actually decreasing rather than merely nonincreasing. Finally, 6 and 7
contain examples from nuclear reactor economics.

2. Existence of admissible controls. The main objective of this section
is to give a necessary and sufficient condition on the data of the problem
for existence of admissible controls (Theorem 1). First we give a few
preliminary definitions and prove a lemma which will be used frequently.

If $1, $2 are measurable real-valued functions with the same domain,
then $1 -< $2 means S(t) <= S(t) for almost all in the common domain
of the S, and S < S means S(t) < S2(t) for almost all such t. The
meaning of the symbol >_- as a relation between measurable functions is
now clear. If a is a constant, then a will also denote the function whose
value is everywhere a and all restrictions of this function. Addition of
real-valued functions with a common domain is defined as usual. The class
of Lebesgue summable functions on the measurable subset A of the real
line will be denoted by I(A), and LX(A) is the set of equivalence classes
of elements of (A) under the equivalence relation of equality almost
everywhere.
The real-valued Lebesgue measurable function f defined on the interval

[0, to] will be called a solution on [0, to] of the nonlinear Volterra integral
equation

(4) ,w(t) S(t) -t- b(r).min {w(r) r(r), h(r)} dr

in the uknown w, where b is as described in (H1) and S is .t given measura-
ble function (:)n [0, to], if (4) holds for every [0, to] when w f. The
integral in (4) is to bc ttken as a Lcbesguc integral, and in particular this
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itegral exists for every [0, to] if w f and f is a solutiot of (4) on
[0, to]. A similar definition of solution will be taken for integral equations
of the type (4) over more general intervals.
LEMMA 1. If S 31([0 T]), then the integral equation (4) has a unique

solution WS in 1([0, T]). Furthermore, if $1, $2 21([0 T]) and SI <- S2
(respectively $1 < $2), then WS <= WS. (respectively WS < WS2).

Proof. For given real a, measurable and essentially bounded B on [0, T],
and functions S, w 31([0, T]), we denote by K(S)w the function whose
value at [0, T] is given by the right side of (4). It is obvious that K(S)
is an operator from 31 ([0, T]) into itself and induces, in a natural manner,
operators on J3([0, ]) and L1([0, r]) into themselves for r =< T, which
latter operators will also be called K(S). Since 0" (x, t) --+ rain {x

r(t), h(t)} satisfies a Lipschitz condition i x with unit Lipschitz con-
stant uniformly in [0, T], it is true that K(S) is a contractive mapping
of L([0, r]) into itself for r < 1/bo where b0 ess sup {b(t) [0 -< =< T]
and we use the usual L-norm. It follows easily from the contractive
mapping theorem and the requirement that the equality (4) hold for all
in [0, r] that (4) has exactly one solution it ([0, r]). By a standard
argument the solution can be successively extended uniquely over intervals
of length r until it covers all of [0, T].
The contractive mapping theorem also implies that the sequence

{K(S)w} converges to WS relative to the 1([0, r])-seminorm as n --+

for arbitrary w 3([0, r]), where K(S) is K(S) iterated n times. Ob-
viously $1 =< $2 and w _<- w imply K(S1)wl =< K(S)w. A simple induc-
tive proof then shows that $1 =< S implies K (S)w =< K (S)w for arbi-
trary w ([0, T]) and natural mmber n. But the quasi-order -< is

3-semmorm, and thereforepreserved under limits with respect to the
WSt(t) =< WS.(t) for almost all in [0, r]. Ott [r, 2r] the solution WS
of (4) is also a solution of the integral equation

w() () -t- b().min {w() r(s), h()l d

in the unknown w, where

N() S() -t-- b().min {WS() -’r(), h()t d.

Then obviously S _-< S implies N1 _-< and, repeating he argumen given
above for [0, r], we find S. _-< N implies WSI() _-< WS2() for almos all
in [r, 2r]. This result a,lso may be successively extended over intervals

of length r until t-tll ot" 10, 7."] is covered.
Now suppose S < S, 4) is nondeereasing it x for fixed t, and let w
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WS. Then the result jus proved shows that

b(r).min {wt(r) r(r), h(r)} dr

<= b(r).min {w(r) r(r), h(r) Idr

for all in [0, T]. Combining this wigh St < S and the fact that he w
are solutions of (4), we see that w < w. This eompleges ghe proof of
Lemma 1.
Remark. Resulgs similar to Lemma 1 hold for he lower limig of

in.tegration in (4) replaced by arbitrary 0 I0, T]. In particular, if S,
S ([0, T]), S

_
S on [10, T] (respectively [0, 0]) and wt, w are ghe

eorresponditg solutions of () wigh ghe lower limig of integragion 0 (re-
spectively upper limig l0 and lower limig ), ghen wt =< w on [0, T] (respee-
gively [0, 0]) with, furghermore, sgrie inequality for almos all such
if strict inequaligy holds for the S. These resulgs will be used laer in his
article.
THEOREM 1. If I [1, q2] for nonnegative real numbers ql q2 such that

ql <= q2 (respectively I [q, o) for some nonnegative real number
then admissible controls exist if and only if the solution w of the integral
equation

(5) w(t) q2 -k g(r) dr -b b(r).min w(r) r(r), h(r)} dr

,’atisfies w >-- r (respectively satisfies w r for all suciently large q,).
Proof. Sufficiency of the condition described for existence of admissible

controls is obvious. For if w as described exists and Uo(t) min tw(t)
r(t), h(t)}, then (q, U0) is an admissible control, since continuity of

w and piecewise continuity of r imply w(t) -> r(t) for all [0, T]. Now
suppose (a, u) is an admissible control with associated state variable x.
Then x W(a + ), where

S(t) g(r) dr -b b(r) [u(r) rain {x(r) r(r), h(r)}Ida.

The integrand in the second integral is nonpositive by (2), and Lemma
then shows that W(a0 + S0) _>- W(a -k ) _>- r for all a0 >- a, where

So() (r) dr. This completes ghe proof of Theorem 1.

Remark. If the definition of admissible control is modified to require
the inequaligy (2) to hold only for almosg all in [0, T], hen he sgaemen
md proof of Theorem 1 remain valid if (Ita) and (H4) are replaced by
ghe weaker requiremeng ghag belong go 1([0, T]) and r be measurable
on [0, T].
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3. The case C ->- (l/b). In this section we describe and prove the effec-
tiveness of an algorithm for constructing an optimal control under the
additional hypothesis C >= (k/b). Under this condition the parameter x0
is essentially removed from the problem, since x0 should obviously be
selected as small as possible in consonance with the constraints (2) and
(3). The remainder of the construction is guided by the principle of con-
centmting the nonzero vlues of u(t) t lues of as lrge s possible.
This idea originally arose intuitively from economic models.
From (H3) and (H4) we can partition the iuterwl [0, T] by 0 a z

< a < < z < a+ < z+ T for some natural number N, where,
for 1 n N, a a+, r is constant on [a, a.+), g(t) 0 for almost
all [a, z.], and g(t) 0 almost everywhere in [z, a+]. These
conditions uniquely determine the a, z. Indeed z sup [a., T] r(t)

r(a) and g(r) 0 for almost all [a, t]}, an+ sup {t [z, T]]
r(t-) r(a,) and g(r) < 0 for almost all r [z, t]}. Note that a+ z
if and only if r(z) r(a). Existence of finite N as above is essentially
due to the fact that each z is either point of discontinuity of r or a left
endpoint of a component of g-[(- , 0)].

Let

R max {r(0), q,
and extend the definition to n 2, N 1 by

R+ mx r(a), r(a+), R + g(r) d

For 1 n N and [a, a+] we define

(a) v,(t) + () d.

Let P+I R+, and assume P+ has been defined for some n 1 with
the property P.+ R+. Let w be the solution w of the integral equation

() P+ + a()

+ b(r).min {w(r) r(r), h(r) dr.
n+l

If w(t) > v(t) for all [a, a,+], let P. w(a) > v(a) R.
If w(t) v(t) for some 6 [a, a,+], let P v,(a) R. This defines
P R in all possible cases, since the situation Wn < V on [a, a+] is
impossible because Wn(an+l) Pn+l Rn+l vn(an+l). In the first case
we define

Xo(t) w(t), Vo(t) rain {w(t) -r(t), h(t)}
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for [an, an+l). In the second alternative let

rn sup {t Jan, a,+l) lVn(t) Wn(t)}
and define

Xo() (t),

o(t) w(t),

U0(t) =0 for [an,’n),

Uo(t) min Iwn(t) r(t), h(t)} for [Tn an-I-l).

Finally, to complete the definition of X0 and U0 on [0, T], let Uo(t) 0,
Xo(t) vx+(t) fort [aN+l, T].
TEOnEM 2. Suppose C >= lc/b and admissible controls exist. Then

(X0(0), U0) is an optimal control with associated state variable Xo, where
Xo Uo are defined above.

It is convenient to give two lemmas before proceeding with the proof
of this theorem. Note, for later use, that the lemmas do not require the
assumption C >= l/b.
LEMMA 2. W,,(t) > r(an) for all in [zn an+l), n 1, N.
Proof. Suppose Wn(r) <--_ r(a,) for some r [zn, an+). Then (7) gives

(t) -r(a) <= g() ds + b(s)[w(s) r(a,,)] ds

for all [r, an+], and application of the generalized Gronwall’s lemma
[10] yields

W,t(an+l) r(a,,) + g(s) exp b(y) dy ds < r(a,,).

Bllt wn(an+l) Pn+ ->- r(an) by virtue of P,+ ->_ R,+I and the definition
()f the sequence {Rn}. This contradiction establishes the lemma.
LEMMA 3. If (Xo, U) i8 an admissible control with[ corresponding slate

variable x, then x(t) >_ Xo(t) for all in [0, T].
Proof. First note that the sequence of inequalities x(an) ->-- Rn,

n 1, N A- 1 is easily established by induction. In particular, the
inequality x(av+) >-_ R+ Pv+, with (2), (3) and the definition of
X0 on [a+a, T], implies that x _>- X0 on [ax+a, T]. Now we make the induc-
tive assumption that x > X0 on [an+a, T] for some natural number n,
1 =< n N. If Pn R,, then the previously established inequality x(an)
>_ R,, with (2), (3) and the fact that X0 Vn on [an, ’,), shows that
x _-> X0 on [an, ’n). Thus in order to prove x -> X0 on [a,, a,+) it remains
only to prove that the situation x(r) < X0(r) w,(r) cannot prevail
for any [an, an+) such that X0 wn on (, a,+). If such does exist,
then., for [, an+), x and Xo satisfy the respective equations

x(t) x() + g(.)
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Xo(t) Xo() +

-t- b(s). [u(s) min x(s) r(s), h(s) }] ds

-t- b(s).min {x() -r(s),h(s)} ds,

(s) ds + b(). rain Xo(s) ’’ (s), , (s)g

The itegrand of the second integral in the iirst of these equations is
positive by (2). But (the remark following) Lemma 1 now implies X(an+)
< Xo(an+), which contradicts the inductive assumption. This completes
the proof of Lemm 3.

Proof of Theorem 2. It is n esy consequence of their definition that
X0 and U0 stisfy the generMized state equation (3’). Furthermore, they
also stisfy the constraint (2), provided only that X0 >_- r. Therefore in
order to show (Xo(0), U0) is n dmissible control it is only necessa,ry to
prove X0(0) I nd X0 >= r.
From the definition of the {Pn} nd X0 we have X0(0) P ->_- R q.

If I [q, this lredy shows X0(0) 6 I. Thus we ssume I [q, q2]
for some finite q2. But there exists n dmissible control with associated
state variable x. The stnte vrible x must stisfy x(0) =< q2, a,nd Lemm
3 shows that Xo(0) =< z(0), therefore X0(0) =< q. We hw now shown
X0(0) I in all possible cses.
Note that vn is nondecreasing on [an, z], decreasing on [z,, a,.+l] and

t,herefore, since R, >= r(a,), there exists h [zn, a+l] such that vn r(a)
is nonnegative on [an, h,] and negative on (h, a+l]. For intervals [an, a,+l]
on which wn > Vn, this fact, with Lemma 2 and continuity of Wn, shows
that Xo[[an, an+) wn is greater than r [a,, a+). Now suppose the
graphs of vn and w cross over [an, a+], and let

sup {t [a,, a,+l]lV,(t) Wn(t)}

as above. Then Vn (r,) W,(r) by continuity, and furthermore the com-
mon value of v and wn at r is nonnegative because v is nonnegative on
[a, z] and w is nonnegative on [z, a+]. Therefore, r -<_ h, and
Xol[an, rn] V ][a, r] is greater than or equal to r(a). Now (the
remark following) Lemma 1 shows that Wn >= V on [r, hn], but vn => r
on [r, hn], therefore w >= r on [rn, hn]. But Lemma 2 and the fact that
z _<- h imply w >_- r on [h, an+]. The last two sentences show that
X0 [r, a+) w [r, a+) is greater than r, and thus we have shown
Xo r is nonnegative on [a, an+) in all possible cases. Since X0 r is
trivially nonnegative on [a+, z+], we have X0 >= r on all of [0, T], and
(X0(0), Uo) is an admissible control.
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Let (Xo, u) be an arbitrary admissible control. We want to show

Cxo + k(t)u(t) dt >= CXo(O) + l(t)Uo(t) dt

in order to prove (Xo(O), Uo) is m optimal control. Lemma 3 shows that
Xo(O) _-< Xo. Let to be defined by

(8) to sup [0, T]lXo(0) + b(r)Uo(r) dr =< x

If to T, then

CXo(O) +
(9)

lc(t) Uo(t) <= C Xo(O) + b(t) Uo(t) dt

<= Cxo

__< C’ o +

lc(t)u(t) dt- lc(t)Uo(t) dt k(t)[u(t) /7o(t)] dt

fo
r lc(t) b(t)[u(t) [7o(t)] dt

(la)

b(O)
b(t)[u(t) [7o(t)] dt

O,

where the lst equMity in this chain comes from the second mean wlue
theorem for Lebesgue integrMs [9, p. 134], redefining (k/b)(T) 0 if

Therefore we may assume to < T, in which case

f,,to(10) Xo(0) + b(t) Uo(t) dt xo,

and Lemma 3 shows that

(11) b(r)u(r) dr >= b(r) Uo(r) dr, to <= <- .’.

If 7o is defined by 7o(t) Uo(t) for to < =< T, 7o(t) 0 for 0 =< _-< to,
then the last inequality may be written as

(12) b(r)[u(r) 7o(r)] dr

_
O, 0 _6 <= T.
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necessary, tl being some point of [0, T], and the inequality comes from (12).
But (10) yields

foCxo CXo(O) zc Cb(t) go(t) dt

(4)

fo’>= CXo(O) + c(t) Uo(t) dt,

and the desired result follows from the last two inequalities. This completes
the proof of Theorem 2.

4. The case C l/b. In this section we construct an optimal control
for the case in which the inequality C >= l/b does not hold by suitably
modifying the functions X0, Uo defined in the preceding section. Note
that Xo and U0 are well-defined regardless of the validity of the inequMity
c >__ l/b.

Since C < k(t)/b(t)for some [0, T], the mmber To sup lt lC
< lc(t)/b(t)} is well-defined. Let yl be given by

yl(t) Xo(To) + .q(v) dr, 0 <= To,

and if I is bounded above let y be defined by

y, (t) q - g(r) dr, O<=t<=To.

The remark following Lemma 1 (with b 0) shows that yl -> Xo on
[0, To], and consequently ql -< P X0(0) =< y(0). Therefore, y(0) I
if I is unbounded above, and for I [q, q2] either yl(0) I or y(0) > q2.

In the event yl(0) I let X(t) Xo(t), U(t) Uo(t) for in (To, T]
and X(t) y(t), U(t) 0 for [0, To]. If y(0) I, then.y2 is well-
defined, y. < y by Lemma 1, and consequently T1 sup {t [0, To] y_(t)

X0(t)} exists. In this case we define X(t) Xo(t), U(t) Uo(t) for
(T1, T], X(t) y(t), V(t) 0 fort [0, T1].

THEOREM 3. If C < lc(t)/b(t) for some [0, T], then (X(0), U) is
an optimal control with associated state variable X, where X and U are as
defined above.

Proof. The definition of X shows that X(0) I. Furthermore, Lemma
1 implies X >= X0 and the argument that X0 is greater than r as given in
the third paragraph of the proof of Theorem 2 is still valid. Therefore,
(X(0), U) is an admissible control.
Let (x0, u) be an arbitrary admissible control. The proof that J(xo, u)

>= J(X(O), U) will be broken into two cases, according as x0 > X(0) or
x0 -< X(0). First consider the case x0 > X(0), which can only occur if
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yl(0) I. The procedure for this case is similar to that in the proof of
Theorem 2. W(; refer to equations in theft proof with the understanding
that a,lwys Xo, Uo are to be replaced by X, U, respectively. Let
deiincd by (S). If/o .’, the, otusing U(t) 0for0 _-< Toand
C >- k (t)/b (t) for To =< _-< T, we obtain the inequality (9), and this shows
J(xo, u) >= J(X(0), U). If to < T, then (10) holds, and this implies
to > To since U 0 on [0, To]. Because X Xo on (To, T], Lemma 3
again yields (11), equation (12) holds with 57(t) U(t) for to < -_< T,
l_-7(t) 0 for 0 -_< _-< to, (13) follows exactly as before with 7o replaced
by ?, and (14) follows from (10), U 0 on [0, To] and Cb
IT0, T]. But (13) and (14) easily yield J(xo, u) >- J(X(O), U).
Now suppose Zo x(0) _-< X(0). Let T, To or T1, according as

yl(0) is in I or not. Lemma 3 shows that X(T,) Xo(T,) <- x(T,),
and consequently, tl sup {t [0, T,] Ix(t) <-_ X(t)} is well-defined.
Furthermore, X(h) x(tl) by continuity, and this implies

(.5) x(o) z(o) (t).lu(t) u(t)} d.

But C <= k/b on [0, h] by h -<_ 7’0 and the fact that k/b is nonincreasing;
therefore,

f0 ’1
(10) C[X(0) x(0)] =< k(t){u(t) U(t)} dr.

We also have the inequality

(17) b(r){u(r) U(r)} dr O, tl <= <-_ T.

Forh<= t-<_ T,,(17) comesfromU= 0 on [h T,], and for T, =< t-< T,
it follows from (15), Lemma 3 and X X0 on IT,, T]. But, again applying
the second mean value theorem for Lebesgue integrals, (17) gives

(18)
,(){u() u(,)} d

b(,){u(,) U(,)} d, >= 0,

where t. is some point in [h, T]. Combining (16) and (18) we have J(xo, u)
J(X(0), U). This completes the proof of Theorem 3.

5. Uniqueness theorems. In this section we show that the optimal
control constructed in 3 and 4 is the only optimal control provided k/b
is actually decreasing rather than merely nonincreasing. The following
lemma is the key result underlying the proof of uniqueness.
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LEMMA 4. Let f be decreasing and g integrable on the nontrivial interval
It1, t], and further suppose"

(i) g(r) dr >= 0 for all in [tl, t];

(ii) there exists t Its, t:] such that g is nonnegative almost everywhere
in [tl, ta] and is positive on a subset of [tl, ta] having positive measure.

Then f(r)g(r) dr > O.

Proof. We my ssume, without loss of generality, that g is positive on
nonnull subset of Its, t + ] for every ) O. The second me wlue

theorem for integrals then gives

f(r)g(r) dr f(tx) g(r) dr + f(ta) g(r) dr

+ () (,) + () () d

() () + (t) -()1 ()

+() ()l () ,
where l < r < a N r N , he sgrie inequalities coming from he faeg
ghag is nonnegagive on [t, ]. Bug ghe firsg gwo erms in ghis expression
are nonnegaive; and he hird is posigive because is positive on a nonnull
subseg of [, r]. his eompleges ghe proof.
o . If k/b ad k/b i decreai on [0, T], he he opEmal

control (X0(0), Uo) conrced i i he iqe opEal control, a lea
p o crol variable u which are almo everghere equal o U

Proof. The nogagion of a, and especially ghag of ghe proof of Theorem
2, will be used exensively in ghe preseng proof. Leg (z, ) be an admissible
control. Lemma a shows hag zo X0(0). The inequaligies (la) and (14)
again hold, and furghermore in he preseng problem srie inequality holds
in (14) if , > 0. Bu to > 0 is equivaleng go X0(0) < zo. his proves
gheorem for ghe ease Xo(0) zo, so we assume heneeforgh ghag X(0)

z, and differs from Uo on some se of positive measure.
Le m be he smalles natural number such hag differs from U0 on

a nonnull subseg of [, +], where + T. If w > v on [, +],
le r , and ogherwise leg r be as defined in . We claim ghag aegually
r > and () > Uo() 0 for all in some nonnull subseg of [a, r].



29Z]: PAUL NELSON JR. AND GALE YOUNG

For if this is not so, then u Uo on [0, r,,,), x(r,) X0(r), where x
is the state variable associated with (x0, u), and (the remark following)
Lemma 1 shows that x(t) <_-. Xo(t) for [rm, an]. But Lcmma 3 implies
x(t) >= Xo(t) for [rm, am]. Therefore z(t) Xo(t) for all
which implies u(t) Uo(t) for almost all in [rm, am] by absolute con-
tinuity of x and X0. But this is not possible by the definition of m. There-
fore, u(t) > Uo(t) for all in some nonnull subset of [am., rm], and this
obviously necessitates rm > am. Invoking Lemma 4, with g b. (u Uo)
and (i) being satisfied by Lemma 3, we find

k(t)[u(t) Uo(t)] dt -- b(t)[u(t) U0(t)] dt > O.

Since /() [() U()] d O, and x X(O), this shows hat

J(z., ) > J(X(O), U.), and the proof of ghe gheorem is complete.
THEOREM 5. If C > O, C < k(t)/b(t) for some [0, T] and lc/b is

decreasing on [0, T], then the optimal control (X(O), U) constructed in 4
is the unique optimal control, at least up to control variables u which are
almost everywhere equal to U.

Proof. The notation of 3 and 4 will be used freely. Let (x0, u) be an
arbitrary admissible control with associated state variable x. For the case
x0 > X(0) we proceed precisely as in the second paragraph of the proof of
Theorem 3. However, in the present case, if to T the first inequality in
the chain .(9) (with, always, X0, U0 replaced by X, U, respectively) is
strict if U0 is nonzero on a nonnull set, and the second inequality in this
chain is strict otherwise. If to < T, then the inequality (13) again holds
(with 0 replaced by as defined in the proof of Theorem 4) and strict
inequality holds in (14). This shows J(x0, u) > J(X(0), U) in all possible
cases for which x0 > X(0). In the event x0 < X(0) we again have the
inequalities (16) and (18), but now strict inequality prevails in (16),
and therefore again J(xo, u) > J(X(O), U).
The only remaining case is x0 X(0), for which case we may assume u

differs from U on a nonnull set. Then, arguing essentially as in the second
paragraph of the proof of Theorem 4, we conclude that either u > 0 on
some nonnull subset of [0, T.], or there exists a natural number m such
that am >- T., u U almost everywhere on [0, am], and u(t) > 0 for
in some nonnull subset of Jam, rm]. In the first case we let a 0, in the
second a a. In either event Lemma 4, together with Lemma 3 and the
assumption X(0) x0, implies

tc(t)[u(t) U(t)] dt -(t) b(t)[u(t) U(t)] dt > O.
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But u(t) U(t) for almost all such that 0 <= <- a, and x0 X(0);
thus this inequality implies J(xo, u) > J(X(O), U). This completes the
proof of Theorem 5.
The following result is of interest because it shows that, under certain

conditions, the only optimal control contains a singular point as described
in 1, and therefore present versions of the maximum principle are not
useful in dealing with such problems.
THEORE 6. Suppose C > 0 and k/b is decreasing on [0, T]. If C > tc/b

let T. 0; otherwise let T. be as defined in the proof of Theorem 3. If ql

J, g(r) dr <-_ r(t) for some [T., T] and C > l/b (respectively,+
C <-_ k(t)/b(t) for some [0, T]), then there exists a point IT., T]
such that Xo(t) r(t) (respectively X(t) r(t) ).

Proof. We shall merely outline the proof. Let u denote the optimal con-
trol variable, x the associated state variable, and suppose x(t) r(t) for
all [0, T]. If x(0) > ql, then Gronwall’s lemma shows (x(0) e, u)
is an admissible control for sufficiently small positive e, and obviously
J[x(0) e, u] < J[x(0), u], contradicting optimality of (x(0), u). There-

fore x(0) q. Bug ql -I- (r) dr =< r() for some >_- T,, and con-

sequently > 0 on a nonnull subseg of [T,, T]. Leg e > 0 be such
thatz() r() >= e for all [0, T], and ’ [T,, T] such that e

>-_ b(r)u(r) dr > 0, and define (t) u(t) for t [0, ],

(t) 0 for t ([, T]. Then (x(0), ) is an admissible control, and
J(x(O), ) < J(x(O), u), which contradicts optimality of (x(0), u),
and completes the proof of the theorem.

6. The one-reactor problem. In this section we apply the theory devel-
oped previously to the following model of a nuclear reactor power system.
A specified power level P(t), defined for tirnes satisfying 0 =< =< T, is to
be supplied by nuclear reactors of a given type. The function P is, of course,
nonnegative. A single reactor of the type considered is characterized by its
power output p, fuel inventory m, operating cost per unit time K, and net
fuel breeding rate b. The parameter b may have either sign, but the case
b =< 0 is shown below to be trivial. The other reactor parameters are assumed
to be positive. The amount of fuel available from natural sources at no cost
is q, also assumed positive, and no more fuel is available at any price. One
can consider this assumption an approximation to the situation in which
there are two grades of ore from which fuel is obtained, one grade being of
extremely high quality and the other of very poor quality. If money is
discounted continuously at discount rate , >= 0, and n(t) denotes the



296 PAUL NELSON, JR. AND GALE YOUNG

number of reactors in operation at time t, then the present net worth of the
cost of operation over the planning period [0, T] is

(19) g(n) K e-n() d.

The requirement that the specified power level be achieved means n must
satisfy

P(t)
(20) n(t) >= 0 <= <= T,

P

and the inequality

(21) b fo n(r) dr mn(t) -at-q >= O, 0 <-_ <= T,

must be satisfied in order that the system at no time use more fuel than is
actually available.

Henceforth we suppose P ’([0, T]). Let u(t) n(t) [P(t)/p].
Then n minimizes (19) if and only if u minimizes

T

(22) Jr(u) K fo e-tu(t) dt.

The constraints (20) and (21) are equivalent to

P(t)
(23) 0 <__ u(t) <= S(t) -, 0 <= <- T,

P

where S(t) is the total number of reactor loads of fuel available at time t,
and is defined by

(24) S’(t) b{ Pt)} S(O)
q

u(t) +--- =--.
m m

The problem defined by (22)-(24) is of the type defined by (1)-(3). We
shall henceforth adopt the terminology used earlier for the abstract problem.

If b =< 0, then there exist functions u satisfying (23) with S given by
(24) if and only if

q__
"["

b it P(t)
(25)

m Jo P(r) dr >= 0 <- < T.
p

Furthermore, if this inequality does hold, then u 0 satisfies (23) and
obviously minimizes Jr in the subclass of 1([0, T]) whose elements u
satisfy (23). This completely solves the problem for the case b -< 0. The
interpretation of these results is that, for a burner reactor, the best one can
do is to just meet the minimal power demand, l:f no fuel shortage develops
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under a policy of just supplying the power demand, then this is the optimal
control. If a fuel shortage does develop under such a policy, then a shortage
also results from any other admissible control, and the power demand can-
not be supplied under the prescribed conditions.
However, if b > 0, then one has a breeder reactor, and there is the pos-

sibility of breeding sufficient fuel at early times to avoid a later shortage.
For this case the data of the problem defined by (22)-(24) satisfy (H1)
and (H2), and the results of 2 show that admissible controls exist (with
(23). required to hold only almost everywhere in t) if and only if

(23’)

where

(26)
Pq bt/,--e >= P(t)
m

for almost all in [0, T].
Suppose b > 0 and P r0 P0, where r satisfies (H3) and P0 is an

absolutely continuous function. Then, defining x S [Po/p], we find
the above problem is equivalent to that of minimizing (22), subject to

0 < u(t) < x(t) .r0(t)
P

l f } b q Po(O)
-u(t), x(O)(24’) x’(t) P(t) Po(t) -t- m m p

The data of the problem (22), (23’), (24’) satisfy (H1)-(H4) if (b/m) P
P0’ satisfies (H4), and the results of 3-5 are directly applicable to the

problem in this event. Since I (q/m) P(0)/p} is a singleton set, the
problem remains unchanged if Cxo is added to (22) and Jr is regarded as a
function of x0 I and u. Thus, taking C sufficiently large, it is clear that
the solution to this problem is described by the results of 3, and further-
more this is the unique solution if , > 0.
A special case of some interest is that in which b > 0, P is absolutely

continuous, and (b/m)P- P’ is nondecreasing. In this event P P0,
and the optimal control u0 is given by

fxo(t) if tl _-< t2,uo(t) \o otherwise,
where

A It [0, T]l(b/’m)P(t) P’(t) >= 0},

finf A if A is nonempty,
otherwise,

yo( t) q- P(t) b fom- p - p P(r) dr, 0 <-_ <= T,
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R max 0, y0 (t.) },

[R + pP(t2) P(t)p 0

_
t<__ T,Xo(t)

B {t [0, tl]l xo(t) yo(t)},

tl={upB ifBisnonempty,
otherwise.

Note that if R y0(&) = 0, then tl t2, and u0 is everywhere 0. Thus the
interesting case is R 0, which corresponds to y0(&) =< 0. In this situation
Xo(&) 0 >= y0(&),and if (26) holds, then

x0(0) -P(&) e-bt2/’
P(O) <= q P(O) yo(0),

p p n p

and therefore B is nonempty, t sup B. The number of reactors no and
fuel stockpile So corresponding to the optimal control for the case R 0
are illustrated qualitatively in Fig. 1. The same control, with u0 extended
beyond t. as zero, is optimal for any T => inf A.

pq

0

P
Pn0
p6’0 Im

.2’ /
P POWER DEMAND

no= NUMBER OF REACTORS IN USE UNDER
OPTIMAL POLICY

AVAILABLE FUEL UNDER OPTIMAL
POLICY

nO JUMPS AT II,OTHERWISE THE CURVES
ARE CONTINUOUS

0 1 2

TIME --,.

FG. 1. Optimal policy for the one-reactor problem, b > O, P absolutely continuous,
(b/m) P P’ nondecreasing
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We note in passing that a solution of the special case 0 of the problem
considered in this section has been given previously [8]. The previously
described solution is, in general, different from that given by the present
theory, as may be seen from the special case just considered. This shows that
the uniqueness theorems of 5 cannot be generalized to include situations
in which (k/b) is merely nonincreasing.

7. The two-reactor problem. A specified amount of power P(t) is to be
supplied for times satisfying 0 =< _-< T, where T is a given positive num-
ber, by a reactor system composed of two types of reactors. The two types
of reactors are assumed to use the same fissionable material for fuel. Each
reactor type is specified by its power output p, fuel inventory m, net
fuel breeding rate b, and operating cost per unit time/c. To avoid triviali-
ties we assume at least one p;, say pl, is positive. The parameters ml,

m2, k,/2 are positive, p. is nonnegative, and the b hve arbitrary sign.
We assume there is available from natural sources an amount q0 of fuel at
unit cost C > 0, and that there is no more fuel available from such sources
at any cost. We let n(t) denote the number of reactors of type i in operation
at time t. It is required that the system operate so as to supply exactly the
required amount of power,

(27) plni(t) --p2n(t) P(t), 0 <= <= T,

and the n must be nonnegative

(28) 0 <-_ n(t), 0 -< n(t), 0 <- <-_ T.

We assume zero discount ra.te, so the functional to be minimized is

f
T

ni(t) d 2 fo
T

(29) /r(q, nl, n) Cq -{-- k + n(t) dr,
,!0

where q [0, q0] is the total amount of fuel purchased from natural sources,
and the constraint

must be satisfied. This constraint simply says that no more fuel can be used
at any time than is actually available at that time. The fuel purchased
externally is assumed to be available initially, which is permissible since
there is no advantage to delaying the purchase.
We use (27) to solve for n in terms of n2. If we use this result in (28)-

(30), and write u for n, then the problem is transformed into the equivalent
problem of finding (q, u) which minimizes

T

(3) (q, u) Cq + dt
’o
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subject to the constraints:

(32) 0 < u(t) < P(t)
p

(33) tu(t) <= S(t) m--A P(t),
pl

where S(t) is the fuel available at time and is defined by the initial value
problem

b_ P(t) S(O) q [0, q0].(34) S (t) u(t) + P
Here the constants , and are defined by

= - (P),
m2- ml

If p 0 hen he righg-hand inequaligy in (g2) is o be inerpreged as no
constrain.
We shall assume in ghe folloMng gha 0, which can always be

eomplished by ingerehanging he subscripts if necessary. We shall also
assume ha > 0, which does involve some loss of generality. This assump-
tion is essentially ha one.of ghe reaegors has a sgfiegly larger fuel inventory
per unig power han he oher and ha ghis reaegor does hOg have a smaller
operating eos per uni power. Our heory does no apply o he ease N 0,
and ig seems probable ha his ease is essentially more dieul han hag of
posigive .

Consider ghe ease B N 0. hen ghere exisg funegions sagisfying (2)-
() if and only if 0 satisfies hese conditions, and in ghis even 0
obviously minimizes (al) in he class of such functions. his is ghe ivial
ease which reaegor ype 1 is uniformly begger ghan reactor gype 2.
We suppose henceforth ha > 0. hen he remark following Theorem

1 shows ghag admissible eongrols exisg if and only if ghe funegion S0, defined
implicitly by he integral relation

b P r dr + rain P dr,

satisfies So(t) >= (ml/p)P(t).
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Pq

P(O)

0

P

#’1 O’O OPTIMAL NUMBER OF

HIGH BREEDING GAIN REACTORS

AVAILABLE FUEL UNDER
OPTIMAL POLICY

o
TIME

FIG. 2. Optimal policy for the two-reactor problem, K >= O, t >- O, fl >= O, tblP miP’
increasing, c > /

Suppose P P0 + r, where P0 and r satisfy the same conditions as in
the preceding section. Let x (S/) (ml/ppl)Po. Then (32) aad (33)
are equivalent to

(35) 0 <- u(t) < rain {x(t) ml r(t), P(t)
where x is defined by

x’ (t) b p(t) m___ Po’ (t) + - u(t),
(36) P P

x(0) =q-
t (p)P0(0).

If (b/pl)P (m/pl)Po stisfies (It4), then our general theory applies
to the problem of minimizing (31) subject to (35) and (36).
The case of absolutely continuous P and biP (m/)P’ increasing is of

special interest. If C _-< (K/), then the optimal control u0 n2 is zero, and
the corresponding value of nl is given by (27). If C > /, then the optimal
number of high breeding gain reactors as a function of time is given by

fm {x0(t), P(t)/p2} if t <_- <= t,Uo( t) otherwise,

where

A {t [0, T]lbP(t) (m/t)P’(t) >=
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t2 =fifA ifAisnonemptY,otherwise,
yo(t) b fo P(r) dr m P(t) 0 -< <_ T,

P #P

R max {0, y0(t.)},

and x0 is defined by the integral relation

bl f P(r) drx0(t) R + ml [p(t.) P(t)] -{-
pl,up1 - mln xo(t), P(t)

dr, 0 <- <- T,

B {t [0, ti]]xo(t) yo(

t =(upB oherwise.ifBisnnempy’
If O, then the optimal control 0 is everywhere 0. hus he eresing
ease is when > 0, which plies R 0 > g() and 0. he opgimal
number of high breeding gain reaegors as a funegion of ime for ghis ease is
illusgraged qualigagively in ig. 2.
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A MINIMIZATION PROBLEM AND ITS APPLICATIONS TO
OPTIMAL CONTROL AND SYSTEM SENSITIVITY*

WILLIAM A. POITER
Abstract. A Banach space minimization problem is formulated. Existence and

uniqueness of the solution are discussed and the solution is completely characterized.
Applications to problems of optimal control and system sensitivity are pointed out.

I. Introduction. In [i] the following basic optimization problem is con-
sidered. Let T be a bounded linear transformation between Banach spaces
B and D, respectively. With T onto D and " D arbitrary, find (if one
exists) a preimage of with minimum norm. Of obvious interest are the
questions of existence and uniqueness and the properties of the mapping
from D to a minimum norm preimage. In [2] several generalizations of
this problem are treated. These results, in an expanded and extended form,
provide the basis of [3, Chap. IV], which also contains several applications
to lumped parameter systems.

In the present paper the following related problem is considered. With
B, D, T and " D as before and U c B, the unit ball, find an element
u U (if one exists) which minimizes the functional Tu If. Once
more the questions of existence, uniqueness and characterization of the
minimizing element(s) are of apparent interest. In Hilbert spaces this
problem has been studied by losenblum [4], Arcangeli [5], and others.
Attention is called also to Rubio [6] who considered this problem for a
specific Banach space (see also [Ii]). In this study we shall consider,
without loss of generality, real spaces.

9.. Some preliminaries. It is helpful to review some of the results in the
papers cited in the Introduction while emphasizing the notation and
assumptions to be used throughout. For the moment B and D will denote
Banach spaces and T, a bounded linear transformation from B into D.
The unit ball and the unit sphere of B will be denoted by U and 0 U, respec-
tively, while C T(U) denotes the image of U in D under T. The boundary
of C will be denoted by OC. It is easily verified that C is bounded, convex
and circled. It follows from the open mapping theorem, however, that C is
a neighborhood of 0 D and hence that the closure of C is a convex body
(a closed convex set with nonvacuous interior) if and only if T is onto.
The element ] B will be called an extremal (see [1] or [3]) of f B* if

* Received by the editors June 30, 1967, and in revised form November 7, 1967.
T Department of Electrical Engineering, University of Michigan, Ann Arbor,

Michigan 48104. This research was supported in part by the United States Army
Research Office-Durham under Contract DA-31-124, ARO-D-391.
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II] 1 and (], f} IIf both hold. The set of all extremals for f B* is
denoted by {]}.

If B is reflexive, rotund and smooth and if T is onto, then (see [3]):
(i) C is closed (i.e., a convex body)
(ii) every " D has a unique minimum norm preimage;
(iii) every f B* has a unique extremal ] B;
(iv) C has a unique hyperplane of support at every boundary point.

The minimum preimage ur of D is moreover given by

u p()T*,

where p is the Minkowski functional of the set C, T* is the coniugate of T,
and D* defines the unique hyperplane of support of C at [p(i’)]-1 i"

OC.
Suppose now that K: B* - B is given by K(f) f Ill, f B*, and that

J" D* -+ D is the mapping

J(+) TKT*+ T*+ [[T(T*+), CED*.
The mapping J is considered in [3] and found to be one-to-one, onto,
bounded and hence invertible. Furthermore, the condition

0 =< <-+,J(6) -J(62)) for all 6,62ED*
holds. A Hilbert space operator T satisfying this relation is called monotonic.
If the stronger relation ]] 1 2 -< (1 2, TI T.) for all 1,
2 D holds for some > 0, then T is said to be strongly monotonic.
The Lipschitz norm of an operator T is the number

If T < , then T is said to be Lipschitzian. In particular, if D is a
Hilbert space, then J is a monotonic operator. Moreover, J XI -t- J is
strongly monotonic for every X > 0, and using a result of Zarantonello [7]
it then follows that Jx has a bounded Lipschitzian inverse for every X > 0.
At the point ), 0, Jx is iavertible but not necessarily Lipschitzian unless
further assumptions are made.

3. The basic problem. The assumptions that B is reflexive, rotund and
smooth, and that T is onto are continued here. Also D is taken as a Hilbert
space. For H the functional II is defined by

II(u) " Tu uEB.

Since D is reflexive and rotund and C is closed and convex there exists
unique element c C which is closest to , that is,
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with strict inequality unless c c. It is clear that minimizes II over U"

II() -<_ II(u) forll u U

if and only if T c. If II() > 0, then is theunique minimum norm
preimage of c.

Following Rubio we consider also the functional- (u) ( Tu, ) (, ) (, Tu), D.

The minimum of this functional on U is obviously attained at the extremal
of T*O, in which case we have

(T*) (- T(T*), } <= (- Tu, } for all u U.

Moreover, for one D, namely, the support normal to C at c, the minimiz-
ing element for II and coincide. An interesting feature of Rubio’s article is
the characterization of .

Consider now the operator L on D defined by

(1) L T(T*) I1-1[ T(T*)], D.

Here we assume that II() > 0. Concerning L we have the following lemma.
LEMMA 1. If i8 a fixed point of L, then T* minimizes II.
Proof. From the above remarks we have the inequality

(- T(T*),} <= (- Tu,} for all u U.

This together with the condition

T(T*) [l T(

shows that 1 and

(-T(T*),}= II-T(T*)]I <={--Tu,} for all ue V.

Using the Cauchy-Schwarz inequality on the right-hand side completes the
proof.
An obvious corollary is the following.
COROLLARY. [f B is reflexive, rotund, and smooth, and if T is onto, then

the operator L, for each at a positive distance from C, has a unique fixed
point.

In view of the definition of J, the defining equation for L may be re-
written as

Letting

(2)

L4 [11 T*4 11 J4,] II-[ll T% II" J,], , D.
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it then follows that L implies that he [[ T*
Since kI -t- J is invertible for k > 0 we may solve this latter expression

explicitly for "
(3) T* ](J + kI)-.
With T onto, T* is one-to-one. Operating on both sides of this expression
with T* nd tking norms, it follows that k must stisfy the contion

These observations led to the nex lemm.
LEM 2. The conditions:

(i) L,

() T* l]J-,
together with 1, are equivalent.

Proof. We have seen that (i) implies (ii) for k [[] T* [ J).
Conversely, if (ii) holds for some , then clearly (J
which implies

T* J x.
Scalar multiplication results in

Since the left-hand side of this expression is unit vector, tang norms and
using 1 results in the condition k [I] T* 1] J] ]l, which
completes the proof.
In condition (i) the assumption 1 is superfluous but seems

necessary in condition (ii). Equations (2) and (4) give two characteriza-
tions of the scalar k. While (4) is perhaps the more useful, (2) yields also
the relationship

x T* (T*),

where is the fixed point of L.
Remar 1. In Hilbert spaces J TT* and (3) becomes

T* I(TT* +
Consequently, T*/]] T* is identifiable as

(5) (T*T + kI)-T*
and therefore,

(6) ct T T(T*T + kI)-IT*.
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The scalar is the unique solution of the equation

(7) T*(TT* + I)- 1.

Equations (5), (6) and (7) are essentially the characterization of Rosenblum
for Hilbert spaces with T onto.

4. Some generalizations. Iu 2 and 3 several assumptions were im-
posed on B and T. Among other things it was shown that if B is reflexive,
rotund and smooth the results of Rosenblum can be identified iu this
Banach space setting. It was assumed also that T is bounded, onto, and
has a Hilbert space range. In this section we investigate the possibility
of weakening these assumptions.

Consider first the assumption that B is reflexive. This condition is suffi-
cient to guarantee that C is closed and that every f B* has at least one
extremal ] B. In [3, 4.3], alternative conditions are given on T, B and
D which guarantee that C is closed. While these other conditions are fre-
quently more useful in the applications, they are cumbersome to discuss and
we shall not take them up here. It is noted, however, that in the alternative
situation extremals are actually taken from a Banach space into its dual
and hence, by the Hahn-Banach theorem, extremals always exist. As a con-
venience we shall continue to assume in the following that B is reflexive.
The assumption that T is onto is also nonessential. In the functional II

we may always replace by its orthogonal projection on the closure of the
range of T without changing the minimization problem. Thus, without loss
of generality we assume that T has dense but not necessarily closed range.
The set C is still bounded, convex and closed, as is the set/} C. Since the
(Hilbert) space D is reflexive, /} C is weakly compact and II, being a
continuous functional, assumes its lower bound. Since D is rotund this
lower bound is uniquely attained. That is, a unique c’ C exists such that

II - ’ll -<ll -cll ceC
holds. Since c’ C at least one u U exists satisfying c’ Tu’ and conse-
quently, II (u’) <- II (u) for all u U is satisfied. We assume 0 < II (u).
Suppose now that K denotes a convex set in a Banach space B. For every

f B* we define the numberf by

sup (x, ,f).
xEK

In general,f may be infinite. The following is a well-known duality theorem
(see Nirenberg [8]).
THEOREM 1. Let d denote the distance from Xo B to the convex set K. Then

d inf x0 x {(xo, f)
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where the maximum on the ,rht is achieved for some fo.
In using this theorem B becomes the Hilbert space D and K is taken as

the set C. For D it follows that

c sup <c, > sup <u,
6, uEU

Using i" x0 in the theorem results in

inf c max {(, ) [ T* []} (, ’) T*"][,

where the last equaSty holds at some @’, @’ 1. If the infim on the
C Cleft is ttined t some C for which Tu, U, nd thea

() Tu’ , ’holds. Since ’ 1 it follows that- T’ (- T’, ’)= (, ’)- {u’, T*4),
which together with (8) shows that

T*4 {u’, T*4).
Since u’ 1 it follows that this lst expression cn hold oy th
equality nd then only if u’ ’}.
TOEM 2. If C’ C minimizes , then
(i) C is supported at c’ by some ’;
(ii) c’ T(T*);
(iii) if 4 1, then ’ ( c’)/ll r ’ II.
Proof. In the preceding paragraph part (ii) is established. Part (i) foows

easily from the chain

(v’, 4) (’, T*’) T*4 (u, T*4) {Tu, 4), E V.

To prove (fii) we rewrite (8) in the form

r ’ (r, 4) T*O’
(r ’, ’) r ’ I1" ’ 1.

Since this is a Hilbert space relationship part (iii) follows.
Consider now the operator L of (1). In the present setting we shall use

the following terminology. A fixed point of L is u , 1, such that
{T*} is nonvacuous and for some extremal of T*,- T(T*) ]]- T(T*

With the meaning of these conditions we huve the following corollary.
ConoY. is afixed point of L if and only if H is minimized at T( T*).

Moreover, f every , L has a unique fixed point, has a unique minimum.
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Proof. A review of Lemma 1 shows that it holds in the present setting
with the same proof and this gives half of the irr,plication of the present
corollary. Conversely, if II is minimized at some c’, then by part (iii) of
Theorem 2, ’ (" c’)/[[ c’ is the outward normal to C at c’.
Moreover, using part (ii) of the theorem, it is clear that ’ L’. In view
of part (iii) the uniqueness follows.

It is interesting to consider also the transformation K and the operator
J introduced in 1. If B is reflexive and rotund, "then K is a well-defined
function independent of properties of T. If B is also smooth, then K is also
one-to-one. Consider now the (weaker) assumption that each element in
R(T*), the range of T*, has a unique extremal; then K is still well-defined
on R(T*). The mapping J is then also a well-defined operator on D. From
the expansion

(9)
<T*, T*x>) + T* ll(ll T* <T*4a, T*b>)’

it is clear that J is monotonic. The implication

0 < ., Jx J4) if and only if
(10)

T*+I T*+. and

follows directly from (9). From these observations we have the following
lemma.

LEMM/k 3. If K is well-defined on R( T*), then J is a well-defined bounded
monotonic operator. If also T has dense range and K is one-to-one on R(T*),
then J is also one-to-one.

Proof. It remains only to verify the second assertion. If J J2, then
( ., J J2) 0 which, using (10), implies

Together this means that K(T*) K(T*+.) which, assuming that K is
one-to-one on R(T*), implies T*+ T*+. If T has dense range, then T*
is one-to-one und the lemmu follows.

COROLLARY. If g i8 well-defined or R(T*), then J, J +
> 0 is bounded, strongly morotonic one-to-one, onto and has a Lipschitzian
inverse.

Consider now (1) with the assumption that II() > 0. We see that if
K is well-defined on R(T*), then L is a well-defined operator on D. We
have noted earlier that Lemma 1 remains valid with the same proof, More-
over, is a fixed point of L if and only if satisfies (3) with X > 0 being
determined by (2). When T has dense range, (4) is an alternative characteri-



310 WILLIAM Ao PORTER

zation of . In summary, the conditions that C is closed and K is well-
defined on R(T*) suffice for the characterization of 3 to hold.
Remark. The assumption that D is a Hilbert space is also nonessential. In

the above discussion it suffices that D is reflexive, rotund and smooth. For
instance, D might be a suitably normed version of a finite Cartesian product
of L and/or l spaces, 1 ,( p . The projection of " onto the closest
element in the closure of R(T) is then of course nonlinear. Also part (iii) of
Theorem 2 must read: is an extremal of c’. The operator L acts on D*
and is given by L4 [ T(T*4)] ^, where [. ]^ denotes the extremal from
D into D*. Although the characterization involving the operator Jx can be
similarly extended, it does not appear to be fruitful to do so.

5. Some engineering applications. In [3] several optimal control prob-
lems in linear systems are modeled as minimum norm problems of the form
described ia 1. The results of this study generalize these problems in an
obvious manner. The interested reader is referred to the reference cited
for details on the physical motivation underlying this problem class.
The mathematical problems considered here relate also to certain classes

of system sensitivity problems. To bring out this relationship let us con-
sider a bounded linear system (transformation) T acting between Hilbert
spaces H, H:. An additive system disturbance is denoted by tiT which is
also a bounded linear transformation. Assume that for the nominal system
T, the controller capacity (available energy) exceeds the control require-
ments. How can the surplus capacity be used to minimize the effects of the
fluctuation, tiT, in the system characteristics?

In [9] this system sensitivity problem is considered in some detail in the
setting of Hilbert spaces. A control u does not exceed the controller capacity
if u <= /. With H denoting the system task and T denoting the
pseudoinverse of T, a mathematical interpretation of the physical problem
is the following: for fixed H such that T*v < k, find u T-(v)
which satisfies u =< / while minimizing ]Tu [[. In the reference cited
this problem is reduced to the minimization of i" Vv over v =< /c

T* :, where TT*v, V (TP, P is the projection on the null space
of T, and v is the solution provided u T* v is a solution of the original
problem.
The system sensitivity problem outlined above is obviously identical

with the main problem considered here. The reference cited gives examples
and an alternative solution of the Hilbert space problem. The present treat-
ment not only extends the results to Banach spaces but cuts through much
of the complexity of the earlier development.

Finally, it is noted that the generalization to the case where T has dense
but not necessarily closed range allows applications to many distributive
system problems. The interested reader is referred to [3] and [10] for further
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discussion along these lines. The ltter reference ulso discusses the case
rain II 0.

6. Acknowledgment. The author extends his thnks to Professor James
P. Williams, Department of Mathematics, University of Indiana for
briuging reference [4] to his attention.
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ON THE SEPARATION THEOREM OF STOCHASTIC CONTROL*

w. M. WONHAM
1. Introduction. The object of this paper is to show that the combined

problem of optimal control and filtering, for a stochastic linear dynamic
system observed via a noisy linear channel, can be reduced to two inde-
pendent problems of control and filtering, respectively. Under suitable con-
ditions, solutions of the latter problems are shown to exist. This structural
property of the optimal system holds whether or not the cost functional is
quadratic, and whether or not the optimal feedback control happens to be
linear in the system state or its expectation. In general, the optimal control
depends parametrically on the intensity of channel noise; the result means,
however, that channel noise plays qualitatively the same role as dynamic
disturbances in determination of the feedback law.
A special result of this type, for the standard, linear stochastic regulator

problem, is well known, and has been called the "separation theorem"
[I], [2].
For discrete-time systems the general result cn be proved by relatively

straightforward ppliction of dynamic programming [3]. In this pper
ttention is confined to continuous systems. The method is gin dynamic
progrmIning, with ppel to the It6-Nisio-Fleming theory of functionl
stochastic differentil equations [4], KImn’s filter [5] nd an existence
theorem for prbolic equations due to Ldyjensky, Soloanikov nd
Uritsyev [6]. To pply the foregoing results it is necessary to impose
rther stringent conditions on system coefficients. Undoubtedly the sepa-
ration theorem (Theorem 2.1) is true under weaker hypotheses, more in line
with requirements Ine in practice. In this pper our irn is to clarify some
of the principles involved and to indicate the type of result to be expected.

2. Statement of the problem. The system to be controlled is described
by linear stochastic differential equations:

dx(t) A(t)x(t) dt -- b[t, u(t)] dt -- C(t) dw(t),

x(O) xo

O<=tT,

(2.2)
dy(t) F(t)x(t) dt -- G(t) dw:(t),

y(O) O.

O<__t<=T,

* Received by the editors December 22, 1967, and in revised form February 16,
1968.
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Here and below all vectors and matrices have real-valued elements. The
ector x R is dynamic state; u is the control vector taking values in a
.convex compact subset U c Rm; y R is channel output; wl, w2 are inde-
pendent, standard Wiener processes in Rdl, Rd2, respectively; and stochastic
differentials are understood in the sense of It6. Below, the symbol I" means
Euclidean norm, a prime (’) denotes transpose, and g the expectation;
cl, c2, are positive constants. An underlying probability triple (gt, {, P)
which carries x0 and the w(t) processes is assumed to be given; the variable
.w will usually be suppressed from notation. If (R is a family of random
variables, zl(E} c denotes the smallest z-algebra of w-sets relative to
which (R is measurable.

In practical terms, the problem is to control x(. in such a way as to
minimize a real-valued functional

(2.3) J[u] L[t, x(t), u(t)] d

Control is based on the (a priori) distribution of x0 and on information
provided by the channel output y(-). Since the controller is not clair-
voyant, u(t) must be assumed to depend only on the y(s) for 0 _<- s _<-_ t.
To express this nonanticipative dependence we introduce, following Fleming
and Nisio [4], a suitable class of control functionals. Let e denote the class of
functions f(t) continuous on [0, T] with values in R’; and write, for the
past of f at tine t,

ff(s) or 0 -<= s <= t,
(.) (-tf)(s)

If(t) for =< s_-< T.

Clearly rtf iff e. Let I1" denote sup norm in e and let

b" [0, T] X ?,--> U

be a mapping with the properties" (t, f) is HSlder continuous in ]:or each
f a and satisfies a uniform Lipschitz condition

(2.5) ,(t, f) h(t, g)l < c_ IIf g

where [0, T] and f, g . Let I, denote the class of unctionals b. We
call the control u(. a&nissible and write u if

u(t) g/(t, ty), O<_t<=T,

for some . The problem is to find u such that

J[u] min {J[u]:u }.

The corresponding functional 0 is optimal. It will be verified later that
J[u] is well-defined.
The separation theorem states that an optimal control exists in a subclass
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t of controls which depend only on the expected value of the current state
given the past of y. More precisely, let

Jt oly(s), 0 <- s <- t},

(t)

Write for the class of functions

" [0, T] X R --+ U
such that

(2.6)
+ I(t, (t, ,)1

<- c (n)lt- +
in every domain0 =< s, =< T, [1 < R, Iv[ < R, where c3 and a (0, 1/2)
are independent of R. We write u if

u(t) [t, 2(t)], t [0, T],

for some . It will be shown later than .
The following additional assumptions will be made. (We write u.h.c.

for "uniformly HSlder continuous (exponent a)," and u.l.c, for "uniformly
Lipschitz continuous," where the uniformity is to hold over the whole range
of the relevant arguments, unless otherwise stated. A subscript denotes
differentiation. If P, Q are symmetric matrices, P > Q (P Q) means
P Q is positive (semi-) definite.)

(A.1) The matrices A, C are u.h.c. (a) in t, and F, G are continuously
differentiable in [0, T].

(A.2) G(t)G(t)’ >= c4I, [0, T].
(A.3) [det IF(t)][ >= c5, t( [0, T].
(A.4) b, b,, bu, are continuous on [0, T] X U and b, bu are u.h.c.(a)

in t.
(A.5) L and L. are bounded, u.h.c. (a) in and u.l.c, in x. L, is bounded

and continuous on [0, T] R X U.
(A.6) [b(t, u)’p 4- L(t, x, u)], _>_- cI for all (t, x, u, p) [0, T] R

X U X {p:[ p =< r}, where r is defined by (6.6) below.
(A.7) x0 is a Gaussian random variable independent of the processes

w(t), w:(t) and with positive definite covariance matrix Q0.
The foregoing restrictions are mainly technical. Assumption (A.3) would

rarely be met in practice, where typically dim y < dim x; the condition is
needed below to guarantee that a certain elliptic operator be nondegenerate.
A square nonsingular matrix F could be constructed artificially, if necessary,
by adjoining to the channel equation (2.2) a suitable term of form

d/ eFx dt -t- G d(v.
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If e > 0 is sufficiently small, then from a practical viewpoint the compo-
nents of the observation vector contribute negligible information to the
controller. However, details of such an approximation have yet to be worked
out.
The number in (A.6) is an a priori bound on the space-derivative of the

solution of Bellman’s equation. In the special but important case where
b(t, u) is linear in u, the estimate r is not required, and (A.6) can be re-
placed by

(A.6)’ L,(t, x, u) >-_ cd, (t, x, u) [0, T] X R X U.

The crucial assumptions for Theorem 2.1 are that" (i) the basic dynamic
equations have the form (2.1), (2.2); (ii) the (formal) perturbations
dw/dt, i 1, 2, be "white Gaussian noise"; (iii) x0 be Gaussian and inde-
pendent of the w (iv) J[u] be a functional additive in t.
THEOREM 2.1 (Separation theorem). Subject to the assumptions stated, an

admissible optimal control exists of the form
u(t) [t, (t)], [0, T],

for some o .
An optimal feedback law 0 is given by (6.7) below.
The theorem will be proved in several steps. In 3 we verify that the

solution of (2.1), (2.2) is well-defined. Kalman’s equations for (t) are
introduced in 4, and it is shown, that (t) is a diffusion process when
u ’. In 5 we prove that Bellman’s equation provides a sufficient
condition for optimality, and in 6, that an optimal control exists. The
standard linear regulator problem lies outside the scope of Theorem 2.1 and
is discussed separately in 7.

3. Solution of (2.1) and (2.2). As usual, (2.1) and (2.2) are to be
interpreted as stochastic integral equations, with integrals defined in the
sense of ItS. Let and f, g a. From (2.4), (2.5) and (A.4) it follows
that

b[t, b(t, rtf)] bit, (t, g)]! =<
tE[0,T]

(3.1)

Clearly b[t, /(t, ’tf)] is bounded on [0, T] . It follows by Theorem 1 of
[4] that the system (2.1), (2.2) hs exactly one continuous solution
{x(t), y(t)"0 <-_ <__ T} with bounded second moment. Furthermore, this
solution has the property that x(t), y(t) re measurable relative to
(r{x0, wt(s), w(s), 0 <= s <- t} and are independent of (r{wi(t’) wi(t’),

-< t’ =< t" <__ T,i 1,2}.Bycontinuityand [7, p. 60, Theorem2.5],
x(t), y (t) is a measurable process.
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4. Representation of (t). Suppose b 0. The problem of representing
(t) as Che solution of a stochastic differential equation was solved formally
by Kalman [5]. Since the derivation in [5] is easily made rigorous we shall
justify only the extension for b 0. Let u(. be admissible and write

(4.1)
(t) b[t, u(t)]

b[t, (t, rty)].

Observe first that the random variable (t) is J-measurable. Indeed, if S
is open in R, then If:b[t, (t, f)] S} is open in e, and using the
fact that is a separable metric space, we see that

I’y(., ) Z} ,.
The assertion follows by extension to the Borel sets of R. Next, let

x(t) (t) + *(t),
where 2(t) is the diffusion process determined by

d2(t) A(t)2(t) dt + C(t) dw(t), [0, T],
(4.)

(o) x0

and x* (t) is defined by

(4.3)
dx* A (t)x*(t) + fl(t), [0, T],

dt

x (0) =0.

Since x*(t) is Jt-measurable there follows

(4.4) 2(t) 12(t)l Jt} + x*(t).
Now define a process (t) according to

(4.5a) d(t) =- dy(t) F(t)z*(t) dt

F(t)2(t) dt -- G(t) dw(t),
(4.5b)

(0) 0;
and let

[0, T],

ffJ(t) {(s), 0 =< s =< t}.

By (4.3), x*(t) is tJt-measurable; then, by (4.5), (t) is Jt-measurable.
It ll be sho that y(t) is t-measurable, and thus that t t. In

view of (4.1) and (4.3), (4.5) can be itten

(4.6)
y(t) (t) + F(s)x*(s) ds

(t) + (t, t y),
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where q 9. Since (t, ]) is bounded on [0, T] X and

(t, f) (t, )l - ct I1: ,
the functional equation (4.6) can be solved by successive approximations
uquely for y . Setting y(0)(t) 0 and

y(’)(t) (t) + (t, ty(-)), 1, 2,...,

we see that y(’)(t) is t-measable for each , and the conclusion follows.
We now have, from (4.4),

(4.7) 2(t) (t) + x*(t),
where

(t) {(t)l(t)}.
It rems to compute (t). Equations (4.2) nd (4.5b) hve the form of
(2.1) nd (2.2) th b 0, nd Klmn’s result [5] pplies. Introduce the
conditional eowrinee mtr

(t) {[x(t) (t)][x(t) (t)]’ ,}

{[(t) 2(t)][2(t) (t)]’ ,},
where the second equality holds because x(t) 2(t) + x*(t) ndt t.
By the results of [5], pplied to (4.2) nd (4.5b), Q(t) is the unique solution
of the Rieenti equation

dQ AQ + QA + CO’ Q’ a’)-FQ, [0, T],
(4.s) dt

Q(o) Qo.

Then (see [5]) is deterned by

(4.9) d Adt + QF’(GG’)-(d- Fdt), [0, T],

with initial condition
(o) {(o)[ %}

{(o)}

{z0}.

Combining (4.2)-(4.5 and (4.7)-(4.9 we finally obtain

d A.dt + 3(t) dt -k- QF’(GG’)-I(dy Fdt), [0, T],
(.o)

(o) {0}.

Equation (4.10) exhibits the (t)-proeess s the solution of an equation
"forced" by the channel output increments dy and by the control term/. It
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is possible--and for later purposes necessary--to replace the differential
dy F2, dt by the suitably scaled differential of a Wiener process. This
can be justified by the observation that linear least squares estimation is
equivalent to an orthogonal projection of the estimated variable on the
data, but we shall use a different argument.

Define the process z (t) by

dz dy F2. dt

(4.11) F(x 2.)dt T G dw2, [0, T],

z(O) o.
Evidently z(t) is Jt-measurable. The relation

z(t) z(t) -t- F(t)[x(t) 2(t)] dt -t"
(4.12)

G(t) dw(t),

0=< =< t2 =< T,
implies that z(. is continuous and that

i.e., the z(t)-process is a continuous martingale relative to the Jt. Further-
more, one verifies easily, from (2.1), (2.2) and (4.10)-(4.12), that

lira (t t)-3l[z(t) z(h)][z(t) z(t)]’l tl} G(h)G(h)’.
t2J, tl

But then, by a representation theorem of Doob [7, p. 287, Theorem 3.3],
there exists a Wiener process {(t)"0 _-< -_< T/in R such that

(4.13) dz(t) [G(t)G(t)P]1/d(t).

Since GG is positive definite, the (t)-process (normalized by setting
(0) 0) is carried by (, if, P) ;indeed (4.13) shows that (t) is Jt-meas-
urable. Combining (4.10), (4.11) and (4.13) we obtain finally

d2 A2dt + fl(t) dt -t- QF’(GG’)-Ind(t),
(4.14)

Suppose now that

u(t)

where . Under the regularity conditions (2.6) and (A.4), the It5
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equation

d2 A2dt + b[t, (t, 2)] dt + QF’(GG’)-lndv,
(4.16)

(o) {01,

determines a diffusion process on [0, T]. Let R denote a value of and
let V:R -- R have continuous derivatives up to second order. The differ-
ential generator of the -process is the elliptic operator () given by (see
[8])

(4.17) ()V() 1/2 tr {’V(8)} -t- (AS -t- b[t, (t, 8)])’V().
In (4.17), QF’(GG’)-2 and V(V) denotes the vector (matrix) of
first (second) partial derivatives of V.

Next, we show that is uniformly elliptic. Observe first that Q(t) > 0;
in fact, (4.8) can be written

dO flq ._ Qfl_, + CC’,
where

fi A 1/2QF’(GG’)-F.
If a(t) is the matrix determined by

da(t) fl_(t)a(t) a(o) Ldt

then (4.18) and (A.7) imply

Q(t) >- a(t)Qoa(t)’

>= CoI, [0, T].

This fact, combined with (A.2) and (A.3), shows that

(4.19) (t)(t)’ >- cI, [0, T].

We verify now that controls of the class t, i.e.,

u(t) [t, (t)], /,,
re admissible. In view of (2.6) it is enough to check that 2(t) is a uni-
formly Lipschitz-continuous functional of rty. By (A.1) and (4.8) the
mtrix

K(t) Q(t)F(t)’[G(t)G(t)’]-
is continuously differentiable in [0, T], so that

(4.20) K(s) dy(s) K(t)y(t)
ds

y(s) ds.
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Clearly the right side of (4.20) is a continuous functional of "xty. Consider
now (4.10) with (t) b[t, (t, 2(t) )]. Integrating (4.10) and substituting
(4.20), one obtains for 2(. Volterra equation with kernel uniformly
Lipschitz in the variable 2. From this it is easy to establish the required
continuity in of the mupping ty(" -+ (" ).
To conclude this section, we verify that the conditionul distribution of

x(t) given Jt is Gaussin nd that, if 0 =< t <= t. =< ta <- T, the increments
(ta) (t) re independent of Jt. These facts ure cruciul to the later
development. To prove the first statement recall thut x(t) 2(t) x*(t),
where x*(t) is Jt-measuruble. Furthermore, by the linerity of (4.2) nd
(4.5b), the conditionul distribution of 2(t) given Jt is Gussin. Since
t Jt the assertion follows. Next, the relation e(t) =- x(t) 2(t) shows
that the conditional distribution of e(t) givea Jt is Gussin, with co-
vrince Q(t) depending only on t. Also, by (2.1) nd (4.1),

de [A (GG’)-I/F]e dt-{-Cdw- (GG’)-Gdw.,
(4.21) t [0, T],

(o) x0 /x0}.

Combining (4.12) nd (4.21) we see that z(t) z(t) can be written s a
linear functional of e(t) nd the wi(s) increments, i 1, 2, for t =< s t.
This implies that the conditional distribution of z(ta) z(t) given 5t is
Guussian, with zero men, nd covriunce independent of Jt hence the
sme is true of (ta)- (t), and the independence ssertion follows.
Finully, if the It5 equation (4.16) holds, then 2(t) is mensurable relative
to the sumple spce of 2(t) and the (s) increments for t <= s t. Thus
if f: R" - R is n arbitrary bounded mesurble function, then

(4.22)

with probability 1.

5. A sufficient condition for optimality. Let (x; t, ) be the Gaussian
probability density in R with mean and covariance matrix Q(t)"

(5.1) (2)-n/[det Q(t)]-l/exp [-1/2(x- )’Q(t)-l(x- )].

By the results of 4, if u is a fixed vector of U, then

L(t, , u) 8{L[t, x(t), u] 2(t) }

L(t, x, u)9(x; t, ) dx.

It is verified in 6 that L satisfies the conditions imposed on L in (A.5). On
this assumption we establish the following optimality criterion (cf. [9] and
[10]).
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LEMMA 5.1 (Optimality criterion). Suppose there exist an element o
and a function V" [0, T] ) R ----> R such that

(i)

(5.)

(ii)

(5.2)

(5.2b)

V, Vt, V, V are continuous, and

Ivl + IW, + IllVel--I-I vee c2(1 --l--

0 V,(t, ) + (,)V(t, ) + Lit, , ,(t, ,)]

<= V,(t, ) q- (u)V(t, ) -t- L(t, , u)

for all (t, , u) [0, T] X R" X U, and

(5.2c) V(T, ) 0, R.
Then the control u o is optimal in t.
For the proof, introduce the random variable

W(t) 8 L[s, x(s), (s, (s) ds

where x(t) is the solution of (2.1) with u(t) [t, (t)] and (t) is given
by (4.16) with o. Now

(5.3) =8 L[s,(s),f(s,(s))]dsl

L[s,(s), 0 (s, e(s))] dsle(t)

where we have used (4.22). By (5.1), (5.2a), (5.3) and ItS’s integration for-
mula (see [11]),

w(t) a (v,[s, e(s)] + ()v[s, e(s)]) as (t)

v[t, e(t)].

In particular,

(5.4) v[o, (o)1 j[0].

To show that o is optimal, let u(t) be an arbitrary control

u(t) (t, ,y),

where ; and now write x(t), (t) for the corresponding solution of
(2.1) and (4.10). Since the moment {lx(t)]} is tegrable on [0, T] (see
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[4]) and since (5.1) holds, we may again apply It6’s integration formula to
obtain

(5.5)

Here the inequality results from (5.2b) with u b in the right side, and
the last equality follows as in (5.3). Setting 0 in (5.5) and using (2.3)
and (5.4), we obtain

j[0] <__ j[].

This inequality states that 0 is optimal.
It remains to prove that 0 and V exist. We shall do this by solving

Bellman’s equation.

6. Solution of Bellman’s equation. Observe that (5.2) is formally equiva-
lent to Bellman’s functional equation

rain [Yt(t, ) - (u) V(I, ) + L(t, , u)] O,

(t, ) [0, T] X R",
(6.1b) V(T, ) 0.

The minimization in (6.1a) is to be done at each fixed (t,
It will be shown first that this is possible. Write V p and consider the
function

(t, , p, u) b(t, u)’p + L(t, ,, u)
defined for (t, , p, u) [0, T] X R" X {P:I P =< } X U.
We shall verify that L satisfies the conditions imposed on L in (A.5).

Clearly L is bounded. From the elementary relations

e e <= 1/2 a b (e -t- e),
a-/- b-/[ (ab)-/(a/ + b/)-la b [, a, b > O,

lac- dl <= lcl la l + Il lc- all,
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together with the fact that

cI <= Q(t) <= cI, [0, T],

and the continuity of dQ/dt, there results

I(x; tl, 1) (x; t2, 2)1
-< c(I + t t. I)(exp (-o5 ix s) + exp (-o Ix 2 )).

The assertion now follows by simple computations. Henceforth (.5) de-
notes (A.5) with L, x replaced by L, .

Next, observe that the inequality in (A.6) can be integrated over x R
with respect to to yield:

(/.6) [b(t, u)’p - L(t, , u)]u >_ c!I.
By virtue of (.5), (_.6), the problem of minimizing with respect to u the
function X in (6.2) has the following solution.
LEMMA 6.1. There exists a (unique) function tt(t, , p) with values in U

such that
(i) X[t, , p, (t, , p)] <= h(t, , p, u) for all (t, , p, u) [0, T] X R"

X {P:iPl -< r} X U,
(ii) # is u.h.c. (a) in and is u.l.c, in (, p) in the domain

(t,,p) [0, T] X R X {P:iPl <- ’}.
This result is due to Fleming [12, Lemma 2.1].
Write

A(t, , p) ’A(t)’p + [t, , p, #(t, , p)].

With the substitution u in (5.2) we obtain the semilinear parabolic
equation

Vt(t, ) - 1/2 tr {(t)’V(t, )(t)}+ h[t, , V(t, )] 0,

(6.3) (t, ) [0, T] R’,
V(T,) 0, R.

It remains to verify that the Cauchy problem (6.3) has a suitably smooth
solution V. This conclusion follows by a theorem of Ladyjenskaya, Solon.
nikov, and Uraltsyeva [6, p. 564, Theorem 8.1]. For ease of reference we
check the hypotheses of the theorem in detail (page numbers refer to [6]).

(i) Condition (b), p. 564: by (6.2) and boundedness of L,
h(t, ., O)V L[t, , g(t, , O)]V __< cxV ,-4- Cls

for all(t,,V) [0, T] XR XR1.
These show that the Lipschitz ,condition in x on L and Lu could be relaxed.
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(ii) Condition (b), p. 513" by (A.1), (A.4), (/.5) and Lemma 6.1, A
is continuous in (t, , p); as shown in 4, is uniformly elliptic; and it is
clear that ((’ is bounded on [0, T]. Finally,

IA( t, , P)! -< c19(R)(1 + [p I)
in every cylinder [0, T], Ii -<- R.

(iii) Condition (c), p. 513: by (A.1), (A.4), (.5) and Lemma 6.1,
A(t, , p) is u.h.c. (a) in t, in every domain [0, T], [1 --< R, Pl =< r,
and is u.l.c, in (respectively p) in the domain [0, T], Pl --< (re-
spectively [0, T], I1 <- R). By (A.1) and (4.8) it is clear also that
O(t)O(t) is H61der (even Lipschitz) continuous on [0, T].

It follows from [6, Theorem 8.1] that (6.3) has a solution V(t, ), defined
and bounded for (t, ) [0, T] Rn, such that V, Vt, V and V are
u.h.c.(a) in and u.h.c.(2a) in , in every finite cylinder [0, T],
i! --< R. We shall show that V is actually u.l.c, in on [0, T] X R". It is
enough to show that V is bounded. To .this end, introduce the change of
variables

where S is determined by

7 S(t), t-- t,

dS(t)
(6.4) dt

z(0) . S(t)A (t), [0, T],

Setting ?(t, 7) V(t, S(t)-17), we obtain

,-t- 1/2 tr I(t)’S(t)’?,,S(t)O(t)} -t- (t, 7, ?,) O, [0, T],

.(t, 7, P) },[t, , p, t(t, ,
Observe first that (t, , p) is u.h.c. (a) in and u.l.c, in (, p), in the

domain

(,, p) R S(t)’-l{p’[p v}, 0 T.

The operator in (6.5) is uniformly parabolic on [0, T] X R’. Consider the
fundamental solution corresponding to the operator defined by the first two
terms in (6.5a). By direct calculation it follows, since g is bounded, that
P, is bounded, and can be chosen a priori such that

(6.6) IVy(t, ) , (t, ) [0, T] X R.

(6.5b) I7(T, 7) 0,

where
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Again, boundedness of . implies that (t, 7) is u.h.c, in 7 on [0, T] R"
(cf. [13, p. 193, Lemma 2]). Hence _[t, 7, 17(t, 7)] is u.h.c, on [0, T] X R.
But then one sees easily (cf. [6, p. 308]) that l?, is uniformly bounded;
hence so is V.
With V(t, ) u.l.c, in and continuous in t, we have that

(6.7) (t, ) t[t, , V(t, )]

enjoys the same properties, i.e., 0 .
Returning to (6.5) and using as before the fundamental solution for the

linear part, one obtains that Vt is bounded, so that

It is now clear that V(t, ) nd (t, ) stisfy the conditions of Lemm
5.1. The proof of Theorem 2.1 is complete.

7. Linear regulator. If Bellman’s equation cn be solved explicitly for
functions V and 0 which stisfy the hypotheses of Lemm 5.1, then, of
course, mny of the restrictive conditions imposed in the general discus-
sion become irrelevant. A well-known example is the following (el. [1],

b[t, u(t)] B(t)u(t),

let u range over R, and let

L(t, x, u) x’M(t)x -- u’N(t)u,
where M(t) and N(t) are respectively positive semidefinite and positive
definite, with N(t)- bounded on [0, T]. In this case Bellman’s equation
(6.3) hus quadratic solution

V(t, ) ’P(t) -t- p(t),

where P is the (unique) solution of a certain matrix Riccati equation and
p(t) is given by a quadrature. The optimal control is then

(P(t, li) --N(t)-B(t)’P(t).

Here P, and hence 0, are actually independent of the channel coefficient
matrices F, G. For this solution of (6.3) to exist it is sufficient, with the
stated conditions on M and N, that all parameter matrices be piecewise
continuous and that (A.2) hold.
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REGULATION OF INCOMPLETELY IDENTIFIED LINEAR
SYSTEMS*

A. CHANG hND J. RISSANEN
Abstract. This paper is concerned with regulation of linear systems disturbed by

stationary Gaussian processes. Neither the noise nor system characteristics are
sumed to be known a priori, but the input and output)signals can be observed for the
purpose of identification.

The problem is to find a feedback law, a linear function of finitely many past ob-
servations, which minimizes an appropriate objective function measuring the good-
ness of the regulation.

Precise conditions under which the problem can be solved with a stable control law
are stated, and an algorithm for finding the solution with arbitrary accuracy is given.

1. Introduction. This paper is concerned with the problem of regulating
linear systems which are disturbed by stationary Gaussian random proc-
esses (see Fig. 1). The variables u, y and v are scalar-valued and defined
only at discrete times T /0, 1, =t=2, }. Both the input u and the
output ybut mt v, stationary Gussin r.p.re assumed to be di-
rectly observable quantities. The regulation problem is to keep the output
as near as possible, in. some sense, to a prescribed constant y, say, y 0,
by suitable manipulation of the input u,. The input t time t, ut, is of
the form

(1.1) u u’ -+- w T,

where ut is the component of the input that we can choose, and we is a
noise term. The noise takes into account the deficiencies in the physical
device needed to implement the desired control process u’. The control
u at each T is to be computed as function of the past observations

(1.2)

where n is a fixed positive integer or -t- .
The difficulty of the regulation problem depends on what assumptions

can be made about the process; and this is influenced by the amount of
information we have initially, or can obtain about it. Wishing to study the
problem for a wide enough class of systems to include commonly en-
countered industrial processes, we want to impose as few restrictive as-
sumptions as possible. We shall assume that the system is linear and time-
invariant, and that the disturbance is a stationary Gaussian process. Thus,
in particular, the system is not required to be of finite order; when the
structure of the system is unknown, such an assumption is often difficult to

* Received by the editors July 19, 1967, and in revised form November 13, 1967.

f IBM Research Laboratory, San Jose, Califoria 95114.
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Fro. 1

justify. The assumption of linearity, however, is usually justified, because
if regulation is possible at all, both y and u tend to remain near their
nominal operating values. In practice, the assumption that the disturbance
is Gaussian is harder to justify, but the material presented here is useful
even in the non-Gaussian case if only second order statistical properties are
considered.
The very fact that we permit processes of infinite order introduces inter-

esting conceptual problems which also are of practical importance. The
usual approach of first determining a finite parameter model of the system
and then designing a control law on the basis of that becomes questionable.
Indeed, since the model cannot, in general, exactly describe the system, the
value of a control law so determined is not immediately clear. Furthermore,
while the parameters in the model can be chosen to fit the observations for
a particular input process, once a new control law is implemented, the input
process will be different. Therefore, the parameters chosen may no longer
be optimal for the closed loop system obtained with a control law deter-
mined on the basis of this model.

In this paper, we study these questions for a particular control problem.
We shall show that the solution of the "finite memory" versions of the
problem is expressible in terms of a finite number of parameters. These
parameters constitute a natural model for each such problem" they define
a model which is optimal for the closed loop system obtained when the
optimal control law for the model itself is implemented. Moreover, these
parameters can be determined with arbitrary accuracy by sufficiently long
observations of the input and output processes, so that the problem of deter-
mining a control law can be solved for an a priori unknown system without
identifying the exact characteristics of the system, which would be impos-
sible for infinite order systems.
The control problem to be studied is a mathematical optimization prob-

lem. We consider the quantity

(1.3) Lt+ yt+ -t- put, p ->- 0,

as the measure of the deviation from perfect regulation at time - 1. Let

(1.4) J(ut’, zt,) E(Lt+. zt.)
Alternative approaches to the regulation problemwhich make use, in an essential

manner, of the assumed finite order structure of the process are discussed in [1], [2] and
[3].
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denote the conditional expectation of Lt+l given zt.,. J may be interpreted
as the expected loss at time -t- 1 given zt,,. The control ut’ is to be com-
puted as a function of
DEFINITION 1.1. A control ut is admissible if it is a function only of zt.,,.

The set of admissible controls is Ut.., and an admissible control law is any
algorithm for computing ut from the data zt,,.
The problem to be considered is essentially the following one (see 3 for
complete statement).
PROBLEM. For each T, choose ut’ Ut. such that

(1.5) J(ut’, zt,,) min J(v, zt,,).
vEUt,n

To complete the problem formulation, we have to specify S, v and w,
This is done in the next two sections.

2. Mathematical preliminaries. This section is a short description of the
material concerning convolutions, z-transforms and stationary random
processes pertinent to the subsequent discussion.

Let T {0, 1, 2, and be the set of all real-valued sequences
f (’" f-l, f0, fl, on T which satisfy the inequality ’An important subset of is +, the set of all f 6 which satisfy the condition
fi 0 for all i < 0. Elements of + will usually be written asf (f0, fl, ),
we omit the zero components corresponding to negative indices. With the
usual linear vector operations and f Ifi as the norm, and + are
both Banach spaces.

If f, g (/+), the convolution of f and g, denoted h f. g, is the
element of h 6 (l+) defined by

(2.1) h,, f,_,g,, n T.

The norms of f, g and h satisfy the inequality

(2.2) h _-< f !111 g
With convolution as the product, both and + are comnutative Banach
algebras (see [4]).
The element e (l+) defined by

01 if nO,
(2.3) e n T,

if n=0,

is the identity in (l+) e f f for all f (l+). Au element f (1+) is
said to be a unit or regular if there exists g (1+) such that f g e.
Such a g is unique and is called the inverse off and is written f-. The (real)
spectrum of f (l+), a(f), is the set of real numbers ), for which f e
has no inverse in (l+).
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The study of convolutions and regularity can occasionally be simpler
with z-transforms. Let f and let Ds be the set of all complex numbers z
such that f z < . The z-transform of f is the complex-valued func-
tion ] defined by

(2.4) (z) f,z’, z - D].

Since f l, .lks contMns the unit circle C {z:lz 11}. If moreover,
f 6 +, D] contains the disk D {z:]z =< 1}. Given the z-transform of n
element f of l, we cn recover f by the inversion formul

1 fc )z-’-I(2.5) A f(z dz, ,, : T.

A connection between convolutions, regularity, and z-transforms is given
in the following two theorems, which we state without proof.
THEOREM 2.1. Let f, g and let h f g. Then (z) ](z)O(z) for all

z D] D.
THEOREM 2.2 (Wiener). Let f (l+). Then f is a unit if and only if

)(z) O for all z C(D).
The following linear maps of into will be used frequently in the subse-

quent discussion. In their definitions, f is any element of 1.
DEFINITION 2.1. The projections E and E+"

If, for 0 i-<= n-- l,,
(2.6) (E f),

otherwise;

If for i_->. 0,
(2.7) (E+f),

for i < 0.

E +f is called the positive part of f. We also write (f)+ instead of E+f.
DEIINITION 2.2. The conjugate of f, denoted f*"

(2.8) (f*) f_, n 6 T.

DEFINITION 2.3. The unit shift operator U-"
(2.9) V-lf), f,+l n ’1’.

We construct next a class of random processes. Let w {w.}, u T, be
a sequence of independent Gaussian random variables with

E (w) 0,
n, m 6 T,(2.10)

E(w,w,) ,,,,
where E(x) denotes the expectation of x. If a +, the sum
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(2.11) v aw,_i, n T,

exists in the mean square sense and defines a Gaussian random variable
[5].
We define the convolution of a and w to mean the random process

) a w, where v is defined by (2.11). Using (2.1) and (2.11), we can
easily show that the eovariance function of v is

(2.12) aia,+

(a**a),n, m T,

where a* is the conjugate of a. Since r,(m) is independent of n, v is a sta-
tionary process; in addition, r, l.
The notations in later sections are simplified by the use of matrices of

/-elements or a random process of type (2.11). Only 2 X 2 matrices and
2-vectors are needed. The 2 2 matrices of elements in. form a noncom-
mutative Banach algebra, if the sum is defined in the usual fashion and the
product as the convolution."

(2.13) (A B), An__:Bi, n T.

In (2.13), A,,_B is the ordinary product of tim 2 X 2 matrices A,_ nd
Bi. We use the norm I1A .mgtxi==l,2 {[I ail [- a []}, and in analogy
with (2.2), have the inequality

(2.14) IIA*B =< IIA lIB
The previously given definitions extend in an obvious way to matrices. In
particular, the z-transform of a matrix is the matrix of the z-transformed
elements. Similarly, if Q is any one of the operators (2.6)-(2.9) and

A (a), then QA (Qa). The special matrix is written as the

(:), and thus the convolution y A.x2-vectorx yields a 2-vector

Analogously, if w nd re processes of he Wpe (.10), he convolution

(2.15) A w
a21 $ w -- a22 $
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3. Regulation problem. This section contains a precise statement of our
regulation problem and a characterization of its solution in terms of a pre-
diction formula. This characterization will be examined in detail in subse-
quent sections.
The system that we want to control is assumed to be linear in the sense

that y, u and v satisfy the equations

(31)
y a,u

V b*w
where

() a +anda0 0,
(b) b + and is a unit,
(c) w is a sequence of independent random variables with

E(w,) O, E(w,%.)
for all n, m T.

Physically, (3.1) says that the output is the sum of a term depending
linearly on the input u and a stationary Gaussian random process.
The quantity u appearing in (3.1) is generated by some linear function

of the past 2n 1 observations zt. (see (1.2)) and is corrupted by noise
(1.1):

n--1 n--1

(3.2) t E hilyt-i "Jr- E hut_-zwt, o" 0.

In (3.2), w is independent of w but otherwise has the properties (c) of
(3.1). Let

h (h0, h, h_, 0, "’),
(3.3)

h (0, hi, ..-, h_l, 0, ..-).

We call the control law (3.2) stable if e h is a unit. The reason for this
terminology is that the control law defined by (3.2) may be put in the form

(3.4) u c,y-t-d,w:,
where

(3.5)

when e h is a unit, and the linear system (3.4) is stable in the input-
output sense [6]. We also say then that c is stable.
The following proposition shows when the pair of equations (3.1) and
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(3.4) define meaningful random processes. Let

I:)ROI’OSITION 3.1. Suppose zX e a c is a unit and c is stable. Then the
following three properties hold:

(i) The pair of equations (3.1) and (3.4) define a vector random process

x=A, w,

A A-.
b.c

(ii) The covariance matrices of x are given by

where the prime denotes transposition; or equivalently, by the convolution
equation

R A**A’,
where A * is the conjugate of A.

(iii) A has an inverse (i.e., A--1 A I, the identity):

A-- (b , d)-.., ( d -a , d)-b.c b

Proof. (i) This follows from (3.1) and (3.4) after some straightforward
algebra.

(ii) This follows readily from (i) and the assumed staistieal properties
w and w.

(iii) The stability of c implies that d is a unit, and the formula for A-1

may be verified by a direct ealeulation.
We can now give a more precise reformulation of the regulator problem.
REGULATOn PROBLm (R.P.). Let n be a positive integer or -[-. Let

z,.,, L+. andJ(u,’,zt.,) be definedby (1.2), (1.3) and (1.4). With the sys-
tem (3.1) the problem is to find the veetors h (h0, h, h_, 0,
and h (0, hi2, h_l, 0, ...) such that"

n--1 h n-1(i) u ’o Y-i - 1 hut_ minimizes J(ut’, z.);i.e.,
,! (ut’, z.,) rain ,! (w, zt.), T;

U

(ii) c h,(e- h)-isstb|e;
(iii) e-- a,cisaunit.



334 A. CHANG AND J. RISSANEN

The conditional expectatiol defining J(u/, z,,) is for the statistics of the
process (3.1) with c as the control law.

We shall speak of h h or c given by (ii) as being solutions of .P.

We wang go develop conditions on solutions in erms of gherandom proeesses
and . If c is a solution, ghe conditions of Proposigion 8.1 are satisfied,

and bogh and are well-defined saionary Gaussian random processes.
Ingroduee ghe veegor

(3.6)

which differs fi’om z,,, only in the ppernce of the term ut. There re
then vectors

P (P0, pl1,
p (p0, p:, p-),

such that
n--1 n--1

(a.7) +

Thevalue ofp (.)in general, depends on c. The quantity :)+1 is called

the predicted value of y+l, and it is related to y.+l by the equation

(3.8) Yt+. +i + et+t,

where et+ is a random variable that is independent of the conditioning
random variables in Xt,n.

We now invoke a so-called "smoothing" property of conditional expecta-
tions (see [7]) and write

(3.9)
J E(L+. Z,n)

E(E(L+

Using (3.7), (3.8) and the independence of et+ and xt,,, we can ex-
press the term E(Lt+ xt,,) in the following way"

(3.10) E(Lt+., xt,) 7)+. "+ put + E(e.t+,).
Then, putting ut ut + wt, substituting (3.10) in (3.9) and using the
independence of w and zt,, we obtain

(3.11)
J P Y-’ + 1 p u + pou

+ p(ut’) + p( + (po’) + E( t.+l)



REGULATION OF LINEAR SYSTEMS 335

The last term being independent of u Ut.,,, the minimum of J is
achieved by setting

ut g P Yt- + pi ut_

(3.12)
P0
+

Equation (3.12) defines a control law of the form (3.4)"

ap poc= p ,(e-

providing (e ap2) is a unit.
In deriving (3.12), we have tacitly assumed tha (p0) -t- p > 0. This is

reasonable, for we must assume p0 0 to have a physically meaningful
problem. If this condition is not satisfied, ut has no influence on yt+l ,and
the problem set up must be modified.
We have thus shown that if c is a solution, ut must satisfy (3.12), where

p is defined by (3.7). On the other hand, let a c, satisfying conditions (ii)
and (iii) of the problem statement, be determined by (3.12) for some p.
Then if p satisfies (3.7) for the processes y and u that correspond to c, the
expression (3.11) is minimized and thus condition (i)
solution of R.P. Thus, we have proven the following theorem.
THEOREM 3.2. A control law c solves R.P. if and only if for some vectors

po O, ),p ,P, ,p_,

po 0 ""),p ,p,"" ,p,-,

the following conditions are satisfied"
(i) E(yt_t_ Xt,n) Z-I Z-Ipi Yt-i A- pi ut-i

(ii) c ap (e ap) +, a --po/p;
(iii) e a c is a unit.
The conditional expectation in (i) is defined for the random processes

obtained with c as the control law.

4. Wiener-Hopf equation in 1. This section contains a discussion of the
Wiener-Hopf (W-H) equat,ion in that arises in the Wiener-Kolmogorov
theory of prediction. The results obtained are used extensively in later
sections to solve R.P. If the reader wishes to omit the proofs, he can without
loss of continuity skip the material following (4.10), and refer to the results
only when needed.
We begin by defining the W-H equation of interest. Let A be a regular

2 X 2 matrix with entries in. + (i.e., A has an inverse also with entries

If p 0, then c -p * (p)-.
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in l+). Let
A(4.1) R A**

Let p, p, q, q + nd let

We consider the W-H equation"

(4.3) (R, p q)+ 0.

Occasionally, different form for this equation is preferable. Let

(4.4) r

R(0) R(-1) R(-2)

R(1) R(0) R(-1)

R(2) R(1) R(0)

The sum of the absolute values of the elements in each row of P is uni-
formly bounded, and therefore r, considered as a linear map of + into +, is
a bounded operator. If we arrange the elements of the vectors (4.2) as
follows (keeping the same notation p and q)"

(4.5) p

then (4.3) is equivalent to

(4.6) I’p q O.

qo
q[
q
.j

The corresponding equations are

(4.7) E,(R, pn qn) O, pn, qn n.
The matrix analogue of (4.7) is obtained by defining

(4.8)

(o)

R()

R(n 1)

R(-1)

(0)

R(. n)

R(0)

Finite-dimensional analogues of (4.3) are obtained by requiring that the
solution p belong to proper subspaces of +. Let
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and making the identification"

(4.9) pn

Then (4.7) is equivalent to

(4.10) Fp qn O.

q11

qn.--l)

Although the same notation p, q’ is used both for the 2n-dimensional
vectors (4.9) and the 2-vectors in Ms, no confusion should occur. With this
understanding, 1. can be considered as a map ofM into M, and in subse-
quent discussions it will be convenient to use this interpretation. Similar
remarks apply to p, q and r.

In the W-H equations above, we are given R and q and want to solve for
p. The solution of (4.3) is given in the following proposition.

PROPOSITION 4.1. The W-H equation (4.3) has a unique solution p given
by

p (A’-1) (A*-lq)+.

Proof. The proof consists of an application of Wiener’s spectral factoriz-
tion method (see [8]). Define g by the equation

(4.11) A* g q.

This is legitimate since A, by hypothesis, is regular. Substituting (4.11) into
(4.3) and using (4.1), we obtain

(4.12) (A* (A’ p g))+ 0.

Write g (g g+) - g+ in (4.12), where g+ E+g. Then

(A* (A’ ,p g+))+ (A* (g g+))+ 0.

In the second term, note that (g g+)i 0 for i => 0. Since (A*) 0
for i > 0, the positive part of A* (g g+) is zero. Hence we have

(4.13) (A* (A’ p g+))+ 0.

Equation (4.13) can be satisfied by setting

(4.14) A’ .p g+ 0

or

(4.15) p (A’) -1 g+.

Since the components of g+ and (A) -1 +, p given by (4.15) is a solution
of the W-H equation.
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To see that (4.15) gives the only solution, let w be another, and let
z p w. Then the components of z and of y A’ z belong to +: yi 0
for i < 0. Since both p and w satisfy (4.13), we must have (A* .y)+ O.
This implies that (A* y)i O, i >- O. Since also (A*-I)i 0 for i => 0,
it follows from the identity A*-I (A* y) y that yi 0, i _-> 0. But
since y 0 for i < 0, we must have y 0, and thus z 0, since A’ is
invertible.
Regarding the finite-dimensional analogues (4.7) and (4.10) of the W-H

equation, the following proposition implies that they can be solved, too.
PROPOSITION 4.2 (SzegS). There exist constants 1, . such that the eigen-

values X, of F, satisfy the inequalities

0 < < hn < 2 m 1,2,... ,2n.

The constants 2 may be chosen independently of n.
Proof. Let A (z) be the z-transform of A. Then from (4.1),

Combining the hypothesis that A is regular with Theorem 2.2, we can. con-
clude that there exist , b. > 0 such that

(4.16) I =< /(z) =< 2I, z C,

where I is the 2 2 identity matrix.
From this point on, our proof is an obvious extension of the proof of

Szeg5 [9] to vector-valued processes. Let u (u,, u), 0 =< i =< n 1,
be arbitrary 2-vectors of complex numbers, and let u (u0, ui, U_l).
Let (z) -- u,,:,. Then as can be verified by direct integration, we
have the identity

(4.17) (u, I’, u) k(z)’(z) dz
Z

where (x, y) is the scalar product of x and y. Applying (4.16) to the right-
hand side of (4.17), we obtain

(u, u) =< (u, ru) __< .(u, u),

from which the result follows.
Proposition 4.2 implies that F, has an inverse, -1" for every n. We shall

need the following sharper form of Proposition 4.2 in subsequent sections,
the proof of which is considerably more difficult.
LEMMA 4.3. There exists a constant M such that

sup r,,-1 M.
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Proof. Suppose that the rn-1 are not uniformly bounded. Then there is
sequence of x Mn, n 1, 2, such that

(4.18) xn ], En (R xn) ---) O.

{xn,iLet y" En(R xn) and letx x,,] and y y,,]. Then from (4.18)

it is clear that

S (y’)e + (yin’2)2 O.

But by Proposition 4.1, since x =F-ly,

0 (Xi ,1)2 + (Xi ,2)2

Hence we have the estimate

(.9) x o.
Oinl

Let z, (R xn)... By Proposition 4.1 we have

x (A’-) (A*-I z.)+,

and since x 1, there is a such that

(4.o) i,f z a > o.

Now using (4.18) we have

We shall obtain a contradiction by showing that w (E+ E,)z, O.
First we introduce the 2 X 2 matrices U and V defined by the equa-

tions"

U,(n) ={Rn)for ]n] m- 1,
for ]n] > m- 1,

V’(e) R for I > m- 1.

We obviously have

R=U’+V",
(4.21) vmll - o, ,
In terms of U and Vm,
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(4.22)
w (E+ E) U q- V) x

(E+ E,,)(U xn) .ql_ m,
where -- 0 uniformly in m as m .
For n m write x (E E,_)x E x. It is clear that

E+(Um, (En_,xn)) M
and therefore, since (E+ E)v 0 for v .Mn, we have from (4.22),

w (E+ E) U (E E)x) +
Finally using (4.19) and (4.21), we hve

which en be mde rbifrarily smll. This eomplefes he proof.

ft. ixed-point condition. In fhi8 seefion, fhe eriferi in Theorem 3.2
which ehreerie 8olufions of A.P. re resfed s g fixed-poin condition.
Le G be fhe se of eonfrol laws defined 8 follows"

G {e’ +,e- ,isuni}.
hen, for eeh e G, the prediefion formul

n--1 n--1

(3.7) St+l p y_ + pu_

is uniquely determined by the codition that the prediction error is orthog-
onal to Xt,n"

E((Yt+l t+l)’Yt’) O, n + 1 5 t,
(5.1)

E((yt+- t+)’ut,) O, t-n + 1 t’ t.

Substitution of (3.7) into these equations yields a system of linear equations
for the unknown p’s in terms of the covriunce matr of the process. These
turn out to be identical to (4.3) and (4.7) in the case n + and n < ,
respectively, if we set"

q (V-lrll)+,

(5.2) (b, a,dd)A=A-I*
b c

R (r) A* A’,
p2 (p0P (P01, Pl, pl2, ),

--1U r21)q =( +,
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Then p "is determined by the W-H equation

(5.3) E+(R ,p q) 0

in the case n o, and by

(5.4) E,(R p’ q") O, p’, q" M,,

in the case n < .
We showed in the last section (Propositions 4.1-4.2) that (5.3) and (5.4)

have unique solutions. Since R and q depend on c, the solutions can be con-
sidered as functions of c. We define maps f+ and fn on G to + X + by
setting

(5.5)
f+(c) p,

f,(c) p’,

where p and p are the solutions of (5.3) and (5.4) corresponding to c. We
also define a mp g on + X + to + by setting

(5.6) g(p) a pl, (e op)-, a --po/p.
In terms of these maps, we can restate Theorem 3.2 in the following way.
COROLLARY 5.1. A control law c G solves R.P. if and only if there exists a

p satisfying the fixed-point condition"
(i) f+(g(p) p,
(ii) f,(g(p)) p, y

in the cases n and n < respectively. The solution c is then given by
c g(p).

6. Case n + . The R.l?. for the case n + is solved completely
i this section. The distinctive feature of R.P. for n + is that the
prediction formul is independent of the control law c as shown by the
following lemma.
LEMMA 6.1. For all c G, the optimal predictor is given by

where p b- (U-lb)+ and pe bo, b- (U-la)+
/\

Let),= (). Then from (5.2)andProof. (4.1),

q (U-R, k)+ (U-iA * A’ X)+,

and from [)roposition 4.1,

f+(c) p (A’-) (A*- , (U-A * A’h)+)+.
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Since (A*--). 0 for i > 0, note that for any y we have the identity

(A*-I y)+ (A*-I , (y)+)+.

Applying this result in the expression above for p, we get

p (A ’-1) , (U-1A’, )+.
Then using (5.2) and the formula for A-1 in Proposition 3.1, we obtain,
after a straightforward computation, the result stated in the lemma.
The following lemma is a partial converse of Lemma 6.1 and gives the

coditions under which c G.
LEMMA 6.2. Let p be given by Lemma 6.1. Then

the control law

c g(p) ap,(e-- ap)-, a -po/p,

is stable if and only if 1/a z(p);
(ii) if c is stable, then e a c is a unit if and only if 1/a (r( (U-la)+).
Thus c G if and only if both and ii hold.
Proof. (i) The first statement is obvious from the definition of the spec-

trum (p).
(ii) If c is stable then e ap is a unit, and e a c is a unit if a,nd only

if w (e a c) (e ap) e ap ap is a unit. Substituting for
pp and from Lemma 6.1, nd taking z-transforms, we get after some

algebra

(z) 1 ,z-ld(z);
and herefore, since ao 0,

W e- (x(U-ia)+,

from which the result follows.
Combining Lemmas 6.1-6.2 with Corollary 5.1, we have the solution to

R.P. with n q- .
THEOREM 6.3. Let

p , (U-lb)+

(6.1) p bob- (U-la) +,
a --po/p.

Then a solution to R.P. for n exists if and only if

((.2) .,/ . (p), ./. ! ((u-a)+).

If the conditions (6.2) hold, then
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(6.3) C opl* (e- ap2)-1

is the required solution.
Proof. If c solves R.P., then by Corollary 5.1, c g(p) for some p satisfy-

ing the equation

f+(g(p) f+(c) p.

But by Lemma 6.1, f+(c) p, p given by (6.1); and therefore c must be
given by (6.3). By Lemma 6.2, c G only if the conditions (6.2) are satis-
fied. This shows the necessity of (6.2).

Conversely, if the conditions (6.2) are satisfied, the control law c defined
by (6.1) belongs to G. By Lemma 6.1, f+(c) p, p given by (6.1), and
therefore,

f+(a(p) ,,
which by Corollary 5.1 shows that c solves R.P.

7, Case n <: . In this section, we show that R.1). has solutions for
sufficiently large n. We show, in addition, how the solutions may be com-
puted by an iterative algorithm.
In what follows we assume that conditions (6.2) of Theorem 6.3 are

satisfied. Then R.P. for n -t- has a unique solution denoted by c+. Let
p+ be the predictor defined by

(7.1) p+ f+(c+).
Fort > 0, let

U {c’llc- c+ll --< r;c,c+ l+},
V {p’I[p P+II --< r;p,p+ l+}.

For each c, let F.(c) be the map F, corresponding to the covariance matrix
R which is obtained with the control law c.
LEMMA 7.1. There exists an ro > 0 and a constant M such that

sup sup r-()ll < M.
CUro

Proof. For each n and c consider the map r,(c)’M, -- ill,,, and deline

a(c) r(c) r(c+).
We have

(c)x I1 E,[(R(c) R(c+)) .111 <= R() R(c+)[[
Since the map c -- R (c) A (c) A’ (c), where A (c) is given by (5.2), is
continuous at c c+, we can find for each M > 0, an r0 > 0 such that
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sup llR(c) R(c+) < 1

oeV,o 4M"

Thus we have for such ro,

1(7.3) sup sup A,(c) =< M"cUro

By Lemma 4.3 there is an M such that

(7.4) sup 1-(c+) -< M/2.

Thus the series

(7.5) F-(c) ( l’,-(c+)(c) ) -. (c+), c Ur0,
i=0

is absolutely convergent, and we obtain from (7.5) the desired inequality

su, up r-()II M.
CUro

LEMMA 7.2. Let ro be chosen according to Lemma 7.1. Then for each
0 < r ro there is an nr such that

f,(Uro) V for n n.

Proof. By Lemma 6.1 we have for all c U0,

E+(R() p+ q(c) O.

On the other hand,

E(R(,:) f,,,(c) (c)) o.
ld +Wri[ing p+ ,,,p + (E+ E=)p+, we have from he lasL two equations,

(n(c) ([(c) ’.+) (c) (+- )+) 0.

Considering his expression as a Wiener-Hopf equation for f(c)
we have by Lemma 7.1,

cEUro

The right-hand side of the last equation converges uniformly to 0 as
n , thus proving the lemma.
THEOREM 7.3. There exisL a positi.,e integer no such ha for all n > no,

R.P. has a solution.

Proof. In view of Corollary 5.1, it suffices to show that the maps
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p ---) f,,(g(p) T(p) have fixed points for sufficiently large n. For r > 0
let

V.,. {p:]l p p+ =< r, p

Ur,, {c:c g(p), p

Choose r0 according to Lemma 7.2. Since g is continuous at p+ and
g(p+) c+, there exists an r > 0 such that g(Vr) c Uro, and since
V V.,,, g(V.,,,) c
By Lemma 7.2, there exists an no such that f.(U.0) c V, for n > no,

and since f(Ur0) c M., f(U.0) c V.,.. By definition, g (v.,.) U,,. and
we have T.(V.,,)) f.(g(V.,.)) c V,,. for n > no. Finally, noting that
the sets V.,. are convex and compact and that the maps T. are continuous,
we see that the existence of fixed points for n > no follows from Schauder’s
fixed-point theorem.

In proving Theorem 7.3 we showed that the maps p ---->f.(g(p) T,,(p)
map V,n into itself for n greater than some no. We want to show that there
is an nl such that Tn is contractive for n > nl. For such n, the fixed point
of T. in V.,. is then unique and may be computed by the formula

(7.6) p lim T,’(p), pO V,,,,

and the solution to R.P. is then g(p).
In order to show that T is contraction, we need a few facts about

derivatives. Let f be a continuous map of into 1. We recall that f is differ-
entiable at x0 if there exists a linear map Df(xo), called the derivative of f at
x0, which satisfies the equation

f(xo - x) f(xo) nu Df(xo)x - o(x),

(7.7) o(x o.
x0

We shall need the following properties of derivatives, the proofs of which
are immediate from the definitions (see [10]).

t)ItOIOSITION 7.4. Let f: ----> be differentiable at xo and A ----> be a (con-
stant) linear map. Then the composite map A o f(x) A (f(x)), x l, is
differentiable at xo and

D(A o f)(Xo) A o Df(xo).

PROPOSITION 7.5. Let f and g be maps on into l, and suppose g is differ-
entiable at Xo and f differentiable at yo g (Xo). Then the composite map fo g
is differentiable at xo

D(f o g)(Xo) Df(yo) o Dg(xo).
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PROPOSITION 7.6. Let f and g be maps on into l, and supposefand g are

differentiable at Xo. Then the map h f g defined by h(x) f(x) g(x),
x l, is differentiable at xo and its derivative is defined by the equation

Dh(xo) .x (Df(xo).x) g(xo) - f(xo) (Dg(xo).x),

COROLLARY 7.7. Let f, g, h be .maps on into l, and suppose h f. g. Let
h and j" be differentiable at xo and suppose f(xo) is a unit. Then g is
tiable at xo and

Dg(xo)’X (f(x0))-1 (Dh(xo).x Df(xo)’x) * g(Xo),

We now apply the above results to the maps irt our problem.

LEMMA 7.8. There exists an r > 0 such that the map c -- A-l(c)
(e a. c) -1 is differentiable for c Urn, and

DA-I(c) A-(c) a A-I(c).

Proof. Since the set of units in any Banach algebra is open, we have the
identity

(7.s) e, (c), (c),

valid for all c in some neighborhood Ur0 of c+. Applying Corollary 7.7
and Proposition 7.5, we have

DA-I(c) A-(c) a A-I(C).
COROLLARY 7.9. There exists an ro > 0 such that the maps c -- R(c)

and c -- q(c) are diilerentiable in U Furthermore,

sup IIDR(c) < , sup llDq(c)II < .
cUro -Uro

Proof. This follows easily from Propositions 7.4-7.5, Lemma 7.8 and
the formulas for the maps, (5.2).
LEMMA 7.10. There exists an ro > 0 such that the maps c -- f,(c) are dif-

ferentiable in U,.o Furthermore,
lim sup Off,(c) O.
no CUro

Proof. First we note that Df+(c), c Uo, is the zero map since f+ is
constant on U0. By differentiution of the equality

E+(R(c) ,f+(c) q(c)) 0

(using Propositions 7.4, 7.6 and Corollary 7.9), we have for x l, c Uro,

E+[(DR(c).x) ,f+(c) + R(c),(Df+(c).x) Dq(c).x] O.

But since Df+(c). x 0 for all. x,
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(7.9) E+[(DR(c).x) ,f+(c) Dq(c).x] O.

Now we differentiate the expression

E,(R(c), (f(c) q(c)) 0

to get forx l,c Ur0
(7.10) E[(DR(c).x) , f,(c) + R(c) (Df(c).x) Dq(c).x] 0

Let x 1, and let

z, ((DR(c).x) ,f(c) Dq(c).x)+.

In view of (7.9), Lemma 7.’, and Corollary 7.9,

lim sup I]z,]] O.
cUro

Solving (7.10) for Df(c).x, we hve

Df,(c). x
cUro_
M]l z O,

nd the result follows.
THEOREM 7.11. There exists att r > 0 and att integer n such that the

mappings

p

are contractive for all n
Proof. It suffices to show that DT,(p) - 0 uniformly for p V..

Applying Proposition 7.5 we have DT,,(p) Df,,(c)oDg(p), c g(p).
Clearly the map

p -- g(p) ap, (e ap)-
is differentiable in some neighborhood Vrof p+, and super
On the other hand, for r sufficiently small, c g(p) U,o for all p V,.
Then applying Lemma 7.10, we have

lim sup IIDT,,(,)II -<- lim sup IlDf,,(c)II sup Dg(p)[[ 0,
n-* pV,, o VVro p6Vr

which proves the result.
In conclusion, note that Tn (p) can be ewluted for each p with rbitrry

precision from sufficiently long record of input nd output" it is only
necessary to determine the cowriance mtrices R (0), R 1 ), R (n 1 ).
Thus the regulation problem can be solved without identifying the vectors
a and b, which define the exact characteristics of the system.
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BOUNDARY CONTROL SYSTEMS*
H. O. FATTORINIf

Introduction. We consider in this paper certain types of control systems,
among them those described by a partial differential equation in a domain
I of Euclidean space, the equation being of first or second order with re-
spect to time. The control is exerted on the system by means of the bound-
aT conditions and (possibly) by means of parameters distributed all over
I, and we seek conditions on the way the control is applied that ssure
that the system can be steered from an arbitrary initial state to (the
vicinity of) an arbitrary final state. These conditions are obtained by
replacing the boundary control by distributed controls that have the same
effect on the system, and then pplying known results for distributed
parameter systems (this type of argument has already been used in con-
nection with coutrollability and optimal problems; see, for instance, [14]).
The results re then pplied to a number of particular equations in 5
and 6. Sections 1, 3 and 5 are devoted to equations of first order in time,
2, 4 and 6 to second order equations; since the proof of many fcts for
these equations re similar to, or depend on, results for first order equa-
tions, the even numbered sections arc dependent on the rest.

1. The boundary control system (first order equations). If E u, v,
is any Banch space we shall denote by E* u*, v*, }, the dual spce of
E, and by (u, u*) or (u*, u) the value of the functional u* E* at u E.
If K is ny subset of E, we define K" {u* E*[(u*, u}. 0} for M1
u K. Plainly K" is subspaee of E*; if K itself is a subspace of E, by the
Hahn-Banaeh theorem C1K E if and only if K" {0}.
The space E, the state-space of the system, will be a complex Banaeh space;

in the applications we have in mind, E will be space of (ordinary or
generalized, possibly vector-valued) functions defined in a domain I of
Euclidean space R".
We shall consider a closed linear operator z with domain D(z) E and

rnge in E and linear operator (the boundary operator) with domain
D(z)

_
E nd range in some Bmmch space X. Since z is closed, D(z) be-

comes Banaeh space if endowed with the usual "graph" norm, i.e.,
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u I) ul + Iu Ix. The operator r is required to satisfy the following
assumption.
ASStMeTION 1. D(a) D(r) and the restriction of r to D(a) is con-

tinuous (with respect to the graph norm of D() ).
In applications, a will usually be a suitable linear partial differential

operator in E, r a differential operator acting in S, the boundary of I.
Finally, we introduce the space of controls. It will consist of (an appropri-
ate subspce of) 2 2, X 2s, 2, (respectively .Cz) the space of all func-
tions f,(. (respectively fs(. )) defined and infinitely differentiable in

->_ 0 with values in a complex Banach space F, (respectively Fs). We
shall call F,, Fs the control spaces of the system.
The boundary-distributed parameter control system we shall consider is

(l.1) u’(t) au(t) "4-

(1.2) ru(t) Bf,(t).

Here Bt (respectively Bs) is tt bounded linear operator from F to E
(respectively from Fs to X). A solution of (1.1)-(1.2) in => 0 is an E-valued
continuously differentiable function defined in >= 0, such that u(t)
for all >_- 0 and 1.1)-(1.2) hold everywhere.

Define

(1.3) D(A) {uD(a) Iru 0}, Au =(ru in D(A).

The operator A so obtained should satisfy the following assumptions.
ASSUMPTION ’2. D A is dense in E and p(A ), the resolvent set of A, is non-

void.
ASSUMPTION 3. The Cauchy problem for the equation

(1.4) u’(t) Au(t)

is uniformly well-posed in [0, ).
Recall [6, 1] that this means the following"
(a) there exists a dense subspace D of E such that if u D there exists

solution u(. of (1.4) with u(0) u;
(b) .if u(.) is a sequence of solutions of (1.4) with u(0) 0, then.

u(.) --* 0 uniformly on compact subsets of [0, ).
We shall not dwell here upon the problem of singling out those A for

which Assumptions 2 and 3 hold (see Remark 1.4). We shall use, however,
the fact that the subspace D can be assumed to coincide with D(A).

Let the operator-valued function T(t), >= O, be defined by

T(t)u u(t)

Continuity of r will be only occasionally used in what follows.
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for u D (u(.) the solution of (1.4) with u(0) u) and extended to all
of E by continuity. It follows easily from (a), (b) and an approximation
argument that T(- is strongly continuous in >_- 0. By means of T(. we
can construct solutions of the inhomogeneous equation

(1.5) u’(t) An(t) -t- g(t).

In fact, if g(. is continuously differentiable in >_- 0, then

u(t) T(t- s)g(s) ds

is a solution of (1.5) with initial data u(0) 0 (see [12, Lemma 6.1]).
Consequently, if u D (A), then

(1.6) u(t) T(t)u + Jo T(t s)g(s) ds

is a solution of (1.5) with u(0) u. Uniqueness of solutions of (1.5)
follows immediately from uniqueness for the homogeneous equation, i.e.,
from (b) following Assumption 3.

All these considerations will allow us to construct solutions of the
original problem (1.1)-(1.2) we must, however, impose an additional re-
quirement on Bs.
ASSUMPTION 4. There exists a bounded operator B" Fs-- E such that"
(i) if f Fs, then Bf D((r) and

(1.7) r(Bf) Bf;

(ii) there exists a constant C such that

Bf IE <-_ CI Bg Ix, f F
Note that if Fs is m-dimensional, m < and Bsf Bs(fl, fro)
flx + + f,X,,, X, X, linearly independent vectors in X, then

Assumption 4 reduces to" there exist u u, E such that -u xj

l<=j<=m.
Now let (fz, fs) and let v(. be any solution of

(1.8) v(t) Av(t) -Bfs’(t) + aBfs(t) + Bzf(t)

(by the closed graph theorem, zB is a bounded operator and thus we can
construct such a solution by means of the expression (1.6)). Set

(1.9) u(t) v(t) + Bfs(t).

An easy computation shows that u(.) is a solution of (1.1.)-(1.2); con-

Part (ii) is not essential and it is only introduced to simplify some later computa-
tions.
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versely, if u(. is such a solution and v(. is given by (1.9), it is not diffi-
cult to show that v satisfies (1.8). The initial conditions are of course re-
lated by

u(0) v(0) -{- Bfs(0).

Summarizing, we have the following theorem.
THEOREM 1.1. Let u D((r) be such that ru BsFs (fs f) 2 such

that Bfs(O) -u. Then the (unique) solution of (1.1)-(1.2) with u(O) u
is given by (1.9), where v(.) is the solution of (1.8) with v(O) u(O)

Bf(O).
The uniqueness part follows from uniqueness of the solution of (1.5)

with given initial data, which in turn reduces to the same question for the
homogeneous equation (1.4). Observe that if u(O) O, Bzfs(O) 0 and
thus Bfs(O) O.
We close this section with two results concerning (1.4) which are to be

used later (see [1, Chap. VIII]).
LEMM 1.2. There exist constants K, such that

(1.10) IT(t) <__ Ke >= O,

if Reh > o,h p(A and

(1.11) R(k; A)u e-X’T(t)u dr, uE.

Note that (1.11) implies

(1.12) ,R (h; A)u - u

as Rek-- ,u E.
:LEMMA 1.3. Let E* be the dual space of E, A* the dual of A. IfE is reflexive,

then the Cauchy problem for
(1.13) (u*)’ A’u*
is uniformly well-posed. If T*(t) is the operator defined from the solution of
(1..1.3) as T(t) is defined from the solutions of (1.4), then

T*(t) T(t) *.
Remark 1.4. If A satisfies Assumption 2, then Assumption 3 is equiva-

lent to requiring that A should generate a strongly continuous semigroup
U(t) moreover, U(.) coincides with T(.) (see [1, Chap. VIII]). In all the
examples we shall consider in 5, however, H is a Hilbert space and A is
self-adjoint. Then Assumption 2 is automatically satisfied; as for Assump-
tion 3, it is equivalent to the requirement that A should be semibounded
above, i.e., that the set a(A) in the rel line should be bounded above. The
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operator T(. is given by

T(t) exp (tA),

where the expression on the right-hand side can be computed by means of
the usual functional calculus for self-adjoint operators [2, Chap. XII, 2].

2. The boundary control system (second order equations). Here we
consider, instead of the system (1.1)-(1.2) of 1, the second order system

(2.1) u" (t) zu(t) -t- Bj’(t),

(2.2) -u(t) Bsfs(t).

The definition of the solution of (2.1)-(2.2) is similar to that for (1.1)-(1.2).
Assumptions 1, 2 and 4 are supposed to hold. The operator A, defined by
(1.3), is required to satisfy the following instead of Assumption 3.

3"ASSUMPTION The Cauchy problem for the equation

(2.3) U" Au(t)

is uniformly well-posed in [0, ).
This means now the following (see [6, 1]):
(i) there exists a dense subspace D of E such that if u0, ul D there

exists a solution of (2.3) with u(O) Uo u’(O) ul

(ii) if {u.(. is a sequence of solutions of (2.3) with u,(0) --. 0,
u’(0) -. 0, then u(.) -- 0 uniformly on compacts of [0, ).
The reader may consult [6, 5-6] for further properties of operators

satisfying these hypotheses; we shall only use the fact that the subspace D
may be taken equal to D(A (see also Remark 2.4).
The role of T(t) in 1 is now played by two strongly continuous operator-

valued functions S(t), T(t), >= O, defined as follows: If u D, u(. (re-
spectively v(.)) is the solution of (2.3) with initial data u(0) u,
u’(O) 0 (respectively v(0) 0, v’(0) u), then define

s(t)u u(t), T(t)u ,(t)

and extend S, T to all of E by continuity. Clearly S, T are strongly con-
tinous and are related by

(2.4) T(t)u S(s)u ds, >= O, u E.

As for first order equations, solutions of the inhomogeneous equation

(2.5) u" (t) Au(t) - g(t)

can be constructed by means of T(. ). In fact, if g(. is twice continuously
differentiable in => 0, then
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(2.6) u(t) =J0 T(t- s)g(s) ds

is a solution of (2.5) with initial data u(0) u’(O) 0, the proof of this
fact being essentially similar to the one for first order equations. Conse-
quently, the solution of (2.5) with initial data u(0) u0, u (0) u, u0,

u D(A), can be written

u(t) S(t)uo + T(t)u - Jo T(t s)g(s) ds.

Uniqueness of the solutions of (2.5) follows from uniqueness for the solutions
of the homogeneous equation (2.3), which, in turn, is a consequence of part
(ii) of Assumption 3’. The correspondence between solutions of (2.1)-
(2.2) and the solution of the inhomogenous equation (2.5) is now as fol-
lows" If v(. is a solution of

(2.7) v"(t) Av(t) -Bf,"(t) + zBf,(t) + Bf(t),

then

(2.8) u(t) v(t) + Bf(t)

is a solution of (2.1)-(2.2) and vice versa. This leads us to the following
theorem.
TOEM 2.1. Let no, u D (a) be such, that uo vu BF (f f)

such that Bfs(O) uo, Bfs’(O) ui. Then the (unique) solution of
(2.1)-(2.2) with u(O) no, u’(O) ui is given by (2.8), where v(. is the
solution of (2.7) with v(O) Uo (0), v’(O) u Bfs’(O).
The uniqueness part follows as in Theorem 1.1. Note that if u0 u 0,

then Bfs(O) Bfs’(O) O.
We close this section with two analogues of Lemmas 1.2 and 1.3.
LnMA 2.2. There exist constants K, > such that

(2.9) S(t) Ket, T(t) Ket, => O.

If Re > , then p(A and

(2.10) R(h; A)u

As for first order equations, this implies

(2.11) kR(k;A)uu as Rek

If u(t) is a solution of (2.1)-(2.2), then it might conceivably happen that ru(O)
ru BsFs and thus this solution could no be constructed by the method above.

We shall not consider here this type of solution, although it is possible to do it by
means of slight refinements of the results on (2.3).
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for any u E.
LEMMA 2.3. Let E* be the dual space of E, A* the dual of A. If E is reflexive,

then the Cauchy problem for
(2.12) (u*)rP A’u*
is uniformly well,posed. If S*(t), T*(t) are the operators defined from the
solutions of (2.12) as S(t), T(t) are dqfined from the solutions of (2.3),
then

*(t) (t) * T*(t) T(t)*
Remark 2.4. If Assumption 2 is satisfied, then operators satisfyingAssump-

tion 3 can be characterized by a property similar to semigroup generation
(see [6, Theorem 5.9]). In all the examples we shall consider, however, A is
self-adjoint, and in this case Assumption 3 is also equivalent to requiring
that A should be semibounded above. The operators S, T can be computed
by means of the functional calculus for self-adjoint operators as follows"

S(t) f(t; A), T(t) g(t; A),

where f(t, X) cosh (Xl/t), g(t, X) X-1/ sinh (xl/2t).
3. Conollability (first order equations). Let g {u D(z) ru Bsb’s}

be the subspace of possible initial data for solutions of 1.1)-(1.2). If u g,
it is clear that any (f, fs) such that the solution of (1.1)-(1.2) satisfies
u(0) u, must satisfy

(3.1) Bfs(O) ru.

We shall call 2,, the subset of 2 satisfying (3.1).
Now let E0 E be a Banach space with norm I’ 10. Call g0 the set of all

u g such that, for any (f, fs) , the solution of (1.1)-(1.2) with
u(0) u belongs to E0 for all > 0. If g0 is nonvoid we shall say that
(1.1)-(1.2) is completely controllable (or Eo-completely controllable) if, for
any u 0, v E0, e > 0, there exists (f, fs) 2 such that the solution
of (1.1)-(1.2) with u(0) u satisfies

(3.2) u(to) v lo <-

for some to depending in general on u, v, e. If to can be chosen independently
of u, v, e, then we shall say that (1.1)-(1.2) is completely controllable in
time to.

If the element u in the conditions above is taken to be the null element of
E,. the we shall say that (1.i)-(1.2) is null controllable (null controllable
at time to).

Let Kt be the subspace of E0 consisting of the values at to of M1
solutions of (1.1)-(1.2) with u(0) 0, (f, fs) G 0, and let K (the
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attainable set of 1.1)-(1.2) be defined as the union of all the K for t. 0.
Then (1.1)-(1.2) is null controllable (null controllable at time to) if and
only if C1K Eo (C1Kto Eo), the closures beig take in the E0-topology.
For the time being we shall only consider the case E0 E; we show later

(Remark 3.6) how the results can be extended to some spaces E0 that have
some significance in applications. We shall also suppose that E is reflexive;
although this assumption can be avoided, it simplifies some proofs. We
show in Remark 3.5 how the proofs can be modified for nonreflexive E.
E1VIMA 3.1. U* K’(K") if and only if

( )(3.3) B*(T*(s)- I)- (aB)* T*(r) dr u* O,

(3.4) B*T*(s)u* 0

forO <= s(O <= s <- t).
Proof. It follows from Theorem 1.1 and the change of vriable s --+ s

in the integral (1.6) representing inhomogenous solutions of (1.5) that
u K if and only if

(a.) (*, T()(f() + f’() + f()) + f(0)) 0

for all and all (f, fs) with Bf() 0. Integrating now by pars the
first integral on the lefg-hand side of (.5), passing go adioings and exploiging
the fact that

f(O) fs’(s) ds -{-fs(t),

we can write (3.5) in the form

fo (B*’l’*(s) ((rB)* fo T*(r) dr B*)u*,fs’(s)ds
3.6) -}- (u*, fo T(s)rBfz(t) ds) + (u*, Bf(t) )

+ Jo (B*T*(s)u*,f(s)) ds O.

Taking now fs(s) vs(s)f, f(s) (s)f, fs Fs, f F, ,
scalar-valued C functions such that vs(t) 0, we easily see that the
vanishing of (3.6) for all such functions implies the validity of (3.3)-(3.4).
Conversely, it is clear that if (3.3) -(3.4) hold, then (3.6) will also hold for
any (f ,fs) 3 such that Bf(t) O. The proof is similar for K.
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Call po(A the connected component of p(A that contains the half-plane
Re ), > oa (o the constant in Lemma 1.10). We have the following corollary.
COROlLaRY 3.2. U* K" if and only if

(3.7) [(aB)*R(?; A*) ,B*R(; A*) q- B*]u* 0,

(3.8) B,*R(h; A*)u* 0

for X po(A ).
Proof. Equalities (3.7)-(3.8) arc easily obtained from (3.3)-(3.4) for

Re , > oa with the help of the Laplace transform expression (1.11) for
the resolvent of A, and they follow for any po(A by analytic continua-
tion. Conversely, (3.7) -(3.8) for Re > oa imply (3.3) -(3.4) by uniqueness
of Laplace transforms (see [1, pp. 626-627]).

In wht follows we shall consider the distributed purmeter control
system

(3.9) u’(t) Au(t) + (R(0; A)a- R(0; A))Bf(t) + Bf(t),

where k0 is any element of p0(A ). Plainly (3.9) is a system of the type con-
sidered in 1 (the boundary control is ru(t) 0). Our purpose is now to
compare the sets Kt, K with Lt, L, where Lt and L are defined with respect
to (3.9) as Kt and K are with respect to (1.1)-(1.2).
THEOREM 3.3. C1K ClL.
Proof. By using the identity kR(k; A) AR(k; A) I we can write

(3.7) as follows:

(3.10) ((aB)* B*A*)R(; A*)u* O:

Writing (3.10) for two different values ), 0 of po(A), subtracting, the
two equalities thus obtained and using the first resolvent equation, we
obtain

(3.11)
or

((aB)* -.B*A*)R(o A*)R(},; A*)u* 0

(3.12) ((R(X0 A) aR(X0 A))B)*R(h; A*)u* 0

for k po(A). Conversely, (3.10)--hence (3.7)--can be obtained from
(3.11) by multiplying it by k0--say, real--letting k0 -- and using (1.12).
But by Corollary 3.2, conditions (3.8)-(3.12) are necessary and sufficient
for u* to belong to L’; thus our result follows.
Remark 3.4. The result above does not provide any relation between

Kt and Lt for finite t. However, we shall be mainly interested in applying
our results to equations of (abstract) parabolic type, and in this case
T*(. is an analytic function of in > 0. Consequently, the expressions
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on the left-hand sides of (3.7), (3.8), (3.12) are also analytic and can
vanish in a given interval [0, t], > 0, if and only if they vanish identically.
Combining this observation with Theorem 3.3 we huve in this case,

C1K C1K C1L for any > 0.

Remarlc 3.5. If E is not reflexive, then T* may not be as smooth as T,
A* may not be densely defined, etc. To avoid these annoying difficulties
we only have to formulate--and prove--our results in "weak" form; for
instance, Corollary 3.2 would read" u* K" if and only if (u*, (R(X; A)zB
R(; A)B + B)f} (u*, R(;A)Bf} O for all po(A),f Fs

f, F,. The proofs of this and the other results require only trivial
modifications.
Remark 3.6. We show in what follows how C1K can be computed in a

topology considerably stronger than the topology of E--the graph topology
of D(a). Let CIBFs be the closure in D((r) of the subspace BFs. If
u D(A) CIBF, then u lim Bf,, f F, 0 ru r(lim. Bf,)

lim rBf, lira Bf,, and thus by part (ii) of Assumption 4, u 0.
Consequently, it makes sense to consider the direct sum Eo D(A)
@ CIBFs, which we shall suppose endowed with the topology that it
inherits from D(a). Assume now that {u -t- v} is a sequence in E0 con-
verging to some element w D(a). Then we can find a sequence {f.} Fs
such that u + Bf. also converges to w. But then r(u,, + Bf.) rBf,
B. --. rw in X and, again by (ii) of Assumption 4, {Bf.} is a Cauchy

sequence in CIBFs. Consequently, so is {u.} and, since D(A) and CIBFs
are both closed in the graph topology, so is E0. The preceding reasoning
with w 0 shows that if u. -{- ,.,-- 0 in E0, then u - 0 in D(A), v. -+ 0
in ClBFs this shows that E0 can be identified algebraically and topolog-
ically with the product D(A) X CIBFs. As a consequence, E0*, the dual
space of E0, can be algebraically and topologically identified with the
product D(A) * X (CIBFs) *.

If v(" is any E-valued continuously differentiable function, then the

operator J, T(s)v(s) ds, > 0, maps E into D(A) (this can be easily

seen by an integration by parts). It follows from this and from the represen-
tation of the solutions of (1.1)-(1.2) given by Theorem 1.1 that any solu-
tion of (1.1)-(1.2) with u(0) 0, (f, fs) 20, belongs to E0 for any
> 0. Then it makes sense to investigate null controllability of (1. l)-(1.2)

in E0.
A reasoning in the line of Lemma 3.1 (a little care should be taken in

that the ranges of B, aB, B do not necessarily belong to D(A) shows that
(u*, v*) D(A)* (ClBFs) * Eo* belongs to K if and only if
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(3.13)

for ttll (fx, f) a3, Bf(t) 0 trod all > 0. Choosing now fs(s)
rl(s)f, ft w(s)f n., w, scalr-vMued functions with vs(t)
v. (t) w(t) 0, we easily obtMu

f(3.1.4) (*,

for all > O, fs Fs ,fx Fx. Conversely, it is immediate that the above
conditions imply that (3.13) vanishes for all (fr, fs) 2, Bfs(t) O,
i.e., that (u*, v*) K’.
Observe now that the D(A)-valued functions in the left-hand sides of

(3.14)-(3.15) are continuous (in the D(A)-topology) and bounded by a
constant times te o the constant in (1.10); both these facts follow easily
from the formula

A T(s)u ds (T() T(a))u.

Consequently, we can multiply (3.14)-(3.15) by eTM, Re k > o, and
integrate in (0, ); using (1.11) we obtain, after some integration by
parts,

(3.16) (u*, (R(X; A)zB XR(X; A)B)fs},)(,) q- (v*, Bfs)e,s O,

(3.17) (u*, R(X; A)Bfs},() 0

for Re X > 0 and thus, afortiori for all X C:. po(A). Conversely, (3.16)-
(3.17) imply (3.14)-(3.15) by uniqueness of Laplace transforms.
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All the preceding considerations show that (1.1)-(1.2) will be null. con-
trollable in E0 if and only if the validity of (3.16)-(3.17) for X po(A)
implies u* v* 0, which amounts to saying that the subspaee of E0
generated by all elements of the form

(3.18) (R(X; A)zB XR(X; A)B)f,. + Bfs,

(3.19) R(; A)Bf
X, po(A), f Fr, fs Fs, should be dense in E0. Now, since the
graph norm in D(A) is equivalent to the norm ul [(, A)u I, ’
any element of p(A), we see that the problem reduces to showing that
the subspace of E X ClBFs generated by all elements of the form

(v A)(R(X; A)(rB XR(X; A)B)fs + Bfs,

( A)R(X; A)Bf,
X po(A), f Fx, fs Fs, is dense in E , CI,BF. Assume this is not
the case. Then there exists (u*, v*) E* (CI,BFs)* such that

(u*, (,-- A)(R(X; A)aB- XR(X;
(3.20) - (v*, Bfs}c,s O,

(3.21) (u*, (,- A)R(X; A)Bf} 0

for all X po(A), f F, fs Fs. Writing now (3.20)-(3.21) for two
different values X, X0 in o(A), subtracting the equalities thus obtained and
using some elementary identities involving the resolvent of an operator,
we obtain, by making use of the fact that fr, fs are arbitrary,

((zB)*R(X; A*) XB*R(X; A*) + 1/*)
(3.22)

(, A*)R(X0 A*)u* O,

(3.23) B*R(X; A*)(, A*)R(X0 A*)u* 0

for all X p0(A). If we assume now that the system is null controllable we
obtain from Corollary 3.2 that (, A*)R(Xo;A*)u* 0, afortiori
u 0; inserting this value of u* in (3.20) we obtain v 0 as well. We
have thus proved the following theorem.
THEOREM 3.7. The system (1.1)-(1..2) is null controllable in Eo if and

only if it is null controllable in E.
Better approximation can be obtained., for instance, by using distributed

control alone. We content ourselves with stating a result (of which the
proof is similar to that of Theorem 3.7).
THEOREM 3.g. Let Bs 0 (i.e., let the control in (1.1)-(1.2) be purely

distributed) and assume

BxFx D(A’-), m >- 1.
Then (1.1)-(1.2) is null controllable in E if and only if it is null controllable
in D(A") (A endowed as usual, with the graph norm).
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Remark 3.9. Plainly, complete controllability implies null controllability.
The reverse implication may be false; however, we have the next theorem.
THEOREM 3.10. Assume that (1.1)-(1.2) is null controllable in time to.

Then it is completely controllable in time to.
Proof. Let u g0, v E0, and let v(. be the solution of (1.1)-(1.2)

with v(0) u for any (f, fs) 2u. Given e > 0, choose (g, gs) 30
such that if w(. is the solution of (1.1)-(1.2) with w(0) 0, then we have
IW(to) (v- V(to))l<= e. Butu v q-wis then a solution of (1.1)-(1.2)
with u(O) u, u(to) v <= , which completes the proof.

4. Controllability (second order equations). Our definitions here parallel
closely those for first order systems, g /u D(a) iru BF} is the
subspace of possible initial data for solutions of (2.1)-(2.2). If u0, ul g,
denote by 3(0,,) the class of all (f, fs) 2 such that

(4.1) Bsf(O) rUo Bsf’ (O)
Now let E0, E1 E be Banach spaces with norms "10, I1, respectively.
Call g0.1 the set of all pairs (u0, ul) in such that, for any (f,
the solution of (2.1)-(2.2) with u(0) u0, u’(0) u satisfies

u(t) Eo, u’(t) E
for all > 0. If 3o,1 is nonvoid, we sy that (2.1)-(2.2) is completely coa-
trollable if, given u0, ul go.l, v0 Eo, vl El, > 0, there exists (f, fs)
(0.) such that

(.) iU(o) o[0 =< , lu’(to) vl <-
for some to > 0. The definitions of complete controllability in time to,
null controllability, etc. are all similar to those for first order equations.
We now define K0 to be the subspace of the produc space Eo X Ex

consisting of all pairs (u(t), u(t)), u(t) a solution of (2.1)-(2.2) with
u(O) u(O) O, (f,f) (0.o);K, the attainable set of (2.1)-(2.2),is, as
beforc, the union of all the K for > 0. The system (2.1)-(2.2) will be null
controllable (null controllable in time to) if and only if C1K Eo
(C1Ko Eo X El). The closures are taken in the product topology of
Eo X
As in 3 we shall first treat the case Eo E1 E and assume that E

is reflexive; we indicate later (Remarks 4.5-4.6) how to treat the general
case.
LEMMA 4.1. (U0*, Ul*) K’(K’) if and only if

( /o )B*(T*(s) sI) (aB)* (s r)T*(r) dr Uo*
(4.3)

( /0 )q- B*(S*(s) I) (aB)* (s- r)S*(r) dr ul* 0,

See footnote 3.
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(4.4)
Bx*(T*(s)Uo* + S*(s)ul*) O,

O<=s (o =< s _<_ t).

Proof. Let us observe first tha if u(. is defined by the integral (2.6),
then its first derivative can be written

u’(t) fo Z(t s)g(s) ds.

This observation, combined with the representatio for solutions of (2.1)-
(2.2) furnished by Theorem 2.1, makes it clear that (Uo*, ul*) K" if
and only if

(uo*, f T(s)(zBfs(s) Bfs"(s) + B,f(s)) ds + Bfs(O)}
(4.5)

+ <u:, f S(s)(zBfs(s) Bfs" (s) + Bf(s))ds Bf(O)) 0
,0

for all > 0 and all (fr, fs) with Bf(t) Bf(t) 0. As in the proof
of Lemma 3.1, by integration by parts and by observing that

f,(O) f,(t) tf’(O) fo (t- s)fs"(s) ds,

f,’(()) f.’(t) fo fff (s) ds,

we can transform (4.5) as follows:

(4.6)
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Now, as customary, we insert in (4.6) functions of the form f .f,
C scalar-valued functions. We get

immediately (4.4) by setting s 0. Observing now that (4.6) must vanish
when ?r 0, ns(t) s’(t) /s’(0) 0, we obtain

( )(zB)* (s r)T*(r) dr B*T*(s) (t s)B* uo*
(4.7)

( fo’ )+ (B)* (s- r)T*(r)dr- B*S*(s) + B* ul* u*

for all s >- 0 and some fixed element u* E*. The value of u* can be easily
computed by setting s 0 in (4.7); we get u* -tB*uo Inserting this
value of u* in (4.7) we get (4.3). Conversely, it is easy to see that if (4.7)
holds, then (4.6) must vanish for any fs with Bfs’ (t) Bf(t) O.
The proof is similar for
COOLLhY 4.2. (Uo*, Ul K if and only if

(4.8) ((B)*R(k; A*) ),B*(k; A*) + B*)(uo* + /u*)= O,

(4.9) B,*R(k; A*)(uo* + %/u*) 0

for all po(A), where / denotes the square root of satisfying rg/
1/2argh,--r < argk_-< r.

Proof. Equality (4.8) can be obtained (say, for , > 0, the constant
in (2.9)) by multiplying (4.3) by e-/t, integrating in (0, ) and applying
(2.10). It follows for the rest of po(A) by analytic continuation. Con-
versely, (4.8) for , > implies (4.3) by uniqueness of Laplace transforms.
The same considerations apply to (4.9).
We shall consider in what follows operators A with spectrum satisfying

the following assumption.
ASSUMPTION 5. There exists a simple closed curve C entirely contained in

po(A) and such that the origin is contained in the (bounded) region of which
C is boundary.
Under this condition it is easy to see that ClK hus a rther simple struc-

ture, as shown in the following theorem.
THEOREM 4.3. Suppose Assunption 5 holds. Then ClK {(u0, u) E

X E luo, u C1L}, where L is the attainable set of the system (3.9).
Proof. Obviously, the result we wish to prove is equiwlent to

* E* E* *K" {(u0*,u X u0*,u L}.
Assume then (u0*, u*) K’. Write (4.8) for any k C. As L turns once
along C around the origin, (4.8) continues to hold by analytic continua-
tion, but %/, changes sign; adding up the two versions of (4.8) thus ob-
tained we get

Here we are implicitly using the fact that if A satisfies Assumption 3’, then it
also satisfies Assumption 3 (see [6, 5] for a proof).
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(4.10)

(4.11)

((aB)*R(X; A*) XB*R(X; A*) + B*)uo* O,

((zB)*R(; A*) XB*R(X; A*) + B*)u* 0

for X C and thus, by analytic continuation, for all X p0(A ). In a similar
way, we can obtain from (4.9) the two equalities

(4.12) B,*R(X; A*)uo* O,
(4.13) B,*R(X; A*)u* 0

for X po(A). But (4.10)-(4.12) (respectively (4.11)-(4.13)) are just
necessary and sufficient conditions, by virtue of Corollary 3.2 and Theorem
3.3, for u0* (respectively u*) to belong to L’. Conversely, it is clear that
if u0 u belong to L then. (u0 u belongs to K"
Remark 4.4. As for first order equations, Theorem 4.3 does not provide

ny information on Kt for finite t. We shall see 6, Example 2), however,
that in some cases of importance in applications we can assert C1Kt

C1K for all greater than or equal to a certain finite to.
Remark 4.5. If E is not reflexive, then all the results can be stated and

proved in their "weak" form (see Remark 3.5).
Remarlc 4.6; We consider a situation in which C1K can be computed in a

topology stronger than the product topology of E E. The notations and
definitions are the same as the ones in Remark 3.6.

Let Eo D(A) (9 ClBF (same topology as in Remark 3.6), E E.
If n(s) is any E-valued continuously differentiable function, then the

operator T(s)rl(s) ds, > 0, maps E into D(A), and from this it follows

in the same way as for first order equations that any solution of (2.1)-(2.2)
belongs to E0 for all > 0, i.e., satisfies the assumptions in the definition
of complete controllability (see 2).

* D(A) X (CIBFs) X E*.Now let (u0* v* ux (E0 E)* * *
A (somewhat tedious) computation similar to the one in Remark 3.6
shows that (u0* v* u*) K" if and only if

for( fo" ) t(Uo*, T(s)B (s- r)T(r)o-Bdr fsds),(.4)
2
(v*,Bj’s}cs

(4.4_)

,,( )+ (ul*, .to
(S(s) I)B (s r)S(r)rBdr fsds) 0,

fo<u0*, f T(s)Bxf, ds})() z7 <ul*, S(s)Bxfxds} 0(4.15)
.o

for all > O, fs Fs, fx F. Making use now of the fact that if u E,
then

A T(s)ud. (.()
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and of arguments similar to those in Remark 3.6, we see that we can
multiply (4.14), (4.15) by eCt, k > o (o the constant in (2.9)), and
integrate the resulting expression in (0, ). Making use of (2.10) we
obtain

(u0*, (R(k; A)aB kR(k; A)B)fs))(,t) + (v*,
(.6)

+ (ul*, (R(k; A)aB R(k; A)B + B)f)E O,

(4.17) (u0*, R(k; A)Bf)D(A) + %/ (u1*, R(k; A)Bf) 0

for all such k and thus for all k (po(A), f Fs, f F. By using now
the same type of reasoning employed in Theorem 4.3 we see that if A
satisfies Assumption 5, then

(u0*, (R(; A)(rB M(; A)B)f))(a) + (v*,
(ut*, (R(,; A)B- XR(X; A)B +

(4.18) (u0*, R(k; A)Bf),(.)
(u*, R(,; A Bf)E 0

for all ), po(A), f Fs, f F. We are now in the same situation en-

countered at the end of Remark 3.6 (see (3.17)-(3.18)), and thus our

reasoning ends in exactly the same way. We can formulate the following
theorem.
THEOREM 4.7. Let Asumption 5 hold for a(A). Then the system (2.1)-

(2.2) is null controllable in Eo X E if and only if it is null controllable in

EXE.
We can improve somcwha this result. In fact, it can be shown [6, 6]

that under additional conditions on A, T(t), there exist square roots

(Xo A.) t/ of X0 A, where Re X0 > , and that S(s)n(s) ds maps E

into D( (ko A)I/) for any E-vlued smooth ,/nnd is strongly continuous
as a D (k0 A)/)-valued function. Then we may consider null controlla-
bility in E0 X E, Et D((),0 A)/) + BFs. The result is the sme as

Theorem 4.7, and the proofs nre very similur.
If we wish better pproximtion we may obtain it by using distributed

control alone, as for first order equations. We cm show that the following
theorem holds (see also [5, Remark 2.6]).
THEORE 4.8. Let Bs 0 (i.e., let the control applied to (2.1)-(2.2) be

purely distributed). Assume that

BF, D(A"-), m 1.

Assume further that A satisfies Assumptio 5 and that (2.1)-(2.2) is null
controllable in E X E. Then it is null controllable in D A" X D A"’-

The proof is entirely similar to that of Theorem 4.7.
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Remark 4.9. For second order systems, the concepts of complete and
null controllability at time to are also equivalent; in fact, we have the fol-
lowing result.
THEOREM 4.10. Assume that (2.1)-(2.2) is null controllable in tine to.

Then it is completely controllable in time to.
The proof is almost identical to that of Theorem 3.10. To obtain a

similar result for null controllability we have to introduce a special assump-
tion.
ASSUMPTION 6. Let > 0. Then there exists /i > 0 such that if

(u0, u) 0, [ (E0 X E), u010, u I0 =< /i, then there exists an (f, f,)
2(0,,1)such that the solution of (2.1)-(2.2)with u(0) u0, u (0)
u satisfies

u(t) 10 =< lu’(t)I <- >__ o.
TnnonnM 4.11. Assume that Assumption 6 holds and that (2.1)-(2.2) is

null controllable. Then it is completely controllable.
The proof is an immediate consequence of the fact that the solutions of

(2.1)-(2.2) can be "run backwards" in time and of Assumption 6. For, if
we can steer the system from (0, 0) to the vicinity of (u0, u), then we
can, making use of Assumption 6, steer it from (u0, u) to the vicinity of
(0, 0) and from there, making use again of mill controllability and of As-
sumption 6, to the vicinity of an arbitrary pair (v0, v) in E0 X E.

5. Examples (first order equations).
Ii.1. Example 1. We begin, by considering he, equation

(5.1) u (z; t) t))(x),

where is t,he formally symneric formal differcnt,ial operator with real
coefficients [2, Chap. XIII]"

(5.2) r (-1)"-
=0 k,-/ a(x) - n >= 1,

with coefficients smooth in [0, ,), a,(x) > 0 for x >= 0. We take
E L:(0, ); D(z), the domain of , will be the set of all u E such that
(5.2)--understood in the sense of distributions---belongs to E. It is not
difficult to verify that is closed [2, Chap. XIII, 2.10]. We wish to exert
control with a finite number of parameters, and only in the boundary of I;
in order to apply the results of 3 we shall have to examine what kind of
boundary conditions can be imposed in order to have A satisfy Assumption
3. We shall assume that z has no boundary wlues t [2, Chap. XIII,
2], i.e., that a self-adjoint restriction of can be obtained by imposing
boundary conditions only at 0.
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Recall that any boundary condition at 0 can be written [2, Chap. XIII,
Corollary 2.23]

2n--1

(5.3) u 2 .u(")(0) O,

and let q, 1 <= q <- 2n 1, be the number of (linearly independent)
boundary conditions necessary to obtain a self-adjoint restriction of a;
we may suppose they are given by (5.3), i.e., 1 =< j =< q there. Thus we
may take X q ( complex numbers),

The colttrol space Fs will be GP, for some p _>_ 1 as yet unspecified, and thus
-the operator Bs will have the expression

p

(5.5) (Bs(f. "’, f) ) bf 1 <= j <= q,

for suitable coefficients b 1 <= j <- q, 1 <= v <= p. All these considerations
show that the control will be exerted as follows"

p

(5.6) ru(. ;t) bff, 1 <= j <- q.

The auxiliary operator B will be given by
p

B(f ..., f,) b,,(. )f,

with b, b, functions in D(a); to satisfy Assumption 4 we must have

thus,

(5.7) (") 1 <j< q, 1 <- <p.

It is not difficult to see that functions b satisfying (5.7) can be con-
structed; in fact, this is a consequence of the following auxiliary ]emma.

AUXILIARY LEMMA. If ao, al, ..., ar are arbitrary complex numbers,

If the columns of the matrix {b.}, 1 <= <__ p, <- j <- q, are linearly dependent,
then B might not satisfy part (ii) of Assumption 4; however, this will not be employed
in what follows.

The system (5.7) can always be solved for the b,() (0); this follows from the fuct
that the boundary conditions are independent; thus rank {r’a}, _<- j <_- q, 0 _-__
-< 2n 1, equals q.
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then there exists f C[0, o with compact support such that f(") O) a,
O<=a<_r.
We hve t this stage verified, explicitly or implicitly, 11 the necessary

ssumptions with the exception of Assumption 3. Since A is self-djoint,
it reduces to (see Remark 1.4) the requirement that A should be semi-
bounded bove.
We shll lter need some more information bout the number nd n-

ture of the boundary conditions (5.3). To this end, we shll use the well-
known Green’s formul [2, Chp. XIII, 2]" if u(. nd v(. ), sy, belong to
C[0, nd one of them vanishes for sufficiently lrge x, then

2n--1

o, =E
where the matrix ( {Aat}0=<,,=<2n-1 is a skew-symmetric, nonsingular
matrix whose coefficients depend only on z. We shall also introduce some
vector notations" r., 1 _-< j -< q, will denote the vector (r.,’a)0_<,_<2-I in
the unitary space 2, while arbitrary elements of will be designated by, v, etc. The space N will be the subspace of n consisting of all that
satisfy

(., 0,

i.e., all that "satisfy the boundary conditions (5.3)". It is easy to see
from the fact that A is symmetric, from Green’s formula, (5.4) and from
the fact that, by virtue of the auxiliary lemma, any vector (8 can be
the "boundary values" of u C[0, with compact support, that

(i) if, N, then (a,) 0;
similarly, the fact that A is self-adjoint implies that

(ii) if (a, ) 0 for all n N, then N.
These two properties of N can be summarized as

(5.9) aN N.
Since a is nonsingular, (5.9) implies dim N dim. N" n; since the
boundary conditions (5.3) are independent, q n.
The next step for application of the results in 3 to our problem will be

the concept of ordered representation [2, Chap. XIII] of a Hilbert space (in
our case, E) with respect to the self-adjoint operator A. Recall that there
exists a measure t in the real line vanishing outside z(A), an integer m
(the multiplicity of A), -measurable sets e,, e_ el a(A)
of positive measure and a set of functions (kernels) Wl(X, ), W,(x, X),
defined in [0, (- , ), each W vanishing for h in the complement
of e:, measurable with respect to the product measure (R) t (, Lebesgue
mesure), infinitely differentiable in x => 0 for each fixed and such that
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the map

(5.10) fi(X) (U)(X) 1.i.m. (x)l(, X) dx, 1 <- i

_
m,

defines an isomegrie isomorphism froin L[O, onto K L(et, )
@ @ L(e,,., #) carrying the operagor A into he operator of multiplica-
tion by X in K. For each fixed z ghe kernels W are square-summable on
Borel ses wigh eompaeg elosure eongained in e, the gransformation U-,
inverse o U, being given by

(5.11) u(x) 1.i.m" fi(X)W(x,X) (dX)

(see [2, Chap. XIII, especially Theorem 5.1 and Corollary 5.2]).
We shall need a little more information about the kernels. If (zl(x, ),

z2.(x, )) is a basis for the space of solutions of zu ku in [0,
(such a basis can be obtained, for instance, by means of the boundary con-
ditions ()(0) _,, 0 -_< fl 1 _-< 2n 1, in which case the are
C in both variables), then there exist measurable functions a,(k),
1 <-_ i<= m, 1 =< =< 2n, suchthat

2n

(5.12) Wi(x, k) a(k)(x, ), 1 _-< i _-< m,

the functions a.(. being -square summable on any Borel set with com-
pact closure contained in z(A). It follows from (5.12) that zW )(W for
all h; it can also be shown that for -almost all , the kernels W1, W
are linearly independent in e, 1 =< /c =< m, (as functions of x) and stisfy
all the boundary conditions defining A. But, since there are n boundary
conditions, it follows that m =< n.

Consider now the linear map

(5.13) u -- (R(t; A)u)(")(0)
from E into , t any fixed element in p(A), a a fixed integer,
__< 2n 1. It is plain that (5.13) is continuous; then, so is the map

U {f}) (0){f}-+ (R(; A) --1

from K into . Consequently, there exists an element {g,,
such that

inK

(5.14)

It is not difficult to identify the g,. Making use of the fact that U carries
A into the operator of multiplication by h, of the form of the map U-1
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and of the representation (5.12) for the kernels, we obtain from well-
known theorems on differentiation under the integral sign that if, say, all
the elements of {fi} have compact support, then (5.14) holds with
(g k)-l(") (0,),) instead of g, ;since the set of all such {fi} is dense in
K, we have

(5.15) g,(k) (Z- )-l/ri(a)(0; ), 0 _-< o _-< 2n- 1, 1 =< i _-< m.

We can now apply Theorem 3.3. Assume u K. Then (3.10) vanishes
for all p(A). Observing that for any v E,

B*v (v, bl), (v, b,) ),

(B)% (,, b), ..., (,, b) ),

making use of the identities A* A, AR(#; A) aR(#; A and of Green’s
formula, we can write (3.10) as follows-

((B’A* (o-B)*)R (#;A)v)

_[. (aR(#; A)uS R(#; A)ua)) dx

(5.1.6) ,-I

A,(R(p; A)u)(")(0)5,()(0) 0,

v--- 1,2, ..., I po(A).

Making use of (5.14) and (5.15) we can write (5.16) in the form

(5.17) f, ( k)-f,(k) (dk) 0, 1, 2,

where
2n--1

(5.18)
=1 a,/=0

with {f} Uu. Observe next that X(. ), the characteristic function of
the open interval J (a, b), can be written [2, p. 921]

(5.19) X(k) limlim
1 [-a

ii-0 e-,0 ,)aT6

Since a(A) is contained in the real axis, po(A) p(A) contains its com-
plement; using (5.19) for g 7 + ei we obtain from (5.19) and (5.17)
after an application of Lebesgue’s bounded convergence theorem that
Fx, ..., Fv vanish almost everywhere, i.e.,

)A,()W()(0; X) /(X) 0
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t-almost everywhere in e e+l, ]c 1, 2, ..., m (here we have set
em+l Z;), v 1, 2, p. Consequently, the problem of null controlla-
bility of our system reduces to whether or not conditions (5.20) will
force {fl, .-., f} to vanish almost everywhere. It can be proved exactly
as in [4, 3] that this will happen if and only if

rank Ag((0)W((0; X) ,, k,
(5.21) k-.=0

k 1,2, ...,m,

t-almost everywhere in e e+. Thus we have the following theorem.
THEOREM 5.1. The control system (5.1)-(5.6) is null controllable if and

only if (5.21) holds for the numbers b() (0) defined by (5.7).
Introduce now the vectors

2n

In vector notation, (5.21) can be written

(5.22) rank ((W(X), b)}1__._<_< k.

Since each kernel satisfies the boundary conditions (5.3), each W()
belongs to N. It follows from the linear independence of the kernels, from
the fact that aN N" and from the nonsingularity of a that the vectors
aW(X), aW(X) are linearly independent in N for malmost all
in e e+, i =</ _-< m. But then it is a matter of elementary linear algebra
to see that (5.22) will hold almost everywhere in e e_, 1 / =< m,
whenever the projections in N of the vectors b, ..., b generate N-.
Since these vectors are defined by the relations

(ri,b) b., 1 _-<j=<n, !_-< v =< p

(see (5.7)), this will happen if and only if p >= n,

(5.23)

Thus we have the next corollary,
COROLLARY 5.2. The control system (5.1)-(5.6) is null controllable if

(5.23) holds.
We do not know at present whether there always exist m vectors b,
.-, bm such that conditions (5.21) hold, although this seems to happen

in every case. If this were true, we could always render (5.1)-(5.6) null
controllable by means of only m control parameters (clearly, this could

Actually, the numbers b(")(0) are not uiquely defined by (5.7); this, of course,
has no effect on the validity of Theorem 5.1.. Note, however, that (5.21)or better,
its vector form (5.22)implies p >_- m and, since (N N+/- and W(X) N, we may
take the components of the , in N equal to zero, i.e., we may take Mx. Then
the $ are uniquely determined by {b.}. The same observation applies to Example 2.
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never happen with less parameters). However, the verification of the
null controllability conditions would involve, if m < n, at least some
information about the kernels W. On the other hand, Corollary 5.2 gives
a sufficient condition for null controllability that, while probably involving
more parameters than necessary, does not depend at all on the particular
equation under consideration, and it is also of immediate verification.
We examine now a family of examples that show how Corollary 5.2

may or may not be a necessary condition for controllability. We choose
as follows:

\dx!
in [0, ), where p is a real nonnegative parameter. The boundary control
is exerted by means of two independent control prameters f, g as follows"

u(O, t) af(t), u"(O, t) fig(t),

where a, are two parameters as yet to be determined. It is not difficult to
see that the operator A obtained from by imposing boundary conditions
u (0, t) u" (0, t) 0 is self-djoint and semibounded above.
The Fourier sine transform

() 1.i.m. r sin zxu(x) dx

is an isometric isomorphism from L. (0, onto L (0, that transforms
the operator A into the mulgiplieagion opera,or

u() (- + o)u().
Making use of this and of elementary changes of variable we can carry out

1a spectral analysis of A; we hve e (- , p ], e [0, p and, if we
define

() (1/2p : (1,0 }k)1/2)1/2,
then the measure # and the kernels W, W can be given, except for con-
stants, by

.t (d}k) (D_ (}k)-l( --l/2
-p ,) d),,

W(x, X) sin+(k)x, ), e,

W(x, ,) +(X)_(),)- sin _(X) x,

If p > 0, #(e) > 0 and A has multiplicity 2, then condition (5.23),
Of course, the simplest way of satisfying (5.23) is to apply independent controls

in all the boundary conditions, i.e., u(., t) f(t).
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which in our case amounts to

(5.24) aft 0,

is necessary for null controllability of (5.1)-(5.6) this follows immediately
from the fact that the vectors WI(), W() generate the space N for each
) e.. However, condition (5.23) is no longer necessary when p 0;
for in this case A has multiplicity 1 (u(e.) 0) and

W(x, ,) sin (-)x, ), e.

Now, if b is any nonzero vector in C, it is immediate from the analyticity of
W in that

aW(,), b) 0

except for (at most) countable number of points in (- , 0], i.e., -al-
most everywhere. Consequently, the condition for null controllability of
5.1 )-(5.6) is now

(5.25) + > 0,

which is weaker than (5.24).

5.2. Example 2. We consider the equation

(5.26) ut(x, t) (au(. t))(x).

Here is again given by the expression (5.2), but now considered in
compact interval [a, b]. D(z) is defined analogously as in Example 1. Recall
[2, Chap. XIII, 1] that any self-adjoint restriction A of is obtained by
imposition of 2n linearly independent boundary conditions

2n--1 2n--1

(5.27) ru , r,(a)u()(a) + _, r,(b)u(’)(b) O, 1 <__ j <= 2n.
-0

The spaces and operators are E L2(a, b), Br O, X
ru (flu, ..., r2,u), F P, p >- 1,

p

(5.28) (B(fi, "", f)) bf,,

thus the control is applied i the following way"
p

(5.29) rsu(" t) bff,

The uxiliury operator B in Assumption 4 (see 1) is now given by
p

B(I ..., f) b,,(. )f
v.---1

1 <=j<=2n;

l<j<2n.=
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where the functions bl, b D(z) and satisfy
2n--1 2n--1

(5.30) ’i,(a)b(")(a) + r,(b)b(’)(b) b
a=O a=O

or 1 __< j =< 2n.1 The existence of the functions b, b is assured by
the following analogue of the auxiliary lemm of Example 1.
AUXLnRY LEMMA. Let ao, ..., a, bo, ..., b, be arbitrary complex

numbers. Then there exists f C[a, b] such that f(") (a) a,, f() (b) b,
O a<= r,O<= <= s.
We shall also make use here of Green’s formula; for the interval [a, b]

can be written
2n--1

(u (u) dx A.u()(a)()(a)
(5.31)

,,=0

2n--1

B,u() b);() b ),
a,f=0

where the matrices a {Aa}, ( {B,a}, 0 -< a, _-< 2n 1, are non-
singular, skew-symmetric and independent of u, v. We shall now find it
useful to employ vector notation; write

((a), (b)) (0(a), ..., ,,,__.(a), o(b), ..., ,..(b)),

for vectors i 4n-dimensional unitary space (4, and define the matrix 8 by

a((a), (b)) a(a) O(b).

It is clear that 8 is skew-symmetric and nonsingular. If we write
r.u (r.(a), r.(b)) (r.0(a), r,,_(b)) as vectors in 4 and define

N { 41 (r, ) O, 1 <= j <= 2n},

then it is not difficult to prove, as in Example 1, that

(5.32) 8N N’.

Rather than continuing our reasoning as in Example 1, we shall make use
of the (much simpler) structure of A when the basic interval is compact.
Recall [2, Chup. XIII, 4.1] that the spectrum of A consists of a sequence of
points , > :> tending to- o; if ,, ..., ,() is a (say, ortho-
normal) basis for the subspace of eigenfunctions corresponding to the
eigenvalue , ]c 1, 2, then re(k) -< 2n for all / and {..}, 1 _-< j
<__ re(k), 1 _<_ /, is a basis of E. Now let u po(A) p(A), u E. By
0 ttere again, the existence of the b(")(a), b,"(b) is assured by the independence of

the boudary coditions.
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Green’s formul (5.31) we have

((B’A* (aB)*)R(; A*)u)
2n--1

(5.33) A,a(R(; A )u) (") (a),(a) (a)
2n--1

+ B(R(; A)u) (")(b)()(b).

On the other hand, since the left-hand side of (5.33) is continuous func-
tional of u, there should exist c(x) c(; x), 1 v p, in E such that

(5.4) ((B’A* (B)*)R(; a*)u) u(x)e(x)

Applying now Theorem 3.3 and the results in [3] or [4] on null control-
]ability of distributed parameter systems, we see that the condition (on the
c) that will guarantee null controllability of (5.26)-(5.29) is the following"

(5.35) rank (k, Cv) }ljm(k),lvp re(k).

This plainly implies p sup {m(lc), k 1, 2, }, the multiplicity of A.
The scMar products in the matrix in the left-hand side of (5.35) cn be
easily computed by means of (5.33) and (5.34) setting u . in (5.33)
and using the fact that R(u; A),, ( ,)--, we obtain

2n

a,B=O

or, introducing the veciors in ",
(2 ,l) (2

$*,i (9,i(a), ,i (a), 9,(b), 9,i (b)),

b (b(a), b,(-’)(a), b,(b), b,("-")(b)),
we can write

Thus we have the following theorem.
TEOnEM 5.3. The control system (5.26)-(5.29) is null controllable g and

only if
(5.36) rank {(8#,., b)}(). re(k), 1, 2,.-..

A simple rgument based on the caegory theorem of Baire shows that
there exist m vectors b, b,,, such that (5.3) is satisfied for all k, i.e.,
that the system is now controllable with only m parameters.
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As in Example 1 we can obtain a sufficient condition for null controlla-
bility that, while perhaps requiring an excessive number of parameters,
does not assume any knowledge of the spectral properties of A; in fact, the
following corollary holds.
CooY 5.4. Assume

(5.37) rnk {b.}0_<_._<__._<__<_ 2n.

Then (5.26)-(5.29) is null controllable.
Corollary 5.4 can be somewhat improved for certain special types of

boundary conditions. For instance, assume these are

u(a) u’(a) u(’)(a)
(5.3s)

u(b) u’(b) u(’)(b) O.

It follows easily from the theory of ordinary differential equations that in
this case the multiplicity of A is -< n. We can then render the system null
controllable by applying n independent control parameters at only one
point of the boundary, say, at a, i.e., the conditions

(5.39) b. 0 for n <j <= 2n, 1 _<_ =< n,

(5.40) rank {b,}l=<i_<_.l<__< n

are sutficient for null controllability.
Remark 5.5. Let us see briefly how Theorem 3.7 can be applied to our case,

beginning with Example 2. Let L’ L2’r(a, b), r >_- 1, be the space of all
functions u in L (a, b) such that u(’) L (a, b) (the derivative understood
in the sense of distributions) normed, say, with

k-----0

under which L’ becomes a Hilbert space (observe, incidentally, that I" l,r
is equivalent to the seemingly stronger norm [. - max_<,_< ]u(*) (x)]
-t-[u()l.).Ifthe matrix {bi,} satisfies (5.37)it is not difficult to see that
D(A @ BFs LTM (see [2, Chap. XIII, 2.16]; since D(A) @ BFs is
also a Hilbert space under the graph ,orm used in Theorem 3.7, by the
closed graph theorem, both norms hve to be equivalent. Then if (5.26)-
(5.29) is null controllable in if, the system will also be null controllable in
LTM. If the boundary conditions are, say, (5.38) and bi,} satisfies (5.39)-
(5.40), we obtain in the same way the result that (5.26)-(5.29) is null
controllable in the subspace of L’ consisting of all elements u with u(b)

u(n) (b) O. As for Example 1, the space D(A) @ BFs is not so
easily characterized but it is easily seen, say, that null controllability of
(5.26)-(5.29) implies the possibility of approximating the target function
in the norm LTM(0, b), b < .
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To end our treatment of ordinary differential operators we include two
samples of the results obtained above.
COROLLARY 5.6. (i) Let p, q be two C functions defined in [0, ). Assume

p > O, q bounded above. Then the control system

u (pu)-+- qu, 0_<-: x, u(O,t) f(t)
is null controllable in any time to O.

(ii) Let p, q be C functions defined in [a, b]. Assu,me p > O. Then the con-
trol system

ut (pu)+ qu, a <= x <= b, u(a,t) af(t), u(b,t) fig(t)

is null controllable in any time to > 0 if] a > O.
The proof of (ii) is immediate; as for (i) we only have to verify that the

restriction of d(p(d/dx) )/dx + q obtained by means of the boundary
condition u(0) 0 is self-adjoint and semibounded above; this is taken care
of by [2, Chap. XIII, 5.5 and 6.14]. The fact that there is null con-
trollability in any finite to > 0 follows from analyticity of T*; this holds for
all the cases treated in this section.
Remark 5.7. All our results in Example 2rain particular, Theorem 5.3,

Corollary 5.4, Remark 5.5--remain true for the case of nonself-adjoint a,
the result on distributed parameter systems necessary to apply Theorem 3.3
being provided by [3, especially Corollary 3.3]. The proofs carry over with
some modifications.

5.3. Examples 3 and 4. Our results apply also to some cases in which
z is a partial differential operator in. domain I of Euclidean space R,
r >_ 2. We mention two of them.
Example 3. is a negative elliptic, formally self-adjoint operator in a

(bounded or unbounded) domain i R (see [2, Chap. XIV]). If A is a
self-djoint restriction of z obtained by means of a boundary operator r,
with adequate smoothness assumptions on , I, then an ordered representa-
tion of E with respect to A can be constructed much in the same way as for
ordinary differential operators (see [2, Chap. XIV, 6]). Note, however,
that we may have to use an infinite number of kernels W, and thus we
may not be able to obtain null controllability with a finite number of param-
eters. The reasoning in Example 1 carries over with substantial modifica-
tionsthe space X is new infinite-dimensional, Green’s formula is replaced
by n-dimensional Gauss formula, etc. The controllability conditions will
now involve integrals over the boundury of certain derivatives of the
kernels W. Sufficient conditions of the type of Corollary 5.2--i.e., that
do not require knowledge of the kernels--may be obtained in some cases
(for instance, F X, B I) but they are usually far from necessary in
that they involve infinite-dimensional control, while the system could be
controlled by a finite number of parameters.
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Example 4. a is a negative elliptic not necessarily self-adjoin operator in
a bounded domain I

_
Rr. Under a suitable smoothness assumption on a,

I, we can obtain restrictions A of a determined by boundary operators r that
satisfy all the necessary assumptions. The reasoning in Example 2 carries
over to our case, and our results can then be extended. Note, however, that
the multiplicity of the eigenvalues of A may be no longer bounded, and then
we may not obtain null controllability with a finite number of parameters.
The observation on sufficient conditions in Example 3 applies also here.
We close this section with an example that falls between Examples 3

and 4. Let I be the rectangle 0 <= xl <= ./al 0 <- x <- ’/a al a2 > 0 in
R, and let

(o/ox) + (o/ox.)

be the Laplace operator. E is L(I), X is (say) L(S), S the boundary of I
and r assigns to each u D(a) its boundary values. Plainly A is self-adjoint,
with eigenvalues -(an - a2 n ), nl, n: 1, 2, corresponding to
(nonnormalized) eigenfunctions sin anx sin a.nx. Assume a, a. are
linearly independent over the integers. Then each eigenvalue of A has
multiplicity 1 and thus, by the analogue of Theorem 5.3 (and the observa-
tion following it) for partial differential operators, we should be able to
control

(5.41) u o,, ru Bf
by means of only one parameter. Let then Bsf bsf, Bf bf, where bs is a
function in X L(S), b a function in D(a) having bs as boundary values.
We have, for u E, p(A ),

(B’A* (aB)*)R(; A)u f (aR(p; A) aR(; A))u dx dx

s - R(,; A)u R(,; A)u - 5 dS,

dS being the line element in S and O/On normal derivative at S. Assuming
(as we may) that O/On vanishes on S we obtain, reasoning as in Example 2,
that

f 0 R(,;A)udS=fcudxdx.(B’A* (aB)*)R(; A)u )s -where c is some element in E. Finally, we use Theorem 4.3; setting u
eigenvectors of A and applying the result in [4, 4], we see that (5.41)

will be null controllable if and only if

b (sin alnxl sin a:nx.) dS 0
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for,2 0,1,...,or
lal

an2 b(xt 0) sin

X2 siIl a2?,2x2 dx2

a2

+ alnt bs(O, x2) sin n.a.x, dx O,

nl,n. 0,1,....

Observe that if we drop the condition of linear independence of at, a2
over the integers, our result becomes false; in fact, if, say, at a, then A
has eigenvalues of arbitrary high multiplicity. Then ut Au + Bfx can-
not be null controllable when dim Fx < (see [4, {}4]) and, in view of
Theorem 4.3, neither can the system (5.41).

6. Examples (second order equations).
6.1. Example 1. Since Theorem 4.3 reduces the t)roblem of null control-

lability of second order control systems to the corresponding one for first
order systems, all the results obtained for thcsc systems in 5 will apply as
long as A satisfies Assumption 5. For self-adjoint A, Assumption 5 reduces
to the requirement that p(A po(A should intersect the negative real
axis; this is always true for the system examined in Example 2 of 5 but
not necessarily for the ones in Example 1. We shall see in the following ex-
ample that if Assumption 5 fails to hold, then the conclusion of Theorem 4.3
may become false.
We shall consider the boundary control system

(6.1) u u + pu, x - 0, u(0, t) =f(t)

in E L(0, ). The operator A is

Au u + pu

with boundary condition u(0) 0. We have a(A) (-, p]; thus if
p >= 0, Assumption 5 is not satisfied. It is not difficult to see that if u(x, t)
is a solution of (6.1), then its Fourier sine transform (in x) (, t)
satisfies

(6.2) (, t) (- -t- p)(, t) + f(t), >= O.

Now (6.2) is "distributed parameter" system that would be of the type
considered in [5] were it not for the fact that the function u(a) a that
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multiplies the control in (6.3) does not belong to L; however, we only have
to modify slightly a similar example in [5]. A simple computation shows that
the solution of (6.2) with u(0., 0) ut(0., 0) 0 for 0. >= 0 can be written11

1/2forl0. => p

u(0., t) 0.(0. p)- f(t)
(6.3)

)-I. fo 1/2(t(J sin (J- ) s)f"(s)ds.

To show that (6.2)hence (6.1)is not null controllable, we only have to
exhibit a pir (u0(.), u(.) of functions in L, not both zero nd orthogonal
to all pirs (u(., t), ut(., t) ), > O, u(., t) given by (6.3), f an rbitrary
C function with f(0) f’(0) 0. (We shall construct u0, u zero for
0. _<- p/.) A simple computation shows that u0, u have to satisfy

f (0. p)-/" sin (0. p)l/2(t 8) )0.(o.2 )--lu0(0.)(t
1/2

(6.4)

+ (1 cos (0. p)/(t s))0.(0. )-u() d 0
1/2

for 0 < s < t, > 0. Assume now a(0. -1p) ui(0.), u(0.), i 0, 1, are sum-
mable in (p/, oo ). By means of the change of variable (0. p) v and
of elementary trigonometric identities, (6.4) can be written

(6.5) (t ) 0(n) dn-t- ",-(n) n + h(n) dn O,

=./ u(( A-p ),i= 0,1, andwhere i(/) .- V2
h() (/a0(I w I) ’(I, I)) g.

In view of the preceding considerations and of the Paley-Wiener
theorem [8, Chap. 8], the third.integral in (6.5) will vanish identically for
s -<_ if h belongs to the space H of the upper htflf-plane, i.e., if h consists
of the boundary values of a function h( -4- i), holomorphic in the upper
half-plane and such that

sup lh(/+ i)[2 d/ < .
>0

Thus, to construct u0, ul we only have to find a function h(v) in H such
that /h(v) is in L2( o, o and such that if

to(v) -1/2in(h(-n) -4- h(n) ),

,1() 1/2-(h(-n) h(n) ),
,1 If f(0) if(0) 0; see 4.
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then both 0, 1 have null integrals over (0, ). This can be achieved by
requiring the integrals of h(v), vh(v) to vanish in (-, 0) and (0, ),
and it is a simple matter to check that such an h, h 0, can in fact be con-
structed. Thus the system (6.1) is not null controllable for p > 0.

It .should be noted that the above result can be proved in a much easier
way in the particular case p 0; for the solution of the wave equation
u,t ux in x _>- 0 satisfying u(x, O) ut(x, O) O, u(O, t) f(t) with
f(0) =f’(0) 0isgivenby

ff(t-x) if x_-< t,t) \0 if x _>_ t.

Thus the pairs (u(., t), u,(., t)) arc (f(t x),f’(t x)) if x < t, (0, 0)
if x >_- t, and it is clear that they will only approximate pairs of the form
((x),,’()).

6.2. Example 2. For some boundary-distributed parameter control
systems that are important in applications it is possible to show that
null controllability is equivalent to null controllability at some time
to 0. We limit ourselves to an ex:mple. Consider the control system
(in L(a, b)):

utt (pu) + qu, a .<_ x <= b, u(a, t) afo(t),
(6.6)

u(b, t) I-f(t),

where p and q are in C*[a, b], p > 0. The operator A obtained from by
imposing null boundary conditions is self-adjoint and with pure point
spectrum, each eigenvalue being of multiplicity 1; thus it can be written

Au _, ,(, u), u E,
n=l

> > > ,, the (normalized) eigenfunction corresponding
to the eigenvalue . Without loss of generality we can ssume 1 0; then
the operators ., T of 2 can be written

S(t)u cos ,,t(, u) T(t) -- si t(,, u),
n=l =I

where we huve set (-). This expression nd few simple com-
putations show that the equality (4.3) in Lemm 4.1 cgn be written in our
ose s follows"

n=0
(.7)

+ (cos,s- )(, u)(B* (B)*A-). O,
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where

(6.8) (B* (aB)* -1A ) -(a (a), f’(b)).
We shall make use in what follows of some well-known asymptotic esti-

mates for the eigenvalues and eigenfunctions of A (see [1.8, Chp. IV]). We
have

(6.9) Kn -t- O(1/n),

(fab )--112)-1where K p x dx and we have

(6.10) I,,,’(a)[ Cn ’t- 0(1), ]q,,,’(b)] Cn -t- 0(1),

where C is a positive constant. Now let N be a positive integer and let us
define two ew (doubly infinite) sequences { { }, - < n < ,

l/

sequence [(x) of functions in L(0, 2K-1) such that

e(’)) , m,n > 1(

Return now to the expression (6.7). By (6.8) and the estimate (6.10) it can
be differentiated (in the L-sense) term by term, and the derivative can be
written as u series in the functions e)’’. Thus, if (6.7) vanishes in [0, 2K-],
so does its deriwtive; tking scalr products with the we see that all its
coefficients vanish, and thus it is identicully zero in [0, ). Since (6.7)
vanishes for s 0, it also vanishes identically. Thus we have the follow-
ing theorem.
THEOaE 6.1. If the system (6.6) is null controllable (which happens if

and only if a + > 0), then it is null controllable in time to whenever

(6.11) to 2 2 f p(x)- dx.

This result is best possible, as can easily be verified with the control
system (6.6), if we set p 1, q 0. In the same example, however, we find
un interesting phenomenon’ if both a nd flure not equal to 0 (i.e., if control
is applied at both boundaries), then u result similar to Theorem 6.1 holds
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but with to >= rK-1. We do not know whether or not this happens in the
12general case.

A result similar to Theorem 6.1, but with strict inequality in (6.11),
could have been obtained with much less information about the asymptotic
behavior of the sequence }. In fact, assume that we are able to compute

(6.12)

where m((, q- ) is the number of elements of the sequence {#} in
[}, q- ), and also assume that

(6.13) rain 1, t, > 0.

Then we can apply the theory of pseudoperiodie functions (see [9]). Ac-
cording to this theory, if J, J are intervals in the real line, Jt c_G_ J2,
length (J) > 2rK-1, and H({v}, J), i 1, 2, is the subspaee generated
in L(J) by {e"""}. then the L norms in H({.}. J). i 1. 2. are com-
parable; thus the same is true of the subspaees H( {}, ,J) + e, e the fune-
tion e(s) s. Consequently, if (6.7) vanishes in [0, ],
vanishes identically. The result is obviously independent of the particular
form of the system and depends only on the fret that A is self-adjoint and
has pure point spectrum. The expression (6.12) can be computed, for
instance, when A is a self-adioint partial differential operator by means of
Grding’s asymptotic estimates [7]. Note, however, that these estimates
take into account multiplicity of the eigenvalues, while we do not, and also
they do not guarantee (6.13). Plainly, all the preceding observations hold
as well for distributed control.
We shall not treat here approximation in norms other than the L norm;

the reader will find no difficulty in establishing an analogue of Remark 5.5
for our ease. We end this section with a result that constitutes the analogue
of Corollary 5.6 (ii) for second order equations.
COROLLAt 6.2. Let p, q be C functions defined in [0, ). Assume p > 0,

q bounded above. Assume, further, that the spectrum of the self-adjoint oper-
ator Au (pu,), qu, u(O) 0 does not contain all the negative real axis.
Then the control system

(6.14) utt (pu) + qu, x >= O, u(O, t) f(t)

is null controllable.
Observe that it is in general false that (6.14) should be null controllable

This was observed in [15] for certain symmetric hyperbolic syst,ems. See also [16],
where a distributed parameter control problem for equations of the type (6.6)is
considered; the emphasis there is in attaining, not only approximating, the target
functions.
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in any finite time t0 for, if we set p 1, q const. < 0, the differential
equation in (6.14) is the telegraph equation. But then the "disturbance"
f(t) propagates along the x-axis with finite speed, and this means that the
functions approximated in any fixed finite time t0 will have support con-
tained in a fixed compact set. On the other hand, we can force A to have pure
point spectrum by choosing adequately p, q, and thus we could be in the
situation of Theorem 6.1, i.e., we could control the system in finite time.

6.3. Example 3. Our observations for the case in 5 where partial
differential operators have evident analogues here, via Theorem 4.3.
We limit ourselves to a sample result: using the notations and definitions
of 5.3, the control system

(6.15) utt u, ru bf
is null controllable if and only if conditions (5.42), nl, n. 1, 2, are

.atisfied for bs.
It might be remarked that, in contrast with the case of one space variable,

(6.15) is not. null controllable in any finite time.
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EXISTENCE AND STABILITY THEOREMS FOR
EXTERIOR BALLISTICS*

W. R. HASELTINE
1. Introduction. In [1] nd [2] the uthor studied the equation

(1) + (--ioo + eH) (M - em + ioeT)z G,

which is known to describe rather well the yawing motion of symmetrical
projectiles. In particular, it was established that if G/M is small and e 1,
the periodic solution predicted heuristically really exists, and that if both
G/M and e are small, the heuristic predictions concerning the existence of
mixed-mode steady states is also correct.

Further discussion of (1) seems desirable for several reasons.
(a) In flights of real shells there have been observed cases of steady

conical yaw, and other cases of steady mixed oscillations, under conditions
not covered by some of the restrictions. Numerical solution of the more
complete differential equations from which (1) is derived seems to show
that these cases can best be explained by a T which depends strongly on
z , but with value of G/M which is not small on the scale of the non-

linearity of Tz.
(b) The basic theorems needed to establish, the existccc of a steady

mixed oscillation, even under the restrictions of [2], were published in [3],
which is not redi]y available to everyone.

(c) In the last sentence of [2] a statement was mdc bout the condiiion
governing stability of the mixed mode. But, so far as the author knows,
nothing has been published which would serve as iustification for
statement. Nevertheless, as we shall see, the statement is correct.

2. Existence. To be explicit bout the symbols in (1) we note that"
(i) z is complex;
(ii) o and M are real nonzero numbers, and o 4M ;> 0 (the case

o 4M is unstable when e 0, and that together with 0 0 needs to be
handled separately);

(iii) G is a complex number, and we set G/M -),e "), real; H, n, T
are real, C, functions of z , d(lz ])/dt and [

Questions concerning the existence and stability of the singular point
z const. -e" + O(ie[) are handled adequately in [2]. The general
solution for e 0 of (1) is

z "e re r2e*’,
* Received by the editors July 19, 1967, and in revised form February 28, 1968.
Code 60704, Naval Weapons Center, China Lake, California 93555.
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with

v 1/2(o -- x/0 4M), ri rel.

Note that v 0, and v, v.
To study steady conical yw, we try

z e"+re+x,
(2) i i, (re + zx

r O,

insert (2) into (1) nd ask whether the resulting system tins solution, of
the form

(A) r r0 + s(, ), x v(,, ), , ,(t, ),

where s nd v hve period 2 in 9. Similurly, for the mixed mode we try

z e + re + re,
(3) i ivx re + zre

/, r, r # O,

nd sk whether the system hs solution of the form

r r0 + es(, 2, e),

(t, ),

nd s hs period 2z in nd in . In neither cse hs choice yet been
mde s to which sign of the rdicl belongs to

Inserting (2) in (1), we find (x x + ix)

(4) -x + x(,, r,

2 zvx + ex(, r, x),

R(, r, x),

where , Xx, X re periodic in , but of form not concerning us t the
moment, nd

R’ 1 [(-H, + T)r + T cos (a

+ (-Hq, + T)(x cos + x sin )].
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Note that

z r -t- x A- x2 -4- 3
, -f- 2rx cos,f, -4- 2rx sin. , -t- 2r cos (a ,)

-f- 2t,x cos a -t- 21,x. sin a},

d
d zl 2,[-(1 a)rx sin , + (1 a)rx, cos , + r sin (a ,)

+ a3’x sin a a’rx cos a],

12 ,’[r + zx + zxz + 2arxl cos + 2arx2 sin ].

By using the methods of [4], we find that to have solutions of form (2) a
necessary condition is that

(,r0,0) d=0,R

and, given this, the following conditions are sufficient-

R (, r, 0) d 0,
rrO

det 0,

with

( COS qqW(,)
k-sin ,

But de (W(2) I) 2(1 cos 2z), so that unless z is an integer,
the existence of our desired family of solutions depends only on the prop-
erties of the function R1. For a simple example, consider"

m 0
Then

H const., T-- TI(I z 02), T1 z 0.

R’(, r, 0) d 2r[-Hl - T{r -t- 2 it02}]r.

Here our conditions are all satisfied if

0 -H + oT(ro + 2"/2 o2), 2Tr O,

and is not an integer.
Now whether or not is integral, we can try the transformation

(5) x ye.
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We then have the system

(6)

Here

0-9,

: [Y + o’y],

h 4Y. ,,I,y],

i’ R,

[-mr + ooT, sin (a 9) m{yl cos ( 9)

y‘2sin(k- 9)} m,cos(a-)

+ (-Hay1 + oT){yl sin ( ,) + y‘2 cos ( 9)}],

[(-Hv + oT)r + oT/cos (a ) + m{yl sin (6 9)

+ y cos ( ) + m sin (a ,)

+ (--Havl + oT){yl cos (b 9) y‘2 sin (k 9)}],

[(-Hav + oT)y + (-Hv + oT)r cos (9 b)

+ oT, cos ( a ) + my‘2

+ mr sin (9- ) + m,sin (a )],

[(-Hav + coT)y2 + (-Hv + oT)r sin (q 6)

+ oT, sin (c b) my

mr cos (q b) m, cos (a k)].

zi [r + yl + y‘22 + ’ + 2rylcos (9 $) + 2ry2 sin (9

+ 2r, cos (a ) + 2yl cos (a b) + 2"/y2 sin (o b)

with correspondingly altered expressions for d(! z 12)/dt and [i . Now
system (6) is a special case of the system obtained by replacing $ 9
by + ez. This more general system we label (6a).
Though , $, r, y, y‘2 are not uniquely determined by z and i, as are

9, r, x, x‘2 of (4), nevertheless any solution of (6a) will, together with
transformation (5), give a solution of (4).
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Before studying system (6a), we shall examine the results of transforma-
tion (3). We obtain

(7)

Vl(1 r)

i’2 eR2

[- mr1 mr cos (f. 1) m7 cos (a pl)

+ (--Ha,1 + wT)r, sin (. ) + 0T sin (a )],

[(-Hv + oT)r, + (-Hv %- oT)r cos (o )

+ 7’ cos ( )

+ mr silt (2 1) + m3, sin (a )].

and R are obtained from 1 and R, respectively, by interchanging
with , rt with r, with (z,) and , with ,, and m with -m in R.
Both (6a) and (7) have the form

0 + 0(o, z, ),
(s)

z(o, z, ),

where 0, w, O are k-vectors, z and Z are/-vectors, and O and Z have period
2v in each 0i. For any function f(O) f(O, ..., 0) we define

(f(O))* lim
1 dr f(O + t,..., O + t) dt.

Note that (f(O))t depends only on

(0--0)l<j’
The pertinent theorem of [4] can be stated as follows.
THeOrEM. Given system (8) wilh and Z, C in O, z, e, if a vecior Zo can

be found such hat (Z(0, z0, 0))t 0, and he eigenvalues of the mariz
Bt O(Z(O, z, O))*/Oz aken a z zo all have nonzero real paris and
one of he following holds:

a B* is constan and

OC* 0 ((o, zo, o)) o,
O0 00
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or
(b) Bt is diagonal, all the eigenvalues of B are distinct for all , and

OC/O0 O, or
(c) all the eigenvalues of B are distinct for all O, and C 0;

then there exists a continuous e-family of periodic k-surfaces of (7). That is,
there is an e > O, and there is a unique l-vector function S(O, e), of period 2
in each , S is C in , and C in (0, e), and a k-vector function (t, e), C
in and C in (t, e); S(O, 0) Zo; and

(c) (t, ),

z (,(t, ), )

forms a solution of (8) for each e, 0 < e < e. If
T

fo Z(o, O) dtZo

is bounded, then S(, e) is C in (e, ).
In pplying this theorem to (6a), with an integer, we must examine the

structure of R, Y, Y:t, and possibly .. For the simple example given
earlier,

0- 0([ yl),

[-Hi wTl(r q- 25,2- io2)] r,

[-Hau + wT(2r + 2. 602)] y + 0(I y [),

unless a 2 or 1/2-. Thus in this special case we need, for a integral nd not
equal to 2,

0 -Hl+oTl(ro2+ 2?- rio2)
as before, and

0 -Ha,1 + Tl(2ro q- 2’ rio)
OP

and
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Obviously this only makes sense if r comes out greater than zero. Note
that we have not required that 82 be greater than zero, only that it be real.

If the conditions of the theorem are met, then there are functions
S(, , e), U(, , e), periodic in and , both vanishing as e approaches
zero, such that r ro + S, x e(+t)U, with v(t, 0, e),
(0, 0, e) 0, form a solution of (5) (here we have set b 0).
Furthermore, S, U -- 0 as e -- 0. Since is an integer, S and
have period 2 in . The author has not been able to determine, in the
general case, whether or not this formal family in 0 reduces to a unique mem-
ber. But, if the functions on the right-hand sides of (6) are well enough be-
haved so that S and U can be expressed as power series in , it is then possible
to show that there is indeed only one member of the family. It is also clear that
when the family exists and is stable, then it must reduce to a single member.
Now the theorem applies equally to cases with not an integer. We find

then, whether is rational or not, Rt(t, b, r, O) yt(,, r, O) O, so that these,
which are the only necessary conditions, are met, and we have no contradic-
tion with the direct approach on questions of existence. For z rational the
question of the multiplicity of the 0 family of solutions again arises, and
the known answers are exactly the same as for z integral. On the other
hand, for irrational, it is easy to show that the 0 family has only a single
member. Also

Oyi Oy

a and b being real constants, so that even the sufficiency conditions fail
only if either ORt/Or 0 or a 0.
We now examine system (7). If is irrational, neither the } nor the
Rt depend on or 2. If is rational, the structure ofR and must be
examined in detail. In our simple example for any value of except 0, =1,
1/2, or 2,

r [-]t, + T(2r + r + 2 0:)]
,(- 1)

and we do not need to examine the 4-. The question of existence reduces to
that of finding a pair r, r, both positive, such that R* R 0, for if
we can, then
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and an eigenvalue of this matrix can have zero real part only if at least
one of the pair rl, r2 is zero, or H is zero.
Let us now assemble the results obtained for the example. In doing so,

it is convenient to choose the indexing so that < 1 (then 1/o > 0)
and to set a H/coT, b o 2". Then"

(i) the singular point z 3,e
i - 0(I e 1) is always a solution (see

[]);
and if a O,--, --1, 2,

(iia) a periodic solution of" frequency -- 0(] !) exists if a A- b > 0
(and a(2 ) + b 0 if a is integral)

(iib) by symmetry, a periodic solution of frequency 2 A- 0(I e I) ax
+ O(lei) exists ifb +a > 0 (andb + (2- 1)a 0if is
integral)

(iii) a periodic 2-surface, i.e., a mixed mode, exists if we can find r
and r2, both greater than zero, such that

T(r -4- 2r -1- 2 o) H 0

0T(r2 -4- 2r A- 23’e 0) Ha 0.

If a > 0, we can do this if b > (1 2o-)a, obtaining
2r. rl (1. v)a > 0.

If a < 0 we can do it if b > (2- )] a I, obtaining

( 1)a > 0.rl r2

3. Stability. By stability the author means here what is generally known
as asymptotic orbital stability. That is, suppose there is a fixed geometrical
object in the phase space of the problem, such as a simple closed curve, or a
periodic 2-surface, such that if at time zero the representative point of the
system lies on the object, then it continues to do so for all time. If there is
a neighborhood of this object such that the representative point will, for
sufficiently large t, come and remain arbitrarily close to the object, provided
it was lying in the neighborhood at 0, then the system is called stable.
Now system (4) is not well adapted to the study of stability of the

periodic solution. In fact, a naive approach can give misleading results.
On the other hand, (6a) is well adapted. System (7) needs no change, and
both (6a) and (7) are of form (8).
As stated in 1, there appear to be no published theorems on the stability

of system (8). Very recently, S. P. Diliberto has provided tools (see Ap-
pendix) with the aid of which it is possible to show at least the following:
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If system (7) has a family of solutions of form (C), with S(O, e)C in
0, C in 0, e, and if one of the following holds:

(a) (B (0, z0,0) )* is constant, or
(b) (B (0, z0,0) )t is diagonal, or
(c) the eigenvalues of (B(0, z0, 0))* are distinct for all 0, and

((0, z0, 0))* 0; then
(i) if all the eigenvalues of (B (0, z0, 0) )* have negative real parts,

there is an e > 0 such that for 0 < e < e the periodic surface is stable;
(ii) if at least one of the eigenvalues of (B(0, z0, 0))* has a positive

real part, there is an e3 > 0 such that for 0 , e < e3 the periodic surface
is unstable.

Modifications of these statements to cover negative e are obvious, and
case (a) covers the last sentence of [2].
The application of these results of (6a) or (7) is immediate. In our ex-

ample it is easily seen that if any of the geometric objects (singular point,
periodic solution, periodic surface) is to exist and be stable, we must
have H > 0. Assuming this, and again choosing the indexing so that a < 1,
and excluding > 0, 1/2, -1, 2, and for definiteness taking T1 > 0, we find
that

(a) the singular point is stable if

-H < o2_ 2,2 < HIT oT1
and unstable if o 2? lies outside the indicated closed interval;

(b) the periodic solution of frequency vl W 0(I e I), which exists for
$0 2, > --H/T, is always unstable;

(c) the periodic solution of frequency - O(I e I) existing for 0 2,
> -H,/TI is stable if 0 2, < H(1 2)/T and unstable for
o 2

, above this limit;
(d) the mixed mode, which exists when 2, < H,(1 2)/T

is stable there, and r. > r.
If we had chosen T < 0, we would have found an analogous set of circum-

stances with interchanged with , r with r. and replaced by 1/.
Our results in this example may be directly compared with one of the

cases worked out in detail by C. H. Murphy [5], namely, that of a cubic
Magnus moment. His ),0 and ,0 correspond directly to our (H -t- T0)/
1(1 ) and -(H -t- Tlo)/( 1), and his ), and to
oT(r -I- 2r.)/(1 ) and T(2r r)/( 1). The only real
difference is that we add 2

, to both the different values of "effective mean
square yaw"" r - 2r. and 2rl -t- r. We have, however, rigorously estab-
lished that the "reasonable" existence and stability criteria are in fact
valid, at least for small e.
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4. Comment. In the simple example, H const., m 0,
T Tl(Iz 02), the value 2 or a ,2/a is exceptional. The difficulty
is real and does not stem iust from limitations of method. There is a true
resonance condition, and the periodic solution really does not exist unless
we assume 7 0 or at least is itself small of order e. Also, for a 2
or 1/2, a periodic 2-surface, if it exists at all, will certainly not be close to
that which would be predicted by blindly applying the tests which work
for other values of a. It is easy to show that 0, =t=1, 1/2-, 2 are the only
exceptional values of a as long as H, m and T are linear polynomials in
z 12, (I z I) and z 12. For more general functions, all rational values of

are suspect. Moreover, there can be a set of measure zero of irrational values
of a at which the surface will exist and be continuous but not differentiable
in e. However, if these three functions should behave very nearly like nth
degree polynomials in the three variables, when considered over the range
of rl, r, a which we may really expect to encounter (, being regarded as
fixed and known), then residual variation of these functions may usefully
be regarded as of order , e.g., T T T, T, an nth degree polynomial.
In such a case there will again be only a finite number of possible reasonance
values of , and the possible difficulties at a small set of irrational values
disappear.

Appendix. The following discussion is, except for the part concerning
the Q matrix, due in all its essentials to S. P. Diliberto.
The notation x A(y) will signify

lira x 0.
y+0

Consider the system

0 + 400<> + 0(0, z, )],

e[A(0) + B(O)z + C(O, e, z)],

where 0 is k-vector and z an/-vector, where all functions on the right-hand
side are real and C in (0, z) and C in (0, z, e), and are periodic in
0; o o(ll + Izl), e o(11 + Iz I).
Suppose this possesses the periodic surface z S(O, e) with S
Then

So{o + e[Oo(O) + O,(O, S, e)]/ e[A(0) + B(O)S + C(O, S, e)].

Set z S(O, ) + x; then

40o(0) + o(o, x, )],

4B(0) + c(o, x, )]x.

6). and C are O(I x + A (e)).
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Let

Oo Oo + R,
B(O) BM + RM,

where O0M and B,x are trigonometric polynomials, and Rm &(l/M).
Iet

O9

with ,I, (,) periodic;

OD(,)
O0 BM BM",

with D periodic. D exists, since

T

fo (B,(o ,o) B,*(O o) d

is bounded (see [6] and [7]), and similarly for :
[I + 1-[ + (00( + ) + 0( + , x, ))],

+ [o0(,) + (,, z, )],

[B(,) + c(,, x, ) + A(1/M)]x,

where 0: and C2 are o(ixl + () ), Iet x (I + eD)y. Then

[(B())* + C(,, y, ) + (1/M)]y.

We shall show below that in certain eases there exists a real C periodic
matrix T() such that the transformation y Tw brings the last equation
into

4B(,) + C,(,, v) + H + A() + A(1/M)], 0 < .
Here Ba(9) is diagonal or is built of diagonal blocks

and has the same eigenvalues as (B())* and the form

o).B B
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such thut with

w’Bw > Xw’w, X > 0, w’Bw =< 0, C 0(i w i), and II g is bounded.
he erms (1/M) may depend on
and M. H is eonsang.
Now suppose ha all eigenvalues of (B())* have negagive real pars for. Then B B w Bw < -w w with > 0, and

Choos so th l! Nil /6; thn M so th ]A(1/M) < /6; then
o so that () < ,/ i 1 < 0d ro o that C < ,/ i ! < to.
Then for

The system is sta.ble.
On the other hand, suppose that at least one eigenvalue of (B())* is

positive for all . Then choosing , M, e0, r0 as before, but with /6 replaced
by h/16, an rgumcnt modeled on that in [8, pp. 317, 318] will show that
the system is unstable.

First note that unless 0, (B ())* depends on at most lc 1 independ-
ent vritbles. If, for example, 0, then the 0 appear, if t all, in the
combinations 0 0/, for 1 < j lc. Call this set of independent
variables , 1 j lc. (If 0, we my hve lc k.) We can now list
some important cases in vhich one cu find an appropriate T()-

(a) (B()) is diagonal. This is obvious.
(b) (B())* is constant. For then there is a constant T such that

B T’B*T is in Jordan normal form. If B is not diagonal, we can, using
a well-known trick, construct a mtrix P() such that with T TP,
TB*/T B + 7H, B diagonal, nd the only nonzero elements of H
are l’s on the superdiagonal. If 0 < 1, and y Tw, there is an r,
0 r, 7] w y w ]. If the eigenvlues of B* are all real, set T T.
If any are complex, T will be also, but there will be a constant matrix T,
an obvious generalization of

such hag T TTa is real and T-B*T B + H, B being made up of
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diagonal blocks, either single elements or elements of form

(c) The eigenvMues of (B(9))* are distinct for all 9, their real parts
change sign nowhere, and (00())* 0.

It will be shown below that there is a matrix Q(), C in ,, nonsingular,
and periodic in (though the periods may be double those of (B (9))*)
such that B7 Q-B*Q is diagonal. Furthermore, Q, 0. Then with
y Qu,

+ Q- Q[ + o(0o* + O)]u e[B7 + Q [C + A(1/M)IQlu,

i [B + C(u) + A() + 5(1/M)]u,

o(I w I).

The remarks above on the reality of T apply also to the reality of Q.
Finally, set T Q. Let (B())* (b), 6 ($1, $), and consider
the . rescMed so that the period of is unity in each $. In the -space
consider the sets of closed intervals {r}, where each r is of the form

n. <= 2 <= n. + 1, 1 _<- i _<- lc and 0 -<- n.. -<_ 2 1. The index j
is taken to be that of the prticular enumeration of the 2’ intervals such
thatj > j if n.. > n.., and if n. . n.. for I _-< m -<_ lc1, n..+ > n.+.
For any N the union of the {r.} covers the fundamental interval
0 -<_ =< 1. Now the distinctness of the eigenvMues of implies first that
each of the eigenwflues is everywhere distinguishable, that if one of them
is complex, then it is so everywhere, and that for each eigenvMue X, there
is at each point of #-space t least one principal subdeterminant of/ ,I
which is not zero. Furthermore, , is C. An argument similar-to that of
well-known proof of the Heine-Borel theorem shows that there exists an
N such that for ech r there is t least one of these subdeterminnts, sy,
A, which vanishes nowhere on r, and hence nowhere on some open
interval including r. On this open intervM we can construct an eigenvector
r . Of , belonging to X,, by taking A. as its kjth component nd solving
for the other components. If ),, is real, so will ,.. be. If , is complex, then.. will be an eigenvector belonging to ,* We normalize ,. by dividing
each component ,,,, by

taking the positive root. Call the resulting vector a,,.. It is C on our open
interval. At each point a normalized eigenvector belonging to ,, is unique
to within a scalar factor of unit magnitude. Thus, if r. and r., j j,
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have points in common, there is an open set including their intersection
on which a, a,je:(), where 7 is real and C1. If k is real, so are a,,.
and a,.l, so that e() can be only 1, and must be the same on the whole
of the overlap of regions of definition. It is now clear that we can in this
case define the eigenvector to be C over the whole fundamental interval
by setting a,l on r, and then extending the definition to other
r. by steps at each of which j increases by one. Then, for any j, on the
side ,/. 1 of the fundamental interval., n will be the same function of the
other ’s as on the side . 0, apart from a possible constant factor of 1.
The case of complex k. is a little more subtle. But it can be shown by

actual construction that if a function g(x), x (x, ..., x), is defined
and C on an open set including the union of one or more S, where
is the intersection of the manifold x 0 with the interval 0 <= x <__ 1,
1 =< lc =< m, then there is a function f(x) which is C on an open interval
including the unit closed one, and which is equal to and has the same first
partial derivatives as g(x) on the union of the S. in question. Again we can

Ndefine nn a, on rl, extend the definition to r by multiplying
by e() with ,() an appropriate C function, and continue in the same
fashion increasing j by one at each step, obtaining v,, C over the whole
fundamental interwl, and, in fact, on an open set including it. If as may
happen, we do not have v,(1, p, ..., b) n(0, , ..., ) and
1(1,, ) ,(0,, p), westillhave.(,, 0)
v( 1, , ..., )e(’’’) near 1 1. Then, if we take

l -’(a + b), with

#,,(1, ,..., ) (0, b., ..., x),

We can deal with nonagreement on other pairs of sides similarly, and then
rename the eigenvector w.

In either the real or complex case we can now extend w to be C in all
of -space and to be periodic, though perhaps of period 2. A matrix made up
from the eigenvectors w of will have the properties desired of Q.
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THE OPTIMAL CONTROL OF A TRANSVERSE
VIBRATION OF A BEAM*

V. KOMKOV
Summary. This paper deals with the specific problem of a transversely vibrating

beam, whose ends are either free, freely supported, or built in. Sections 1-4 state the
basic equations, and define the optimum control problems. In 5 we prove the exist-
ence and a form of uniqueness of an optimal control. Sections 6 and 7 state Pontrya-
gin’s principle and give a possible example of its application. Section 8 introduces a
limiting process for the fixed time interval optimal controls, which results in an
optimal control, called the instantly optimal control. It is shown that this control
is unique and independent of the limiting process used in deriving it. Moreover,
Pontryagin’s principle for the instantly optimal control makes use of the displace-
ment vector which could be computed without the knowledge of the finite state.
Finally we offer a brief sketch of an argument showing that the instantly optimal
controls are different in general from either the fixed time interval optimal controls,
or from the tine optimal controls.

Introductory remarks. This paper deals directly with the problem of
optimal control of a vibrating beam and derives the basic results concern-
ing the existence, uniqueness, and the appropriate form of Pontryagin’s
principle directly from the differential equation governing the behavior of
the beam, together with the physically motivated boundary and initial
conditions. The technique of proof parallels the classical arguments of
Pontryagin, Boltyanskii, Gamkrelidze and Mishchenko [6], further de-
veloped in [2] and [9]. The theoretical development given by Russell in [7]
was inapplicable, since his arguments were developed for hyperbolic
systems. There is, of course, a close parallel between our results and the
discussion by Russell of the optimal control of a vibrating string. In a
larger framework our control problem could be regarded as the problem of
the calculus of variations, where we wish to minimise the functional equal
to the total energy of the beam, whose motion is subject to the constraints
imposed by the initial condition, and by the abovestated boundary condi-
tions.

This point of view has been advanced by Gamkrelidse and by Cesari.
The work of Cesari [12] develops the important existence theorems for the
Lagrange problems with constraints, when only weak solutions are assumed
(which is exactly the case in our problem). However, the specialized
results of this paper do not turn out to be straightforward applications of
the existing general theory at the present time.
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1. The basic equation and the related hypothesis. Under the usual
simplifying assumptions the equation of transverse vibration of a beam is

02w(x, t)L(w) p(x).A(x).
Ot

0 ( 02w(x,t))(1) -+- E(x) I(x)
Ox

f(x, t),

--1/2 --<- x <= -F l/2, >= O.

The corresponding homogeneous equation is

(la) L(w) O.

(See, for example, [3, Chap. 14, pp. 218-220] for the discussion of the
hypothesis of the "simple theory" of bending of beams.)
The physical meanings of the symbols are given below.
p(x): the material density;
A (x) the cross-sectional area;
w(x, t) the transverse displacement;
E(x) Young’s modulus;
I(x)" the moment of inerti of the cross-sectional area about the

neutral axis;
f(x, t): the applied load.
Because of the physical meaning of (1) we must assume that the dis-

placement w(x, t) is a continuously differentiable function of x and t. On
the interval [-1/2, -F 1/2], p, A, E I are uniformly bounded, piecewise
smooth, positive functions of x. An additional assumption of. material
homogeneity would imply that p and E are constant. (A (x), I(x) may still
vary along the length of the beam.) We assume the correctness of Hooke’s
law and equate the strain energy with the complementary energy of the
beam.

In the remainder of this paper we shall consider only the class of weak
solutions of (1) obeying the following conditions"

(a) w(x, t) is a continuously differentiable function of x and of on
t [-1/2, -F 1/2] [0, T] (i.e., Ow(x, t)/Ot and Ow(x, t)/Ox are continuous
functions of x and on 2);

(b) /p(x) A(x) (Ow(x, t)/Ot), and v/E(x)I(x) (02w(x, t)/Ox) are
square integrable functions of x oa [-1/2, - l/2], and the energy functions

(2) If
+/ [ ]K(t) - -/

p(x)A(x) Ow(x,t)
Ot

dx,
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(3) if t)jV(t) - .,-z/2
E(x)I(x)

L Ox
dx

are continuous functions of t, uniformly bounded on the interval [0, T];
(c) w(x, t) obeys one of the three conditions (4a), (4b) or (4c) listed

below a,t each boundary point x -1/2, x 1/2"

(4)
,(+/- /2, t) o,
ow( 1’2, t) o

Ox

(a built-in end);

(4b)
w(-+- l/2, t) O,

EI o2w( + 1/2, t)
0

Ox

(a freely supported end);

(4c)

(a free end)

EI
a (v2w,-+- 1/2, t) O,

Ox

EI O:w( Oxl/2’ t) 1 0

(d) w(x, t) obeys given initial conditions of the form

w(x, o)

Ow(x,O)
(Sb) Ot

,(x),

b(X), (X) C1[--1/2, .qL l/2].

We also assume that the inhomogeneous term f(x, t) satisfies either of the
conditions"

(i) f(x, t) is a square integrable (hence absolutely integrable) function of
+/2

the variable x in the interval [-1/2, + 1/2], and If(x, t) ldx is a
a--l/2

measurable and uniformly bounded function of ia the interval [0, T]. Also
f(x, t) is assumed to obey the inequality

(6) Ii f(x, t)ll=)
L,,-/=

If(x, t)l dx <= 1.

Note. There is no additional generality in assuming that I1 f(x, t)I1()
=<_ C for some C > O.
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These conditions imply that the total energy of the beam (t) K(t)
+ V(t) is also uniformly bounded for all [0, T], where K(t) and V(t)
are defined by (2) and (3) respectively.
The case (i) will be called the case of distributed load, and the control

function f(x, t) satisfying the condition (i) will be called , distributed load
control.

(ii) f(x, t) is assumed to be of the form

(7) f(x, t) 8(x (t) )i(t) + z(x, t),

where z(x, t) is u stributed lod control; (x (t)) is the "shifted"
Dirac delta function, regarded as a gemralized functioa (see [4, pp. 3, 4]).
The functions (t) are mesurable fumtions of the variable t, obeying the
conditioa

i=l l/2

for all [0, T].
The total energy of the beam is ufiformly bounded above by some

constant. (We cod, of course, incorporate point couples in expression (7a)"

(7b) f(x, t) (x (t) )(t) + ’(x (t) ),.(t) - a(z, t),
i=l

where denotes O/Ox.)
For the sake of simplicity no poit couple controls will be used in this

paper, except as possible limits of sequences considered in the
graph.
The functions (t) ure measurable functions whose doma,in imludes the

interval [0, T] and whose rnge lies in the iterval [-1/2, 1/2]. I cse
(ii) we shall denote by f(x, t) () the quantity

+12

As before we assume ] f(x, t) ]() 1. The first term o the left-had side
of (7a) will be called the point load controls. A generalized function f(x, t)
obeying either of the conditions (i) or (ii) will be c]led a admissible con-
trol.

2. Remarks. The control unctions are regarded as generalized functions
oer the space of test functions sutisfying the conditions (a), (b), (c)
(d). It is clear that the products ((x), w(x, t)) ((x), Ow(x, t)/Ot) are
defined for any test unctioa satisfying the coaditio (a).
The problem of existeace and iqueness of solutions of the xed bound-

ary and initial value problem (MBVP) posed by (1) ,th conditions (4)
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and (5) will not be considered ia this paper. In the case when the control
function f(x, t) is both an absolutely integrable and a square integmble
function of both x and t, proofs can be found ia the literature. Ia the more
usual case (ii) the author has not been able to find published proof.
However, it is easy to check that the classical proofs ca be extended to
cover the case when f(x, t) obeys (7) by the use of suitable delt-coavergeat
sequences (see [4, vol. 1, 2.5] for explanation of the procedure). The
existence and uniqueness of solutions of the MBVP will be assumed in the
subsequent discussion. The important problem of controllability will also
be neglected ia this paper.
For purposes of convenience we shall denote the usual biliaear products

((x), f(x)) arising iu the generalized function theory by the symbol

f(x) f(x) even though (x) my be a geuemlizeddx fuuctionwhich is not

locally integrable. (This follows the usual practice ia physics d engineer-
ing, and avoids the iucovenience of double notation, and of discussion of
separate cases.) The so]utiou of the inhomogeneous equation (1) subjec to
conditions (4) and (5), with a control function (x, t) obeying the condi-
tions (i), is known to obey Duhamel’s principle

(s) t) t) +
where w,(x, t) is the solutioti of the homogemous equation, while
G(x, , t, r) depends oitly on the coeiticiciits p, A, E aItd I, and oa the
boundary conditions (4), but does ltot dcpeitd on cipher (x, t) or ott the
initial value functions (x) and v(x).
Again an elementary argument concerMng delta-convergent sequences

shows that this statemett may be extended to cover the case (ii). We ob-
serve that the admissible controls form a convex set, i.e., if f(x, t) and
f2(x, t) are admissible controls, then Af -k (1 A)fz is also an admissible
control for any 0 -< A -<_ 1.

3. The energy terms. The kinetic energy of the beam is given by

(9) I/:
-,/2

o(x) A (x)
\ Ot

dx,

and the strain energy by

1 f+/( V t))E(x)I(x)
\ Ox

dx.

The total energy 3(t) is the sum of the kinetic energy and the strain energy

(11) K -t- V - .,-u’
p(x)A(x) Ow t) + E(x)S(x) LA dx.
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The physical in.terpretatioa of (9) and (10) implies that Ow/Ot artd a2w/Ox
have to be square integrable on the irtervM [-1/2, nt- 1/2]. We also assume
that they are square integrable oft [0, T]. We introduce the following product
of two functions u(x, t), v(x, t), whose derivatives Ou/Ot, O2u/Ox, Ov/Ot,
02v/Ox are square integrable functions in the intervM- 1/2 <= x <- -t- 1/2:

(12) 1 f+/ [ ouOv ouov(u, v} - -/
p(x) .A(z) -- - -4- E(x)I(x) ff2_] dx.

(u, v} is clearly a function of only. If u v, then (u, v} is the total energy,
as defined by the formulas (9), (10) and (11). A property of this product
proved in Lemma I below will be of importance in the subsequent develop-
ment of Pontryagin’s principle.
LnMMA 1. Let u(x, t), v(x, t) be two solutions of the MBVP with correspond-

ing controls f(x, t), g(x, t). Then

(13) d <u, v
l [f O, Ou1d--t - x t) + x t) -g-( dx.

Before we prove this lemma, we emphasize that u(x, t) is the solution
corresponding to the control f(x, t), and v(x, t) corresponds to g(x, t).
f(x, t) and g(x, t) could be integrable and square integrable on
[-1/2, A- 1/2], or they could be Dirac delta functions. Despite the fact that
the Dirac delta function is not a locally integrable function, we shall retain
the commoMy accepted use of the integrM sign and interpret the resulting
product as the usuM linear map (see, for example, [4, pp. 1-4]). No other
changes will be necessary.

Proqf of Lemma 1. We shM1 make use of any of the formulas (4a), (4b)
or (4c) in integrating by parts. Thus

L Ot2 Ot Ot

+o [ o  ll;E(x)I(x) ax Aj)dx

---2 -/
(x, t) E(x)I(x) )j.

+" (z)s(z)la + " (z)s(z) Ux

after integration by parts and interchan.ge of the order of differentiation.
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COnOLLARY 1. If V(X, t) is the solution of the homogeneous equation
then

(14) (u, v),=, <u, v>t=0 +
Jo -/

(x, t) - dx, 0 <- r <- T.

Proof. Since v(x, t) is the solution of a homogeneous equation, g(x, t) O,
and

or

(u, v} (u, }_0 (x, t) dx
-z/2 -(u, v)= (u, v)0 + (, t) dx
-/2

as required.
COROLLARY 2. Iff(x, t) =-- g(x, t) O, then (u, v} const.
We observe that in the particular case when u(x, t) v(x, t) and f(x, t)
g(x, t) O, this corollary reduces to the trivial statemert that the total

energy is conserved if the beam vibrates freely.
LEMMA 2 (The Cauchy-Schwarz inequality).

v>,=oo.. -<_ <u, u>. (v, v)

and equality holds only if Ou/Ot cOv/Ot, Ou/Ox cO:v/Ox for some con-
stant c.

Proof. It is sufficient to observe that (u, v) does satisfy all requiremets
of a scalar product for the "vectors" [Ou/Ot, O’u/Ox] [Ov/Ot, Ov/Ox’2], and
that (u, u} is a norm (see, for example, [1, p. 5] for a classical proof).

4. Statement of the control problems. Given the initial conditions
(5a) and (5b) and ore of the bouadaryconditions (4a), (4b) or (4c) ateach
boundary point x 1/2, x "4- 1/2 and given T > 0, find an admissible
control 5(x, t) such hat the total energy of the beam obeys the inequality

(15) (5(x, t), T) =< ((x, t), T),

where O(x, t) is any other admissible control. The control $(x, t) will be
called an optimal control for the interval [0, T].
The control problem .stated above will be called the fixed interval control

problem. Closely related to it is the minimal time control problem. Giver
the same initial and boundary coditions and given a nonnegative number
E, such that E < 8(t 0), find the control (x, t) which reduces the total
energy of the beam to the value E in the shortest possible time.

5. The existence and uniqueness theorems for the fixed interval control
problem.
THEOREM 1 (Existence of an optimal control). Let the MBVP be posed
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for an interval [0, T]. Then there exists at least one admissible optimal control
5(x, t) for the [0, T] fixed interval control problem.

Proof. Let E be the greatest lower bound oa the total energy attainable
at the time T through the use of admissible controls. (Clearly such a number
exists.) Since (T) depends continuously on the function F(t)

+12

(x, t) dx, where (x, t) is the control, we can choose a sequence

of admissible controls (x, t) such that lim_ (4(x, t), T) E.
The generalized functions i(x, t) obey the inequality

T

,(x, t)ll f0 (tlo,(x, t)ll) dt <= 2T.

Hezce the hypotheses of the lemma in Appendix 1 are satisfied, nd we
can assert the existence of an admissible control (x, t) limi_ (x, t).
It is easy to check that 3((x, T), T) E, using (8) together with (9),
(10) and (11).
DEFINITION 1. The set of all functions w(x, t), of the class C ia

[- 1/2, + 1/2] X [0, T], which are solutions of the MBVP, for which the
inhomogeneous term is admissible control, will be clled an attainable
set of displacements. The corresponding functions E(x)I(x) (Ow(x, t)/Ox)
will be called the attainable bending moments and will be denoted by M(x, t).
For convenience we introduce a new mtation. We shal.l denote by W(x, t)

the vector

t) Ow(x, t) 1Ot Ox

We make the observation that the tttainable set of displacements w orms
convex subset of L{[- 1/2, + 1/2] X [0, T]}. This follows immediately

from the linear dependence of displacements w(x, t) upon the cortrols (see
(8)) and from the convexity of the admissible controls.
THEOREM 2 (Uniqueness of the finite state). Let 5z(x, t), 5.(x, t) be two

admissible controls which are optimal controls for the [0, T] fixed interval. Then
the corresponding displacement and velocity functions coincide at the time

T, i.e.,

w( x, T) w(e x, T),
(16) Ow (5 x, T) Ow2 (5, x, T)

Ot Ot

Proof. Let us ssume to the contrary that there exist two optimal controls
$(x, t) ad (x, t) such that

w($,, x, T) # W(&, x, T).
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By the convexity of the attainable displacement set we conclude that
1/2(Wl -}- W2) W(x, t) is also an attainable displacement. The correspond-
ing total energy at the time T is

8(W(x, T)) k -/
a 4 k

+ E(x)I(x) 0’(
4 Ox

+ )] dx} I
1/4 8(wl(x, T)) q- 1/4 8(w(x, T)) q- (wl, w>t=r

where E is the energy attainable at the time T by an optimal control.
By Lemma 2,

(, ,.)’ __< (, >. (,, ,} z.
Since E is the minimum total energy attainable, we must have

)" E(wl w2 (Otherwise ;(w, T) < E, which is a contradiction.) But
the strict equality

implies that there exists a constant C such that

Ow--2 C Ow___ Ow C
Ot (t Ox Ox

Since 8(w, T) 8(w2, T) E, upon substitution into (11) we tind that
C 1, and that

Owl Ow= and O:w O:w=
Ot Ot = =r Ox =r

i’or almost all x [- l/2, + 1/2].
From the assumption of piecese smootlmess of Ow/Ox, we conclude

that

w,(x, T) w,(x, T) q- Cl(x) q-

where C1 and C,. are constants. (An identical conclusion would follow a
more general hypothesis that O=w/Ox could be a step function with a finite
number of steps in [- 1/2, q- l/2], and the formula is clearly valid when
Ow/Ox is a sum of such a step function and of a piecewise smooth function.
This problem does not arise with Ow/Ot which must be continuous in
[- Z/2, + Z/2].)
Assuming that either conditions (4b) or (4c) are applicable at one end
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of the beam, and either (4a), (4b) or (4c) at the other end, we see that
C1 C 0. Ia the remaining case, when conditions (4a) are applied at
both ends of the beam, we also arrive at the conclusion that C1 C 0.
Then in all possible cases C C 0, and w(x, T) - w(x, T). This
completes the proof.

6. Pontryagin’s principle. The principle stated in Theorem 3 below is in
complete agreement with the maximum principle of Pontryagin (see [6]),
and also with the results of [2] and [7]. The proof parallels the proof of
Russell [7] for the symmetric hyperbolic systems with a few important
differences.
THEOREM 3. Let (x, t) be an optimal control for the fixed interval control

of the MBVP, as stated in the preceding section. We assume that 8((x, t), t)
> 0 if [0, T]. Let vo(x, t) be the solution of the MBVP corresponding to
5(x, t). Let v(x, t) be a solution of the homogeneous equation (1) satisfying the
same boundary conditions, and such that v(x, T) (x, T), i.e.

v(x, T) v(x, T),

Or(x, T) O(v(x, T)
Ot Ot

Then

for all admissible controls (x, t).
Proof. If we can prove the theorem under the additional assumption that

all controls including 5(x, t) are piecewise continuous (piecewise smooth),
the general statemelt will follow as an easy corollary. Let r be a point
of continuity of the optimal control 5(x, t), r (0, T). Then there exists
z > 0, such that (x, t) is continuous in the interval I [ z, A- ],
and the interval I is contained ia [0, T]. Let (x, t) be an admissible con-
trol such that for a sufficiently small number e > 0, A- eb is aa admissible
control. (Clearly, if no such (x, t) can be found, 5(x, t) is the unique
admissible control ia I, and there is nothing to prove.)

Let us consider the control

’(x,t) =IS(x’t) for t [O, TI-I,

5(x, t) + e(x, t) for t I.
(x, t) is clearly an admissible control.
Let be the control"

I 0 for I,
,(, t)

b(x,t) for t I.
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a can be chosen so that is smooth in I. (All controls are piecewise smooth
functions of time.)

Let w(b, x, t) be the solution of the MBVP corresponding to the control
5(x, t), and(, x, t) be the solution of the MBVP corresponding to the
control with the same bouIldary conditions but with zero initial condi-
tions. (We do not wish to add wH to both terms of the right-hand side in
(18) below.
The solution w’ (x, t) corresponding to the control 4)’ (x, t) is

(18) w’(x, t) (x, t) "t- ewe(x, t).

The expression for total energy is

(19) 8(w’(x, t), t) 8((x, t), t) -- 2e(, w0} -t- e:8(w(x, t), t).

Let w be such that w’ is not au optimal displacement"

(20) 8(w’(x, t), T) > 8((x, t), T).

Then (0, w)t=r _-__ 0.
Since e was arbitrary, ald the total energy is a coatimlous functio.a of

time, there must also exist an interval [T e, T] such that

(,w} >- 0 for all t [T- e,T].

By Corollary 2 of Lemma 1, (v, w) const, on the interval [t -t- a, T]
since in this interval w(x, t) is a solution of the homogeneous MBVP,
while v(x, t) is a solution of the homogeneous MBVP by hypothesis.

Hence,

(v, (v, >= o.
In the interval [0, r z], we have (5, w) -= 0 since w 0 in that interval.
In the interval I we consider the limit"

uniformly, siIlce r was a point of cotiIuity of, and Ov/Ot, b are smooth
functions of time in I. Consequently, <v, w} -> 0 ia I. Collecting these
results, we have (v, w} => 0 i [0, T].

Using (13) and (14) we have

--5(x, t) dx max -4(x, t) dx

for all admissible controls (x, t) and for all [0, T]. The proof is complete
since r, were arbitrary and , were piecewise smooth fuactions of time,
and any admissible control could be obtained by altering 5(x, t) on a collec-
tion of suitable iatervals I,.
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Note. The proof is unchanged if r is chosen to be a regular point in
the sense of Pontryagin, rather than a point of continuity in [0, T]. Hence
the theorem goes through with weaker hypothesis regarding $(x, t), but with
more complex arguments.

7. Application of Theorem 3. At first it seems that the result is only of
theoretical interest, since in n attempt at direct application we need to
know the finite state of the beam ollowing an optimum control to decide
if the control was optimal. This situation arises in a number of physical
problems and is usually dealt with by some itemtive schemes. The im-
mediate vlue of the maximum principle as stated in Theorem 3 is in
providing negative nswers to the question" Is proposed control optimal?
An easy example of such application is given below.

Consider a beam which is simply supported at both ends, that is, cordi-
tions (4b) are satisfied at the points x l/2. The initial cow,dillon is given
by

w(x, O)
24E.I

where p, E and I are constant, Ow(x, O)/Ot O. This represents the case of
an initial deflection due to a coustan.t load p (say duc to nd load), with
the load being suddenly removed a the time 0.
The fundamental frequency of the beam is given by

v EI

We ow propose wh would ively pper o be "ood"
Among the piecewise continuous fulctions @(x, t) which have the property+(x, t) dx p. for all 0, we select the control

l]2

(x, t) --p.sgn ,
where the sign function is given by

-1 if y<O,
sgg 0 if =0,

+1 if g>O,

(, O) cos 2,
and hope ha his control is optimal for he interval [0, /2].
his is seen o be ineorree (wihou even applying Ponryagi’s prinei-

ple), since his control amounts o an immediate resoraio of he saie
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load, a,nd the total en.ergy of the beam will remain constant. Clearly a better
control is attained by assuming

P(x,t) ==-- O, 0 < < n
4

dp(x, t) -p sga Own nl < < nl
Ot’ 4 -2

The total energy dissipated by application1 of this control is given by

, (x, t) (x, t) dx at.

The initial energy of the beam is given by

The fuictions w,(x, t) and v(x, t) of Theorem 3 are scalar multiples of
each other, so that in the interval [nl/4, n/2], q,(x, t) may well be optimal.
However, it is not optimal ia the interval [0, n/4] where any force f(x, t)
equal to (p. 1. sga (0v/0t)) on a subinterval [r , r q- ] with suffi-
ciently small, and equal f,o zero otherwise, results in

(x, t). > 0.
-/

Hence, (x, t) - 0 is not optimal o,, the subi,:tterwl [0, nl/4]. We can tow
easily modify (x, t) to improve thc control o the subiterwl [n/8, n/4],
etc. It is clear how the maximal principle can be used to effect a gradual
improvement of some arbitrarily chosen control. A more systematic ap-
proach using nonlinear programming techniques has been discussed in [8].
The inconvenience of having to compute the final state before being able
to check the optimality is obvious.

In the next section of this paper we shall intxoduce a different criterion
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of optimality, which results in form of Pontrygia’s principle requiring
the knowledge of only the initial nd current displacements.

8. Some general discussion. We stress the assumption (5(x, t), t)
> 0 for all [0, T] of Theorem 3. If (;(x, T), T) 0, Theorem 3 is
meaningless, because v(x, t) =- O. We shall be able to restate the maximal
principle in a meaningful way for the case when (5(x, t), t) > 0 when

[0, T), allowing 8(5(x, t), T) to be equal to zero. However, if
a((x, t), t) const, on some subinterval of [0, T], it appears to be im-
possible to patch up the difficulties.

In particular, we want to avoid the situation demonstrated by Fig. 1.
Consider a beam vibrating freely, so that the homogeneous equation (1)
has a solution w,(x, t) such that w(x, 0) w(x, t). If we choose the value
T large enough, it is possible to apply two optimal controls for the interval
[0, T]:(x, t) and .(x, t), such that .(x, W t) (x, t) when > t,
(x, t) 0 when < tl, and 8(, T) (b, T) 0. We specifically
want to avoid optimal controls like (x, t). Before making a more precise
statement we need to prove the following theorem.
THEOREM 4. Let (x, t) be a time optimal control reducing the total energy

of the beam to the value E < (0) in the shortest possible time T > O. Then
(x, t) is an optimal control for the fixed interval [0, T] control problem.

Note. This theorem is known. Its proof is given for convenience.
Proof. Assume to the contrary that (x, t) is not optimal for the interval

[0, T]. Hence there exists an admissible control (x, t), such that
(b(x, t), T) < E. Since a((x, t), 0) (0) > E, and since ((x, t), t)
is a cotinuous function of time, therefore there must be a time r,
0 < r < T, such that ((x, t), r) E. This contradicts the time optimal
property of the control q(x, t), thereby proving the theorem.
Remark 1. The converse theorem is clearly false, as can be demonstrated

by examples similar to the one illustrated in Fig. 1.

t
2

tI
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Remark 2. Theorem 4 did not use any hypothesis of the beam theory and
is true in the general case. We shall now define aa optimal control, which
possesses the property of reducing the total energy at the maximum rate at
each instant of time, and show that Pontryagia’s principle formulated for a
control optimal ia the above sense utilizes only the displacement vector,
which could at least theoretically be computed without the knowledge of
the finite state.
To state our next definition we need to introduce some concepts from

the theory of generalized functions. In what follows, the controls (x, t)
will be either integrable and square integrable functions oa the interval
[-1/2, +1/2] for a fixed t, or the (x, t) could be generalized functions (for
example, the Dirac delta function) whose supports are a finite humber of
points in [-U2, q-U2]. By a theorem due to Lidskii, (x, t) is a derivative
of a continuous function (see [4, p. 146]). In our discussion (x, t) will be
either the Dirac delta function, or its derivative, or else it will be a regular
functio in L2 fl Ll[-l/2, -kU2]. The space of test t!unctions w(x, t) or
Ow(x, t)/Ot can be ellarged to include functions only of the class C i
[-1/2, +l/2], since for all such functions the produc ((x ), w(x))
and (ti(x ), Ow(x, t)/Ot) is defined (for any in the interval [-l/2,
+//2]). If (x, t) is a regular function in L[-1/2, -F1/2], then the product
(, w) is given by

t).w(x, t)

We interpret similarly the product ((x, t), Ow(x, t)/Ot). Since w(x, t)
is integrable in [-1/2, + l/2], we can define

+i2

!1 t)Ii

The norm of the functional (x, t) caa be defined as

]I1[ sup (,w).

=< K will define admissibility of a control. We shall say that a se-
quence of generalized functions converges to a generalized function
if, for every test functio , we have lim (, ) (, ). We shall use

the accepted notation J.. (x, t)(x, t) dx instead of (, )a. even though

may not be locally iategrable function. (It is well know that he Dirc
delta function, or its derivatives, are not locally iategrable functions.)

It is not hard to establish some sufficient conditions for the existence
of a unique generalized function , such that lim (, ) (, )
for every test function . Examples of sufficient conditions are given be-
low in (i), (ii) and (iii).
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(i) are regular functionals (that is, are locally summable) with
bounded support and obey the hypothesis of the Lebesgue theorem
dominated convergence.

(ii) 4 have a bounded support, decrease (increase) monotonically in
every neighborhood of any point which lies in their support, and are
bounded below (above) by a locally summable function.

(iii) have a bounded support, their norm is bounded by some con-
stant, and the sequence of numbers (, ) converges for every test func-
tion .
For the case when it is possible to assign norm to each test function,

the proof is given, as previously stated, in the Lemma in Appendix 1.
For he proof of this statement, in the case of the test function space
K ( K implies C0) see [4, Appendix A, pp. 368-369].
We shall now introduce a limiting process, which will allow us to resolve

some of the difficulties.
Let 0(x) be the time optimal control ssociated with the energy level

E, E g (t 0), reducing g(t) to vlue E in the time To. Theorem 4
asserts that 6(x) is also an optimM intervM control for the interval [0, To].
We can subdivide this interwl selecting points to, h., t., t.

to 0, t. T0, such that the corresponding energy levels are

g(O) Eo " E, > E2, > > En, E.

We now introduce a collection of admissible controls ,, such that, reduces the energy from E0 to E, in the shortest possible time, subject
to initial conditions on w(0, x), Ow(O, x)/Ot given in the statement of the
problem. The final condition for this subinterval: [W(tl,), Ow(h,)/Ot] is
then uniquely determined by ,. The admissible control 4, reduces
the energy to the value E., in the shortest possible time, with the initial
conditions for ,1 coinciding with the final conditions of w(,). On each
interval we formulate the minimal tinge control problem and find a solution
4,. (These are not necessarily unique.) The collection of controls 4,
determines a control 4 which reduces the total energy to the value E in
some time Tt, T1 >= T0. Now we subdivide further the energy intervM
[E0, El, that is, we subdivide each of the subintervals [E,, E+,], and
establish a new control (x, t). We carry out a sequence of subdivisions,
such that

lim (E-l,i E,) 0 and h-l. h.’l -- O.

The corresponding controls . satisfy the conditions (iii), and we conclude
that there exists a unique generalized function (z, t)"

(x, t) lim j(x, ), =< max
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From the construction of the generalized function (x, t) we can immedi-
ately deduce some important properties.
THEOREM 5. (X, t) satisfies the maximum principle"

--$(x, t) dx max --(x, t) dx
J-l/ Ot -112 Ot

for all admissible controls 4)(x, t), and for any in the domain of the control
(x, t), such that E(t) > E.
Proof. Given e > 0 there exists a index K1, such that on each subin-

terval [t_., t,],
+1/2 If --4)(x, t) -t-" 4)j(x, t)Ow((x, t))
112 Ot

for all j > K.
Also there exists an idex Ks such that

f+l/2 i(x, t)
l/2

Ow(s, x, t.).G dx < e_
Ot .J 2

for all j > K2 (where v(x, t) denotes as before the solution of the homo-
gcneous equation). This follows from the hypotheses that

v(x, ti,i) w(x, ti+.i),

thaL v and w are continuously differetiable, and their time derivatives arc
uniformly bounded.
Choosing K max(K, K), we have for all j > K,

f+l/2 [ Ow(k(x, t) ) O(v(x, t) )]--(x, t) --6 dx < e
-12 Ot Ot

for all [0, T], where T lim T. (I general we have to allow for the
possibility that T -t- , although in the case of vibrating beam it can
be shown that T always exists.) Since for each jth subdivision, -(x, t) is
the optimal control on each fixed interval [t-.s, t,.],- dx max -- dx

for any admissible control (x, t) having the same final state w(x, t,)
v(x, t,). An obvious argument leads now to the desired conclusion"

(21)
/+l/2 I Ow(d(x, t))1-(x, t) dx

+ll2

IllaX I(x’ t) Ow(6(x’ t) )l
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Since this itegml is equal to

d (w(, x, t) w(, x, t)} d E(w(, x, t)),d--t t
the control (x, t) has the property that the total energy decreases at a
maximum rte at each point of the time interval [0, ].
The principle (21) is valid if E(w((x, t) > 0 for 11 [0, ], regard-

less of whether E(T) is positive, or equal to zero. The control (x, t)
shah be called instantly optimal.
THEOREM 6. The instantly optimal control (x, t) is unique, i.e., (x, t)

does not depend on the limiting process chosen, or on the properties of the
elements of the sequence of time minimal functions {i(x, t)}.

Proof. Assume that the generalized functions l(x, t), 2(x, t), both
satisfy limi_ 61) 61 and lim_ 6) 62 for two limiting processes, as
described above. We use the convexity of the time optimal controls and
obtain

lim 1/2(1) + 2)) 1/2(1 + 2),

which is also an instantly optimal control. If wl(x, t) [w(x, t),
Ow(x, t)/Ot] is the displacement vector corresponding to t(x, t) and
w(x, t) corresponds to (x, t), then 1/2(wl + w) corresponds to 1/2(1 + )
by linearity (see (8)). By construction of 1 and . and using Theorem 2,
we have

(wl(((x, t), t)) 8(w2(,:(x, t), t))

for all [0, ]. Hence,

(w, w) (wz, w> - ((w + w),(w + w.) ).

The use of Lemma 2 (Cauchy-Schwarz inequality) shows that we have
in fact equality (wl, w2) (wl, wl}. (w, w), and the equality wl w2
easily follows for all G [0, T]. But this implies that 5(x, t) and 5(x, t)
are equal in the sense of our definition of 1, that is, they belong to the
same equivalence class.
Remark. Iris easy to see tha, given E, 0 < E < 8(0), and given the in-

stantly optimal control 5(x, t), such that 8(w((x, t), /’)) E, the time
is either greater or equal to the minimal time corresponding to the

minimal time optimum cortrol 5(x, t). It is important to exhibit cases
when a control (x, t) exists which is instantly optimal, but is not time
optimal, to justify the separate definitions. The possibility of such a
situation is demonstrated by a simple argument. Consider the initial
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conditions

Iw(.x, O) O, x , +
Ow( x,ot 0)_ 24EI

p 113 (x q-)--2l (x q-)q-(x "4- 1)41
(corresponding to a uniform load case). The time optimal cotrol 5(x, t)
will satisfy the relationship (17), i.e.,

i
"+/ f+" Ov(x,t)-5(x, t) Or(x, t)

dx max -(x, t) dx,
-1" Ot -1 Ot

=< K.

On the other hand, the instantly optimal control would satisfy

f+/ aw(, x, t) f+l aw(, x, t)
-(, t) dx lnX . -(x, t)Ij_l. Ot -12 Ot

It is easy to show that the instartly optimal control at the time 0
is the Dirac delta function (a point load) of a given norm K (which is
sufficiently small) applied at the point x 0.

Consider some time r during which the beam has been deformed by
the application of poin loads applied to the points of highest velocity of
the beam. Letting the beam vibrate freely bact to the initial time 0,
we check numerically that in general a completely different configuration
of the beam w(x, 0) 0 is obtained, and in general the product

[+ or(z, O).dx
-tl Ot

will not coincide with

.-i2 c3t

showing that 6(x, t) was not time optimal for the interval [0, r].

Appendix 1. A lemma on the completeness of some spaces of generalized
functions. In certain physical problems special types of generalized func-
tions (for example the Dirac delta function) are applied to classes of test
functions which are much larger than the classes K, S or Z generally
discussed in literature (see, for example, [1] or [4]). For example, the linear
map

(a(z ), (z))
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makes sense when is applied to any function which is only continuous in
some neighborhood of the point x . (Of course, even less restrictive
conditions could be proposed for f(x) under which this map would be
defined.) In the problems of deflections of beams or thin plates we consider
the effects of point loads (the Dirac delta functions), of point moments
(the derivative of the Dirac delta function), etc., acting oa the space of test
functions w(x), or w(x, y) which can only be assumed to be of the class
C ia a compact, connected region of E or E2, respectively, with the
boundary of 2 c E satisfying some additional hypothesis. The admissible
deflection functions, that is, the functions defined and differeatiabln in 2
vanishing outside 2 and satisfying au appropriate differential equation
almost everywhere ia 2, are easily assigned a norm.
For example, we can define

where is the usual Lebesgue measure ia 2.. A linear functional f can be
assigned a norm

[Ifll sup l(f,)l"

f is said to be unbounded if f . It follows from the definition of
f that [(f, )[ _= f II, II, We now ready to state a theorem

which is the analogue of the theorem due to Brodskii proving the com-
pleteness of the space K’. (For the statemetlt and proof of this theorem
see [4, Appendix A, pp. 308-309].)
LEMMA. Let be a space of test functions such that is a normed (but not

necessarily complete) vector space, and let f f f, be a sequence
of continuous linear functionals mapping the elements of into R, such that
the sequence of real numbers (f, ) converges for every vector , and such
that

IIf, < M, i= 1,2, ...,
for some M > O.

Then there exists a continuous linear functional f * (where * denotes
the dual or conjugate space of such that

lim (f ) (f, ) for every

Proof. We define the functional f by the formula (f, ) lim (f, ).

f is linear, since for any real numbers a,/3 we have

(f, a + .) lim (fi, a +
lim {a(fi, ) + /(f, )} a(f, Cx) + O(f,
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f is easily shown to be a continuous functional, since f -< sup f - M,
and therefore f is bounded in the norm.
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APPROXIMATION THEOREMS ON SOME CLASSES
OF AUTOMATA*

ANDRE DE KOPVIN
Abstract. This paper considers a machine as a pair (G, M), where G is a group or

a semigroup and where M is a state-space. The first part of the paper considers the
case where G is a locally compact group and M is any locally compact space. The
essential requirement is that (x, p) ---. x(p) be continuous where x E G, p E M and
x(p) M: i.e., we require that the next state function be continuous. The notion
of projective limit is discussed and a criterion is given as to when G is the projective
limit of some of its quotient groups. Next an infinitesimal element is defined. An
identification is then made near the respective identities of G and the set of infinitesi-
mal operations.

The second part of the paper treats the case when G is a so-called amenable semi-
group, having a representation of bounded operators on a Hilbert space. In the case
in which the representation is an isometry, weakly continuous, a decomposition
theorem is given. On a particular subspace the representation turns out to be a
direct sum of finite-dimensional operations. Diverse characterizations of that space
are given. Next the notion of coordinates of a representation is defined and two
orthogonality theorems are stated.
The whole paper might be considered as an attempt at giving approximation

theorems on essentially infinite automata.

1. Introduction. A classical way to view a machine is as follows" Let M
be any set which represents the status of the machine and let G be a group
or semigroup of transformations on M. The pair (G, M) constitutes a
machine (see [1], [3], [8], [10]). It is then meaningful to study purely alge-
braic properties of G (see [2], [5], [6], [11]). In this paper a machine is con-
sidered as a pair (G, M), where G is a topological group or semigroup and
M is a topological space. It is then meaningful to talk about topological
properties of groups and semigroups. This paper brings into focus such
relevant properties. The techniques are well known to people working in
topological groups (see [4], [7], [9]).

2. "Reversible-state" machines.
2.1 Definitions.
(a) Let M be a set with a topology defined on it. Assume M is locally

compact in this topology. M wil! be called a state-space.
Example 1. Let M be finite, and let be the discrete topology.
Example 2. Let M be a set of n-tuples with the usual topology.
Example 3. Let M be a set of n X n matrices with the usual norm

topology.
(b) Let G be a group of transformations on the space M. Suppose G

* Received by the editors December 20, 1966, and in revised form January 11, 1968.
Department of Mathematics, Crnegie-Mellon University, Schenley Park,

Pittsburgh, Pennsylvania, 15213.
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is topologized so as to be locally compact (i.e., G consists of continuous
maps of the space M iuto itself; G has al algebraic group structure; the
group operations are continuous on G; moreover, G is locally compact in
that topology). G will the be called a tape group on M.

(c) A reversible-state machine will be a pair (G, M), where M is a state-
space and G is a tape group on M. In addition we shll require that the
map (x, p) -- x(p), where x G and p M, be continuous.

(d) A reversible-state machine is determined if oe knows its set of
states and how a series of inputs acts on a particular state. G can be thought
of as a set whose elements are a series of inputs with the obvious composition
law. Because elements of G are continuous maps on M, this means that
if a series of inputs is slightly modified, then the resulting state is also slightly
modified. The topologies on M and G of course give meaning to the concept
of "slight" in G and M. A machine of the above type will be called transi-
tive if, given p and q in M, there exists x iu G such that x(p) q.

2.2 Quotient state-spaces. 1. Let H be a closed subgroup of G (not
necessarily normal). Consider the map r which maps any element x of G
into the set xH (all elements of form x multiplied by an element of H).
Pick the open sets in G/H to be the ones whose inverse by are open in G.
Then r is a continuous map of G into G/H. Moreover, maps open sets of
G into open sets of G/H. G/H is a locally compact Husdorff space. All
these statements follow by definition.

2. We can state the following theorem.
THEOREM 1. Let H be a closed subgroup of G; then (G, G/H) is a transitive

reversible-state machine.
Before proving this theorem, let us give physical interpretation. Start-

ing with a machine which has a given state-space, we are able to construct
in general a new state-space on which G is a tape group. Moreover, the
new state-space is related to the first state-space as follows" If two tape
elements x and x are such that x can be obtained by composition of x
with an element of H, then (x) and (x) are identical states ia the new
state-space.

Proof. Define p(xH) yxH. Then, given xH d xH,
xH, so the machine is transitive.
Now (x, y) .- xy is continuous and (xy) -- (xy)H is continuous. The

map (x, y) -- (x, yH) preserves open sets; hence (x, yH) ---, (xy)H is
continuous.

3. Consider the machine (G, M). Let p be an element of M. Let
be the set of tape elements of G which leave the state p invariant. Clearly,
G is a closed group. We can then form the state-space G/G,. Now we
define a natural map tG/G -- M by (xG) x(p). Let us assume that
(G, M) is a transitive machine. What can we say about ?
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Let us verify first of all. that h is a well-defined map. If xG yG,,
then we have y-lxG, and -1y x(p) p so that x(p) y(p). This also
shows that is 1" 1. is onto M because we have a transitive machine.
Let (x) x(p) (x G). By definition, is continuous. r’G-- G/G,
is an open map; hence is a continuous map. If we know that is open,
then b is a homeomorphism (i.e., the spaces M and G/G, are topologically
equivalent). It is natural then to ask the following question" Under what
conditions on G and M is G/G, homeomorphic to M?
THEOREM 2. Suppose (G, M) is a transitive machine. Assume G can be

covered by countably many translates of each neighborhood of the identity.
(This is the case if G is separable.) Then is a homeomorphism.
Note that this theorem essentially gives a criterion as to when GIGs,

is the same state-space as /]4. The state-space G/G is obtained from G
and M as follows. Each x G is mapped in such a fashion that tape ele-
ments which "cancel" each other out on the state p are mapped into the
same element. Then the natural quotient topology is introduced o that
new set. Now we proceed to the proof of the theorem.

Proof. We remark that a locally compact space is not a countable unio
of nowhere dense sets.
Now we shall prove that x --) (x) x(p) is an open mp. Let x0 V

=< G, where V is open. We shall show that (V) contains an open migh-
borhood about (x0). Pick a compact neighborhood U of G such that
U U- and xoU <= V. By hypothesis there exists a sequence {Xn} such
that G V,x,U whose image by is V,(x,U) M. By the above re-
mark one of the (x,U) is not nowhere dense, so contains an open set.
Thus (U) has an interior point uop (no U).

Therefore, b(V) has xo(p) as au interior point.

2.3 Decomposition theorem. 1. Consider the tape group G. Let
continuous, open homomorphism of G onto G, which is also a tape group.
The problem we shall consider is l,he following: When is G topologically
equivalent to the l)rojective limit of the G,,? A eriterio of this problem
will give us a, way to look :xt the tape group G as a, projective limit of
homomorphic tape groups, the projective limit bebg topologicMly equiva-.
lent to the tape group G.

2. Now let A be a directed set (i.e., for a,/ in A there exists X A
such that X :> a, X > /). To each a associate a tape group G, (in this
section we are not interested in the state-spaces). To each pair a, fl of A
such that > a we associate an open homomorphism
satisfying the following" If a < t < X, then rx, rxor, (the convention
here is to read from left to right). Form II,e x G, (i.e., is the prod-
uct group with the natural topology on it). Now let G
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.(x) whenever > a}, where G is a subgroup of G. Let us topologize
G by the relative topology respectively to G. It is easy to check the follow-
ing:

(a) An open basis at e G is defined by the sets of the form
Ix {x} Ix. open neighborhood of e in G.} where a is fixed.

(b) G is closed in G.
Now let K. be the projection of G in G.. If K. is onto G., thel G is the

projective limit of the tape groups G.. (Note that K. is an open map.)
THEOREM 3. Let G be a tape group. N. a A, is a collection of normal

subgroups of G satisfying the following conditions"
(i) If a, fl A, then there exists . A such that N <-_ N. /k N.
(ii) If U is any neighborhood of e, there exists / A such that N <= U.
(iii) At least one of the N. is compact. Then we can form G’ the tape group

which is the projective limit of the G. GIN..
Further, let map G into G’ by (g) r.(g) }. Then is an isomorphism

onto G’.
Let us commen on this theorem before giving the proof. We have here

criterion as to "how thi." we must choose a set of ttpe subgroups such that
the tape group G may be reconstituted as a proective limit of its quotient
tape groups. G will be topologically equivalent to this projective limit. The
physical interpretation of the projective limit is tentatively the following:
For each a form the tape group GIN.. Then consider the state-space which
is the Cartesian produc of the state-spaces of GIN.. Then a state ia tha
product is given as a sequence of states. The ath element of the sequence
represents a state of the state-space of GIN.. Then topologically the tape
group ca be considered as acting on that new stte-space. The transfor-
mation of such a sequence is done "component-wise", i.e., g is identified
with {g-I and

g(p p. ..., P. ...) (g(p), g(p), ..., g.(p.), ...).
Now we prove the theorem.
Proo]. First, 4, is 1"1 and coatimous. The verification is trivial. Now

we have to show that is open. Let g G a.ud g V which is open ia G.
Pick a neighborhood U of e such that gU <= V. Select a A such that

N. =< U. Consider {x GIx. .(gU)}. This is a open set in the rela-
t)ive topology for the range of (I). Indeed, if this set coataius (h) we shall
show tha h V.
We have .(h) (! .(gU), so h gUN. <-_ gU <= V.
Now if we show that range G’, we shall have proved the theorem.

Let x Ix.} G’, x. GIN., x. s.N s. G. Consider a, a.
Pick f > ai for i 1, n. Then Nz _-<_ N. so szN <= S.N. (because
r.(x) x.). Because N. is compc for some , there exists g
Therefore .(g) x..
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2.4. Infinitesimal tape elements. In this section V will denote a finite-
dimensional vector space over the real numbers. M(V) all linear trans-
formations which map V into V. GL(V) all nonsiagular linear trans-
formations of M(V). Hence GL(V) is a group for multiplications. Define

1 T,(1) cxp T /.k-0

where T M(V). Then. it is easily seen that this exponential function
maps topologically a neighborhood of 0 in M(V) onto a neighborhood of I
in GL(V). Physically we shall keep in mind that V is the state-space, and
GL(V) is a tape group on V. Now let G be a closed subgroup of GL(V).
x M(V) is called an infinitesimal operation on V if there exist a sequence
An G, e, which decreases morotonically to zero, and

An I
--> x.

en

Convergence here is defined ia the aorta sense of M(V). L(G) is the set of
all infinitesimal operations formed with elements of G. (Note that L(G) is
nothing else but the Lie algebra of G.) Now if G is a closed subgroup of
GL(V) and x L(G), then exp(x) G. This is a trivial conclusio using
the fact that G is closed and that A,[1/e,] -/ exp(x), where [1/e,] is the
smallest integer above 1/en
Now in L(G) introduce a new operation [A, B] AB BA, where A,

B L(G). It can be shown then that L(G) is a linear subspace of M(V)
closed under operation.
THEOREM 4. The exponential function defined in (1) maps topologically

some neighborhood of 0 in L(G) onto some neighborhood of I in G.
Let us comment now on this theorem. Here we are interested in tape

elements which are not necessarily part of a tape group, i.e., the infinitesimal
elements. The action of two infinitesimal elements on the state-space
results in the usual vector addition. On the other hand, we are interested
in the action of a tape group. The theorem says that if the tape elements
and infinitesimal operations are close enough to the respective identities,
then the infinitesimal operations are topologically equivalent to the tape
elements. (This is really a local identification near the identities.)
We prove this theorem in the following manner.
Proof. All we have to show is that the exponential function is an open

map. So assume that exp[L(G)] does not contain a neighborhood of I in G.
Let N be the complementary subspace of L(G) in M(V):

M(V) L(G) -4- N,

N /X L(G) O.



APPROXIMATION THEOREMS 427

So there exists {A} such that:

A G for all n,
A, --> I,
o A,, L()
log A,,, xn + y,,,

x L(G),
y,, N,
y. #0 forM1 n

for all n,

(for if y. could equal zero then log A L(G), which is a contradiction).
log A. -- 0

so that

x--0 and y.--0.

Consider Y,/II Y, [[. The unit sphere is compact, so some subsequence
converges to y. Therefore y 1.

Since y N, exp hy # I for small , because for small values of h, the
exponential is 1"1; and since y # 0, exp y # I. If now we show that
y L(G), we shall have demonstrated the contradiction"

1 {A exp x Yn} 1

1 (( + g) )

1 )_

1

Cxp II Xn ! 1

lim Y -IA- expx

lim exp z

ghus g N A L(G), so g 0, which is a eongradiegion.
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THEOREM 5. Let G1 and G. be closed subgroups of GL(V1) and GL(V2).
Let be a continuous homomorphism of G into Q. Then there exists a homo-
morphism d of L(G) into L(Q) such that:

L(G) L(Q)

a --’ Q

The diagram is commutative and de preserves the [, operation.
The proof of this theorem is a known proof of the theorem which says that
a homomorphism between so-called classical groups can be extended to a
homomorphism between their Lie algebras.

If the exponential function is physically interpreted as a transformer,
i.e., if it changes an infinitesimal operation into a tape element of a group,
with little deformations around the identities, then we can define a homo-
morphism (i.e., functor) between the corresponding infinitesimal operations
which extends in a natural fashio.a the homomorphism of the tape group
elements.
Using the classical groups theory we also have the following result"

Let M GL(V) and G(M) {A M(V)IAtMA M}, i.e., e]emetsof
G(M) leave M "itvariant". Then

L[G(M)] {x M(V)IxM -Mx}.

In particular, this gives a straightforward way to compute the irfinitesimal
operations of the orthogonal, unitary ,’rod Lorentz group.

This ends what could be described as approximation theorems for "re-
versible machines". In the next prt we shall attempt, to describe some
properties of "irreversible mchines."

3. Representation theorems for "nonreversible machines."
3.1. Definitions.
(a) A nonreversible machine will be defined as a pair (G, M), where G

is an "amenable" semigroup, i.e., G has the algebraic structure of a monoid
(it is closed under composition and the identity is present). Let C(G)
be the set of all bounded and continuous functions. G is said to be left-
amenable if there exists a linear functional defined on C(G) which is posi-
tive, left-invariant, and normalized; the same definition applies for fight-
amenable. G is amenable if it has a left and a right mean. (Note that the
left mean is not necessarily equal to the right mean.) Formally, a nonre-
versible machine will then be he pair (G, M), where G is a semigroup with
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identity md where hi, X2 are linear funcCionals such tha,g"

x(I) , i= ,2,

where I is the identity element of C(G),

Xf(x) Xf(ax) forall a C G,

Xf(x) ,f(xb) for ,11 b C G,

xd’>= 0 if f>= 0, i= 1,2.

f C(G),x G,

’xanple l.. Any Abelim scmigroup is ame.,tble.

Example 2. Any comI>aC group is amenable.
(b) We shall defitte now a so-called "almos eoavergen.ce"..Le f C(G)

attd let a be a number. Then we say f converges almost to a if Xf a for
all X where X is a mean (left or righ.t). We de:ote this fact as f () a.

It can be shown that if G 1, 2, 3, }, in order that f C(G) satisfies
f () a, it is necessary and sut-tieient hat

1 f(lc + m) a uniform].y in m
n k=l

(ergodic theorem). Now we assume that we have a Hilbert space h, a.nd
that the tape semigroup G has a representation in L(h) as a set of bounded
linear operators on h; i.e, if x G, then x T L(h) md T q’ r
Roughly speakitg we assume now that each tape element (which is an

element of a semigroup G) caa be represeated as a linear operator over the
Itilbert space h (h in general is infinite-dimensional). We make the hy-
pothesis that the semigroup G is amettable. We want to study the proper-
ties of such a representation, and hence, hopefully, have a different way to
look at elements of G. A representation T is called bounded if T N lc
for all x G. A representation T is called wealcly continuous if x Tf, )
is a continuous function on G for all f, h.

3.2. Bonded, isometric representations.
THEOREM 6. Let u be a bounded, wealcly continuous representation of

G h. Then there exists Q L(h) such that

(uzf, ) ( (Qf, ) for all , h.

Moreover, ff u is an isometry, Q projection on f[uf for all x G}.
Proof. Fix X a left or right mean. Then there exists Q such that X(uf, )
(Qxf, ) for all f, h. This is merely the Riesz theorem.
Observe that Qxf is an element of the closed convex hull of {uf:t: G}

(tse the septmtiot property for convex ets).
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Now le } be a right mean.
CLAIM. Qxt u Q.
Indeed,

(Q u, ) h(u, )

(Qx, , ).

If h is a left mean, then it is equally trivial to check that uQ. Q.
Now we show that Qx Qx. By the same tokea we shall have shown

that Qx is idependeat of .
Consider h, x x G, ai a such that a 1 and

Q,
Q.

Since Qx is a eleme of the closed couvex hull of {ux G}, then
Q or QxQx
Now

(QxQ, ) (uQ, )

(Q, )

so that Q > 0 aad Q Qx.
Now we prove the second part, of the hcorcm. Let) E be the projection

described in the theorem. Thc

(q, E) [u, EI
[Eu, ]

[uE, ]

(Er, ,)

so EQ E. Now let us check that EQ Q. This will show that E Q.
For all x G we have uxQF QF. Q fixed under u implies

element of the range of E. So EQ Q and therefore EQ Q.
THEOREM 7. There exists a positive self-adjoint linear map

into G.. such that"
(i) (Au, u) ( ((A ), ) for all A G..
(ii) (A)u u(A ),
(iii) 0 and is self-adjoint, that is, A.* A, (A (A*).
Let us exl)]ai some o. the terminology ad conditions involved. First,

u is assumed to be a weakly continuous isometric representation of G.
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Gh., represents the so-called Hilbert-Schmidt class of operators, i.e., A Gh.,
means A :h - h and if e‘‘ is a complete orthonormal basis for h, then

Here ‘‘ means the supremum of the set of all finite sums. It can be shown
that Gh,. is closed under * (adjoint) and is an ideal in L(h). G,. is also a
Hilbert space in its own right under the inner product

[A, B] _, (Ae, Be,,)

(here , makes sense since only a countable number of terms are not
equal to 0). Consider Gh. as a Hilbert space (with as an inner product).
Consider the map"

,
x.---> u Au T(A), A

II T,(A ]I [u Au, u u]

11 Ae II
[A,A].

So I’ is an. operator on (;1. of norm less than or equM to 1. Now

Tv(A) [(uv)*Au,v]
,

-u( *A )u

TT.(A).

Hence T‘‘ is a bounded anti-representation of G on G,,.
CLaiM. This anti-representation is weakly continuous.
It suffices to show thut x -- [TA, B] is continuous for A, and that B

is an element of a dense subspace of GI,., i.e., for finite rank. So let

A (, ),

Br (r),

r, r h,

Bit *
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CLAIM. This series converges uniformly in x.
Let > 0. There exists a finite set, call it fi such that

Z (u, )(e )(u,*’’)1

-< (u*g, ’) (e.,) (e)i,
af

Given any > 0, such an f can be chosen. This proves the claim. IliA., B]
is hence weakly continuous as a uniform limit. By the previous theorem,
there exists a bounded operator such that

T [(A), B].

Cloose B of he form

B (, ),

t 1.

Imbed t" in ’-an orthonormal basis with

I)(A), B] ((A)e,, Be,)

((A)’, ).

I,ikewise,

We have

u. Au., ,).ITS, B] *

* __>(a)(u Au, ) (((A ), ) for all

This proves Theorem 7(i).
Now let ), be a right mean"

((A), u) a( *u. Auu, u)
X(u*Au, )
((A), )

so that

u*(A )u .(A).

This proves Theorem 7 (ii).
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Now let A >= 0. Then

(AuA’, uA’) >= 0 for all x,

X(u*Au, ) >= O,

so that

((A), ) >__ 0.

Thus I, is positive mp, nd Theorem 7(iii) is proved.

3.3 Peter-Weyl theory on amenable semigroups. 1. In this section
u, will be assumed to be n isometric, wekly continuous representation of
Gia L(h). We shll state the essertil results. The representation u will be
sid to be reducible over h if there exists subspce m of h (nontriviM)
such that u(m) <= m nd u(m+/-) <- m+/- for M1 x G.
THEOREM 8. Let { hl(A)i" 0 for all A G.,} (0 as defined

above). Then the following statements hold:
reduces the representation;

(ii) u (restricted to has no finite-dimensional subrepresentation
(iii) u, is the direct sum offinite-dimensional subrepresentations.
This theorem may be regarded as a sort of localization theorem. It states

how u behaves on a certain subspace of h, and, namely, u, is a direct sum
of finite-dimensional subrepresentations on . The theorem ties and the
Hilbert-Schmidt class of operators.
In the proof we shall make use of the following elementary fact: Let m

be a proper closed subspace of the Hilbert space h; then the represettation
reduces m if an only if u for each x commutes with P which is the associated
projection on m. By Zorn, let P, be the maximal collection of hot,zero,
finite-dimensional, orthogonal projections each commuting with all u.
(This family could be empty.)
Let P ’, Pa. Then P commutes with all u. Let M be the space on

which I P projects.
CLAIM. U restricted to M has no finite-dimensional subrepresentation.
In fact, let Q # 0 be a finite-dimensional projection which commutes with

all u.
CLaiM. Q _-< P.
If notQ(I- P) Oso (I- P)Q(I- P) O and is an element of

G., since the latter is a two-sided ideal and my operation of finite rank is
an element of G.,. This operation is self-adjoint and compact, so by the
spectral representation,

(I- P)A(I- P) ,
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where the Px are finite-dimensional, orthogonal projections. It follows that
each Px commutes with u and at least on Px 0; also Px _-< I P. This
contradicts the maximality of {P,}.
Now the claim is that range (I P) K. The theorem then will be

established. Suppose " is an element of the range (I P) and (A) 0
for some A Gj,,.. Without loss of generality we may assume that A is
self-adjoint. We have seen that (A commutes with all u and is a nonzero,
self-ad]oint, compact operator (compact because it is the uniform limit of
operators of finite rank). Hence,

(A) E Px,

where for some , 0, Px 0. As before Px commutes with all u so P,u
is a finite-dimensional subrepreseattion of u.
Now range Px -< range P (by maximality), P" 0 since Px -<_ P,

(I P)" ’, and so " ( range (I P), which is u contradiction.
Conversely, let " ( range (I P) then there exists a such that P,i" 0.

Since P, is finite-dimensional, thou P, Gj,. and P, commutes with all
u. Thus

((P,), v) ),(P,u, uq)

*p(u u, )
,(P,, q)

(P,, q)

and so

Therefore,

ndi" ( m.

q,(P,) P,.

(P,) P," 0

In the process we have proved the following theorems.
THEOREM 9. Let +/-. Then v I P, where P is the supremum of all

projections (finite-dimensional) which commute with all u as x G.
TI-IEOREM 10. If mx { h: (u, t) 0 for all h}, then m
Say " v; then ((A), t) 0 (Au, Uxt) for all A Ga.,. Take

A" (’, p)a aud 0 [(uA’, p)(Ut, g)]. Put
0 for all p, and

X (u ’, p). 1 -<- %//X (u ’, p) %/’X(1) 0.

Thus i" rex.
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Now we use mx to show i" 7, and

X[(uA’,t) 0 forll t,

If A (, z), then (O(A), t) 0 nd so O(A) 0.
Hence O(A) 0 for ny operator of finite rnk; hence, because the

latter set is dense ia G., O(A) 0 for ll A G..
In the case when G is compact group, (0) ad we hve the stte-

meat of the Peter-Weyl theorem for compact groups. A representation is
clled unitary if u is unitary for ll x G (i.e., u*u I).
Now let us consider the situation where the tpe semigroup hs different

representations in different Hilbert spces. The following theorem will tell
us how this ffects the representations.
TnEOUEM (Schur). Let u and v be continuous, finite-dimensional, it-

reducible, unitary representations of an amenable semigroup on Hilbert spaces
L(h) and L(h). If T is any Hilbert-Schmidt operator from h to h, then
there exists which is a linear operator on the space of Hilbert-Schmidt opera-
tots from h,, to h, such that

(T)u 

(Tu, v) () (O( T), ) for all h and all

Moreover, if u is a representation nonequivant to v then O( T)
u v then O( T) (1In) (tr T) I, where n dim h.

2. Let us define now the term coordinate. A coordinate (respective to
give representation) is functio belonging to C(G) of the form u, h’)
where h" and h’ are fixed vectors of h.
THEOREM 11. Coordinates of nequivalent representations are orthogonal

respectively to any mean, i.e.,

u,h, h" (vk, ’) () O.

Now consider h, a finite-dimensional vector spce. Then let e,
be au orthogonal basis for h. Theu we hve the following theorem.
TEonE 12. (ues, e), 1 i, j n, are orthogonal respectively to any

mean.

4. Conclusion. We huve now decomposition and orthogonality theorems
for certain types of automata, essentially for those where the underlyg
semigroup of inputs is an menable group. The theorems are lgebric us
well as topological their nuture. A possible way to look further into the
matter is to take specific examples of groups with a known mean and see
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what are then the results of applying these theorems. The idea is to break
down these types of machines into easier parts. Another direction open for
investigation is to explore topological groups, not necessarily amenable,
but having some other special conditions, and consider their decompositions.
The theorems on bounded isometric representations essentially say that

an infinite machine acts like a finite one when restricted to certain subsets
of the set of states. The theorems give a characterization of the zone in
which the machines seem to act as finite ones. The orthogonality theorems
essentially give averaging processes on automata where a mean can be
constructed on the semigroups of inputs.
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OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS
(A SURVEY OF SOVIET PUBLICATIONS)*

A. . BUTKOVSKY, A. I. EOROV XNI) K. A. LURIE
1. Introduction. Many existing industrial processes and control systems

operate under conditions in which their potential working capabilities are
not exploited. These systems need to be improved in such a way that their
potential working capabilities are fully utilized. We call a system optimal
when it is the best possible one under certain given working conditions.
Often, practical limitations lead to the consideration of various con-
straints which manifest themselves as restrictions on the values of phase
variables and control functions. Historically, the problems of optimal
control for systems governed by ordinary differential equations of finite
order emerged from the aspiration, to take various constraints into account
[1]-[9]. The main technique for solving this class of problem has been based
upon a special result of the calculus of variations known as Pontryagin’s
maximum principle [10] and upon the method of dynamic programming
due to Bellman.

In physical situations, one often encounters systems whose parameters
are distributed in both space and time. The dynamic behavior of these
systems is governed by partial differential equations, integral equations,
integrodifferential equations and sometimes by more general functional
equations.
Sometimes there exist situations where a system is described by ordinary

differential equations of which the order is very high. Under certain as-
sumptions, the system description my be considerably simplified if we
approximate the system by expressing it as one with distributed parame-
ters. For example, the dynamic behavior of a very large number of sub-
sequently combined aperiodic lumped elements may be approximately
described by the heat equation.
Optimal control problems for systems with distributed parameters

frequently arise in mechanics, mthema.tical physics and engineering.
Some examples may be found in [12]-[19]. In these works, different methods
are developed, which enable one to solve some problems of practical ira-
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portance. In [20] the problem of optimal control of temperature distribution
in solids is considered. An interesting result concerning necessary conditions
for extremal problems in a function space with inequality constraints is
discussed in [21].
The difficulty in the formulation of these problems is that in general

considerations, the formulation should be broad enough so as to retain
the necessary generality, and on the other hand, it should be narrow
enough so as to permit devising effective means for solving the problem.

It is far more difficult to develop theories and techniques for distributed
optimal control problems than for their lumped equivalents. The difficulty
is that, besides the highly complicated character of the governing equations,
there are certain features in optimal control problems involving partial
differential equations which are not found in those involving ordinary
differential equations. In this paper, some of these features will be indi-
cated.
Up to the present time, variational problems for distributed systems

were considered mainly in connection with direct methods of the calculus
of variations. Requirements of optimal control theory made it necessary
to investigate indirect approaches to constrained variational problems
when the number of independent variables exceeds one.
We shall now proceed to describe a few typical controlled objects which

require distributed control for their operation.

1.1. Heating of metal in a furnace. (See, [1.2] and [13].) Consider the
problem of optimal heating of a metal pig in a furnace. The temperature
of the fixed heating media can be characterized by a function u(y, t)
depending on the space variable y, 0 -< y =< L, and time t, 0 =< _-< T,
where L is the length of furnace and T is the total heating time. The state
of the heated material is characterized by its temperature Q Q(y, t).
The material moving through the furnace with a velocity v(t) (positive
in the direction of the y-axis) is heated according to the equation

oQ oQ(1.1) b- -t- bv- -4- Q u O,

where b is the time constant associated with heating an elemental layer of

material. This parameter generally depends on the difference y v(t) dr.

The temperature of the material at the end of the furnace obviously de-
pends on the temperature variation during the course of heating. Also,
the value of t,he final elnperaturc deI)cnds to a great extent on the velocity
v(t) of the material through the heaing zone. The final temperature of
the material also depends on the thickness S of the material layer as well
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as on its thermal and physical constants such as thermal conductivity,
specific heat, density, etc. The control problem is to regulate the final
temperature distribution of the material. Such regulation is required in
the rolling of steel slabs. The velocity variations of the material during its
motion through the furnace together with the thickness variations of the
slabs usually act as disturbances. The purpose of optimal control is to
regulate the temperature distribution along the furnace in such a way so
as.to guarantee minimal (in some appropriate sense) deviation of the final
temperature of the material from the one prescribed. For example, one
may wish to minimize the integral

(1.2) Q* Q(L, t)i" dr, , >= 1,

where T, and Q* are given.
We shall consider only the following typical disturbances"
(a) disturbance caused by the time dependence of velocity v;
(b) disturbance caused by variations in the parameter b"

b b y-- v(r) dv

b if L >- v(r dr >= - L,

b if 0_<- -- v(r) dr < 15,
where b and b. are known constants.
The latter situation corresponds to the process of heagin.g two different

groups of slabs following each other. Usually, he control function
does not depend on the space variable y. Also satisfies an amplitude
constraint of the form

A < < A
One can easily show with the aid of the maximum principle [12] hat he

opt,imal control function for ease (a) is given by (’r 2)

u u(t) Q* -- by(t) OQ

" yL

and for case (b), the optima], control is a discontinuous function given by

/A1 if bl> b,

A if b <b2.
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In the general situation, the optimal control consists of a mixture of the
above controls. The transition from a control for case (a) to that for (b)
is determined by the distance between the point of discontinuity of the
coefficient b and the end of the furnace, y L.
The control problems associated with many other industrial processes

such as multizonal furnaces for rapid heating, kilning and drying stoves
and different kinds of heat exchangers can be posed in a similar manner.

1.2. Drying process. (See [27].) The process of drying moist material
whose characteristic width is S, 0 =< x _<- S, in a drying stove of length L,
0 -< y <= L, is described by the following system of equations"

02Q: OQ: oQ,(1.3) OQ_ a + bv + --or - ot

0 Q. OQ OQ:(.4) oQ:

The state of this process t time can be characterized by the tempera-
ture distribution Q(x, y, t) and the moisture concentration Q(x, y, t).
To complete the description of the process, (1.3) and (1.4) are supple-
mented by boundary conditions"

(.) Q(x, o, t) Q,(x, t),
(1.6) Q:(x, o, t) Q,.,(x, ),

oQI a[u(y, t) Q(, y, t)],(1.7) X )- x=,

(:.s) :] o,

(1.9)
Ox = =

(:.:0) OQ, O,
OX =o

and initial conditions

(1.:1) Q:(z, y, 0) O0:(x, y),

(:.:2) Q,(x, y, O) Qo,(X, y).

In these equations, the function v(t) 0 represents the velocity of the
materiM in the direction of the positive y-axis, the functions b:
and b b(y, ) and constant coefficients a:, a, aa, , c:, [ characteriz-
ing the thermd and dgfusive properties of the material. The functions
i.:(x, ), O,.,(x, ), Oo:(x, ) and O0,(z, y) are considered known.
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The optimal control problem is to determine the control function u(y, t)
(temperature along the drying stove) to minimize (in some given sense)
the influence of various kinds of disturbances, e.g., those corresponding
to initial moisture concentration and porosity of the material, the velocity
of material along the drying stove and so on.

Let Q(y, t) dermte the average moisture conceTtration over the cross
sectio-:

(1.]3) Q2 =- Q.(x,y,t) dx, 0 <= y <-_ L, 0 <= <= T.

One may wish to minimize the following performance index"

(1.14) J *() (L, )[ d, , >= 1,

where *() represengs a prescribed funegion of ghe averaged eoneengration

at the output end y L of the stove.
Usua|ly, the following restrictions are added:

Ou < A Q(x, y, t) < A.,(1.1.5) A1-< u(y, t) <-_ A,,

where A1, A.:, A, A are known constants.

1.3. Chemical reactors. Consider now the optimal control of chemical
reactors. It is required to obtain the maximum output of some component
of the reaction product under certain restrictions on the reactant and
certain parameters of the reaction process [27]. We shall examine cyclic
reactor with a fixed layer ot catalyst. As the reactant is fed into the reac-
tor, the reaction starts and accelerates under the action of the catalyst.
The speed of reaction is temperature-dependent. The reaction, being endo-
thermic in nature, tends to lower the temperature of the catalyst layer and
thus slows down the reaction. The reaction stops completely when the
temperature drops to a low critical value. Subsequently, the temperature
of the catalyst layer increases and the process starts again. The highest
value of the layer’s temperature is restricted by the firmness of the catalyst
layer and by some other undesirable reactions at high temperatures.
During the reaction process, one can only influence the layer’s tempera-

ture by regulating the temperature of the reactant at the input of the reac-
tor. In what follows, we shall consider a reaction of the first order. This
means that its velocity depends only on the temperature Q and not on
the concentration Q. Thus, at any fixed point x, we have

(1.16) OQ
exp a0- 0-< x _< .L, 0-< T,

where QI Qi(x, t) denotes the temperature at the point x and time t.
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When the deviations of parameters from their average values are small,
we can approximate (1.16) by the following relation:

(1.17) oQ
Ot

exp (a -t- tQ1).

Suppose that the heat conduction between the layer of catalyst and the
material is so intensive that both reagents are at the same temperature
and the transmission of heat through the layer is mostly convective.
Under these assumptions, one can use the first order equation

oQ(1.18) oQ1 -t- v- -h exp (a -t-/Q1)
Ot Ox

to describe the process. Here, h characterizes the thermal effect of the reac-
tion; v is parameter depending on the velocity of mteril through the
reactor nd on the ratio of the rectnt’s specific het to that of the cta-
lyst’s lyer.

It is required to regulate the reactant temperature at the input in. such
a way as to mximize the extent of reactant conversion. This extent can
be determined by the expression

(1.19) exp (x -t- Q(t,x)) dx.

In many cases, however, the optimality criterion must be of economic
origin. Taking R(QI(t, 0)) to be the cost function associated with achiev-
ing temperature Q(t, 0), one may wish to maximize the functional

(1.20) exp (a - flQl(t, x)) dx R(QI(t, 0)) dt,

where R(Q1) is an increasing function of its argument. Here, Q is regarded
as the control variable.

1.4. Metal processing. In metallurgy, great importance is attached to
the rapid and high quality heating of metals in heating wells and furnaces.
The most frequent situations where optimal control over the heating

process is necessary are the following (see [12]-[15], [27]).
1. The amount of work done by a rolling mill (or press, or sledge)

depends to a large extent on the working temperature of the heating
chamber.
In this case, it is necessary to optimize the heating process in such a way

as to minimize the total time in heating the material up to the desired
temperature distribution. This leads to the problem of time-optimal heating.

2. If the total heating time is fixed (e.g., when the furnace temperature
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is determined by that in the rolling mill), then it is required to organize
the heating process so as to obtain the best possible quality of heating
over the given time interval.
An example of such a problem is as follows. Assume that the temperature

distribution Q(x, t), S <- x <= S, 0 <= <= T, can be adequately de-
scribed by the simple heat equation

(1.21) oO 050
Ot

a
Ox

where a is the thermal conductivity. The boundary and initial conditions
for this problem have the following form:

OQ] al[ul(t) Q(S, t)],(1.22) ),
=s

OQ a2[u2(t) Q(-S, t)l,(1.23) X
=-

(1.24) Q(x, O) Qo(x),
where h is the heat conduction coefficient; al and a2 are coefficients of heat
exchange between the heating media and the material; Q0 is the initial
temperature distribution; and u, u2 are the control variables corresponding
to the temperatures of the heating media. It is assumed that ul and u
satisfy the following inequalities"

(1.25) A -<- u(t) <= A2,
(1.26) A3 <= u.(t)

_
A4.

Also, an additional restriction may be imposed on the temperature gra
dient inside the material"

(1.27) oQ

Finally, a restriction is imposed on the total heating time T"

(1.28) T

The parameters A, As are given constants. The control problem is
to determine a control function (temperature of the heating medium)
which minimizes the deviation (in some prescribed sense) of the material
temperature distribution from a desired one at a fixed time T. In particular,
find the control functions u(t), us(t), 0 <= <= T, so as to minimize the
functional

fs Q* v(1.29) J (x) Q(x, T) dx, .), > 1,

under side conditions 1.25)-(1.28).
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The solution of (1.21) corresponding to the zero initial condition is given
by

(1.30) q(x,t) ] K(x,t-r)u(r) dr, -S <- x

_
S, 0 <= <= T,

,10

where K(x, t) is the Green’s function. One can show [16] that the optimal
control function u(t), A <= u(t) <= A, satisfies the following integral
equation"

(1.31) u(t) A + A A1 A,
sg B(t) g(t, r)u(r) dr

2 2

where

B(t) Q*(x)K(x, T- t) dx,

N(t, ) K(x, T r)K(x, T- t) dx.

Tiffs equation, m::y be solved using approximate methods.
To conclude our description of optimal control problems for distributed

systems, let us describe a typical control problem in magnetohydrody-
namics [18], [191.

1.5. Magnetohydrodamic systems. Consider the rectilinear motion
(v (V(y), 0, 0)) of a conducting fluid along a plane channel of width
2. The walls of the channel are insulated everywhere except in a regio
of length 2X where two ideally conducting electrodes are placed opposite
each other on fferent walls. The electrodes are connected to au external
load R.
Upon imposing a transverse magetic field B iaB(x) onto the moving

fluid, an electric current of density j (, ) is induced inside the channel.
The total current flowing through the external load is ven by

X

If he magnetic eynolds number e, is small compared wih unity,
we may neglee ghe induced ma,gnegie field. If, in addition, he mhd param-
eger of ingeraegion is also small, ig is possible o negleeg he Loren force
so ha he fluid moion in he channel ean be approximately described by
purely hydrodynamic equations.

(1.33) j --curl iaz
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The electric potential z and current density can be determined from the
following equations"

1.34

OZ

OZ

OZ VB O (VB ) Op O--Pf’ Oy O + c Ox
p2 + Oy

OOz 0 + O,

where p(x, y) is the specific resistivity of the fluid satisfying

(1.35) p,, p(x, y)

_
Pmax.

The limits Pmax and pmin are known constan.ts corresponding, respectively,
to the resistivity of the fluid in the absence of external ionization and that
in the presence of total ionization..
Upon eliminating variables fl and ’, (1.34) can be rewritten as a set of

second order equations for z and z-
(1.36)

0 lOz 0 lOz 1 0 VB+Ox p O:c Oy p Oy coy p

O Oz 0 Oz’_ 1 O VB.O-x p
Ox + " p

Oy c Ox

The boundary conditions can be established by considering the proper-
ties of the channel walls and by assuming that both components ’, ’of the current density vanish at infinity.
The basic optimum control problem is to choose a control p(x, y) from

the class of piecewise continuous functions of two variables satisfying
inequalities (1.35) such that the functional I (see (1.32)) takes on its
maximum value.
The foregoing examples provide some motivation for the development

of certain analytical approaches to control problems for distributed sys-
tems. Some of these approaches will be discussed in the sequel. Tile dis-
cussions are classified according to their extent of generality and also the
particular forms of the basic equations in the problems. We shall first
cow,sider the case where these equations are of integral type.

2. Optimal control of systems governed by integral equations. Let us
characterize the state of an object by a vector-valued function q Q(P)

(Q(P), Q(P)) defined on some domain D of an m-dimensional
Euclidean space E, where P D. The admissible controls are vector-
valued functions u U(P) (U(P), ..., U,.(P)) defined on D and
taking values in a closed domain E. The control U(P) is related to
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Q(P) by the following equations:

(2.1) IQ(P), f) K(P, S, Q(S), U(S)) dSl O i= 1,...,n,

where (q, y) and K(P, S, q, u) are prescribed vector-valued functions of
the arguments P Era, S Era, q E, u 2r.
The system performance is measured by a specified functional of the

state and control functions. The system is said to be optimal if this func-
tional achieves its extremal value. Without loss of generality, we shall
consider only the minimization problem. Let the functional in question
be of the form:

(2.2) 4)If, F(S, Q(S), U(S)) dSJ,
where 0(y) and F(S, q, u) are specified functions of their arguments.
Now, the optimal control problem can be formulated as follows: Determine
an admissible control function U(P) which minimizes the functional
(2.2) under side conditions (2.1). This problem is discussed in [22]-[24].
The basic result is necessary condition for minimum, which may be
stated in the form of the following maximum principle.
THEOREM 1 (Maximum principle). Let Uo uo(P), P D, Uo ,

represent the control function and qo Qo(P) the corresponding state func-
tion (see (2.1)). In order for the function uo(P) to be optimal, there must exist
a function N(P), P D, satisfying the following integral equation (linear
relative to N P

_o, If, F(S, Qo(S) Uo(S) dSI OF(R’ Qo(R), Uo(R) )
Oq- ’ [Qo(R), f) K(R, S, Qo(S), uo(S))dS1 N(R)

+ fo o: [Qo(P), fo K(P, S, Qo(S), uo(S))dS]
OK(P, R, Qo(R), uo(R)) g(P) dR 0

Oq
such that the function

II(R, u)= _o, If. F(S, Qo(S), uo(S)) dS1 F(R, Qo(R), u)- f, ’ [Qo(P), fo K(P, S, Qo(S), uo(S) dS1
K(P, R, Qo(R), u)N(P) dP
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achieves its maximum with respect to the variable u , at u Uo(R) for
almost all R D. In other words, the following relationship

max II(R, u) n(R, Uo(R)

holds almost everywhere in D.
If Q(P) and U(P) enter into (2.1) linearly, then the condition given

by the maximum principle is not only necessary, but also sufficient for the
optimality of u0(P) and Q0(P).

2.1. Example 1. Consider again the problem of optimal heating as
described in 1 under metal processing. Here, it is assumed that the heat
is supplied at one end of the bar by thermal radiation. For this case, the
boundary conditions for (1.21) have the form

X OQ] ,-- C{[u(t)] [Q(S, t)]4/,
(2.3)

o_Q[ o.
OX ---s

The temperature distribution inside the material is related to that on
its surface through the following relationship"

(2.4) Q(x, t) I g(x, t, r)Q(S, r) dr.
J0

Equation (2.4) together with boundary condition (2.3) leads to a non-
linear integral equation for Q(S, t)"

(2.5)
)’ (x, t, r)I=sQ(S, r) dr C{[u(t)] [Q(S, t)]},

0<t<T.

One may now seek the optimal control function u(t), 0 =< =< T, which
maximizes the functional (1.29) under side conditions (1.25)-(1.28).
Equation (1.30) may be applied to a broad class of distributed systems

with a single control function. We are going to investigate the time-optimal
control problem for this class of systems, namely, that of minimizing time
T at which

(2.6) Q(x, T)= Q*(x) fo
r

K(x, T t)u(t) dr,

where u(t) =< L and Q* is a specified function.

2.2. Application of L-problem of moments. The foregoing problem
can be reduced to a Stieltjes L-problem of moments [24], [25]. Take any
complete orthonormal set of functions (x) (i 1, 2, 0 x =<. S)
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and express Q*(x) and K(x, t) in terms of o(x) for every fixed t. Equation
(2.6) will then be reduced to

f0
T

Let us now assume that the functions gk(t) (/ 1, 2, n; 0 -<_ __< T)
are chosen so that ’--1 Agk(t) (h, k 1, 2, .,., not all zero) can
vanish only at a finite number of points in the interval [0, T]. Also, it is
sufficient to assume that gk(t), k 1, 2, n, are linearly independent
for arbitrary n.
The solution of (2.7) is equivalent to solving the following infinite sys-

tem of integral equations:

(2.8) a, g,( T t)u(t) dt, i 1, ’)....

Now, the optimal control problem can be restated as follows: Determine
the control function u(t), u(t)] <- L, 0 <= <- T, satisfying (2.8) such
that T takes on its minimum value.

It is known that a necessary and sufficient condition for the foregoing
problem to be solvable is that, for any finite T,

(2.9) min y,. (n) 1
(k gT,,- t) dt h,,(T,,)

(,,) k=l L
and

(2.10) k(n)Olk 1o

The optimal control function for this "reduced" problem has the following
form:

(2.1.1) u,(t) L sgn ’ :(")gk(T,- t),

where :k(") (k 1, 2, n) is the solution, of the problem, and the optimal.
time T, can be determined from the equation

1(2.12) h, T,)

Suppose there exists a limiting finction ,(T) lim, ,(T) which is
continuous for 0 <_- T <-_ (this condition does not hold in general), and
),(T) --+ oo as T -- o. Then it is obvious that the equation

1(2.13) h (T) Z
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has a solution T To corresponding to the minimum transition time of
the distributed system (2.6). Since the sequence of functions u,(T)
given by (2.11) satisfy u,(t)

_
L, 0 =< -< To, n 1, 2, -.., there-

fore the existence of the limiting control function u(t) implies the existence
of a solution to the original time-optimal control problem.
In many cases, one may treat the solution to the "reduced" problem

corresponding to some finite n as an approximate solution to the original
time-optimal control problem. To solve the moment problem for finite n,
one may use the following method. Let us start from problem (2.9), (2.10);
determine .o, k 1, 2, n, and T such that

(2.14) mix _, kgk(T t) dt o 1
k g( T t) dt

=1 = L

and

(2.15) i’1 a1 1.
k----1

We introduce the following notations"

(2.16) /r(T) rkg(T t) dr,
k==l

(2.17) (1, ...,
We take an arbitrary vector (0) satisfying (2.15) and construct a
graph of or(0)(T) vs. T. Since pr(0)(T) increases monotonically from zero
to infinity, there exists a To such that pr(0)(To) 1/5. When the argu-
ment T is se equal to To, pr(T0) becomes a function of " only. We find
the minimum of this function over under side condition (2.15). The
problem would have been solved at once if the minimum were achieved
at the first step where " ’(0) However, such a vector is rarely guessed
correctly. Instead, we generally come up with an intermediate vector
() for which

1p()(T0) min p(T0) < L"

For the next step of the iterative process, we take " i*() and find the
value T T: corresponding to the intersection between the graph pr()(T)
and the horizontal line 1/L. Again, we set the argument T of
equal to T and minimize pr(:)(T) over 5, that is, find the value ’(.) such
that

pr()(Tz) rain p.(Tz).
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Repeating the foregoing procedure, we obtain a sequence To, T1,
converging to the optimal time T and a sequence (0), i’a), converging
to the vector o. The optimal control can be found by the formula

u(t) L sgn ’,gk( T t).

In the case where the function p(T) is convex relative to for any fixed
T and condition (2.15) is linear, one may use any standard minimization
method (e.g., gradient or steepest descent methods) to. find the absolute
minimum of p(T). The foregoing iterative process can be performed auto-
matically by using an optimizer for several variables and certain numerical
devices.

Also, the iterative process can be simplified somewhat by restating prob-
lem (2.14)-(2.15) as follows: Determine the vector (, ) which
gives the maximum value of T corresponding to the intersection between
the graph p(T) and the horizontal line l/L, that is,

max T T

under side contion p( T) 1/T.
It is easy to compute the gradient of p(T) from the formula

Op( T) f g( t) sgn __g(- t) dt.

This relationship may be realized on a computer and it is then possible
to perform a descent from any initial point under additional condition
(2.15). In this case, it is possible to avoid the use of an optimizer for
several variables.

Finally, consider the following situations where the condition specified
by (2.6) cannot be ulfilled"

(i) Q(x, T) cannot be made equal to Q*(x) for any T > 0;
(ii) the terminal time T is too small to permit Q(x, T) Q*(x).
In situation (i), the optimal control always satisfies integral equation

( 1.31). In situation (ii), for sufficiently large T (i.e., for T _-> T, where T is
the optimal time forproblem (2.6)), (1.31) becomes meaningless (the argu-
merit of the signum tunction vanishes identically) and we must return to
the solution of problem (2.6).

2.3. Example 2. Now, let us consider the problem of heating. Here, it is
required to choose a control function u(t) (temperature of the heating
medium satisyfying u(t) <_- 1, 0 _-< _-< T) to minimize the mean square
deviation of the material’s temperature from zero,

(2.s) f Q(x, T) dx,
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in the presence of the .following side conditions"

(2.19) OQ O2Q

(2.20)

(2.21)

OQx -Q =o
a[u(t) Q(0, t)], -Q(x, 0) Q0(x) Q0 const.

The solution of (2.19) and (2.20) satisfying boundary condition (2.21)
has the following form:

e---kQ(x, t) Qo _, A cos , x

(2.22)
=t

cos , x.u() d,

where

(2.24)
u(t) sga QoBe

kl

Taking the first infinite sum in (2.22) (with T) as Q*(x) and using
the orthogonality property of {cos tkxl, we can deduce from (1.31) that for
sufficiently small T, the optimal control u(t) satisfies the following integral
equation"

Bk # sm
-t- sin cos

It has been shown in [20] that it is possible to transfer any constant ini-
tial temperature distribution, Qo(x) Q0 eonst. (0 <-_ x <- S), to the

Tozero distribution if T _>_ T, where is the optimal time for transferring
Q0 to the zero distribution. In this case, the optimal control u(t) satisfies
u(t) - 1 for 0 =< _-< T, and has a denumerable infinite number of dis-

continuities which accumulate at the point T. For the case where T < T,
the optima] control obtained from (2.24) has a finite number of discontinu-
ities in the intervM [0, T]. As T -- T, the number of discontinuities of

(2.23) Ake-2 cos px K(x, t).

where ,/c 1, 2, is the sequence of positive roots of tan aS/X
Bi; a is the heat exchange coefficient; X is the thermal conductivity, and

the kernel K(x, t) in (1.30) is given by



45 A. G. BUTKOVSKY, A. I. EGOROV AND K. A. LURIE

u(t) tends to infinity. Also, the numerical solution of (2.24) indicates that
the length of the time interval between any two successive discontinuities
of u(t) is always greater than the total remaining time to go after the sec-
ond discontinuity.

Finally, it can be seen from (2.22) with Q(x, T) =-- O, 0 <= x <= S, tha
due to linear independence of {cos x}, the problem of transferring any
constant initial temperature distribution to the zero distribution can be re-
duced to the following problem of moments: Determine u(t) satisfying
in(t)! <-- lfor0 _<_ -< T, and

1 fo ’ e"u(t) dr, l 1, 2,

such that T takes on its minimum value T.
It follows from (2.9) and (2.10) (with n --, o that we must solve

min f e"’ dt
= L

under side condition

The optinum control for the above problem with finite n has the form

u,(t) L sgn k ’ke".
k----1

Numerical solutions of this problem obtained by a digital computer have
shown that for moderate values of the parameter Bi, and for most practical
purposes, it is sufficient to consider only the moment probIems up to the
4th order (due to rapid convergence of the series). The maximum deviation
of Q(x, T) from zero does not exceed one percent of the initial value Qo.
The methods described above can easily be generalized to the case where

several control variables are present in the system [27].

2.4. Application of L-problem of moments (restrictions on control func-
tions and phase coordinates). Let us now discuss the control problem with
restrictions on both the phase coordinates and the control functions.
Let the distributed system be described by (1.30) along with an additional

equation

P(x, t) F(x, r)u(r) dr,

where F is a prescribed function defined for 0

_
x -< S, 0 =<

_
T,
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The time-optimal control problem with restrictions on control functions
u(t) =< L and phase coordinates iP(x, t) =< L (0 =< x S, 0 =< =< T)

is formulated as follows" Given the function Q*(x), one has to find an ad-
missible control function such that (2.6) is satisfied and

(2.25) P(x, t) f.’ F(x, & =< L, 0<<= T,

where Xl is a point in the interval [0, S] and the terminal time T is minimal.
This problem can also be reduced to an L-problem of moments in a

normed linear space. Let us take n (n =< linearly independent elements
gl, g of some normed linear space E. We wish to find the necessary
and sufficient conditions required for the number al, a, L ’k=l a
> 0, L > 0) to eure the existence of a linear functional l(g) satisfying the
following relatioMps:

(2.26) l(gk) a, lilll --<- L, ] =1, 2, ..-,n.

In [25] it is shown that this problem is equivalent to the following prob-
lem:

Determine

(2.27) min

under the additional condition

(2.28) ak 1.

It can be shown that the problem (2.8), (2.10) discussed earlier is in
fact equivalent to that of (2.26)-(2.28).

Here, the linear functional in question is of the form"

(2.29) l(g) g( T t)u(t) dr, [I/11 max [u(t)[.
[0,T]

The problem (2.25) can be reduced to the L-problem if we define

(2.30) lllll max (u(t), fo F(x, r)u(r) dr)
[0,,1

to be the norm of the linear functional.
The problem is now reduced to minimization of the expression (2.27)

under side condition (2.28).
The explicit form of the solutions will not be as simple as that for the

problem without restrictions on the phase coordinates. It can be shown that
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the corresponding norm tor an element in E is

(2.31)
F(xl, t-- r) db(t) dr

In this case, it is evident that the computational difficulties connected
with the mirimization of (2.27) are increased considerably because one has
to minimize a functional depending not only on a finite number of parame-
ters but also on a function.
Equation (2.31) can easily be generalized to the case where several phase

coordinates of the system are restricted.
Note also that the method of moments may be generalized to include the

case when restrictions (on both the control functions and phase coordinates)
are of more general nature thn those involving only absolute values. For
example, the state or the control vector may be restricted to any convex
domain with a nonempty interior.

9..5. Application of method of moments to oscillating systems. An im-
portant application of the method of moments is connected with optimal
problems for oscillating systems [28], [29].

Consider n oscillating string governed by the wave equation

(2.32) OQ
Ot Ox

with boundary and initial conditions"

(2.33) Q(0, t) u(t), Q(r, t) 0,

(2.34) Q(x, O) Qo(x), Qt(x, O) Q(x).

Let the control function u(t) be restricted by the inequality

L.

It is required to se the sl;ring to rest in minimum possible time T, that is,

Q(x, "1’) o, Qt(x, "1’) O.

In the special case where restriction (2.35) is removed, the optimal re-
gime is obvious from physical considerations, that is, the left end of the
string should oscillate iu such way as if the string were semi-infinite to the
left. The optimal transition time is exactly the time necessary for the initial
disturbances to propagate awuy from the string "to infinity" through its
left end.
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One can see that in general, when restriction (2.35) is present, the optimal
time will differ from that corresponding to the unrestricted control function
by some integral number of cycles with period 2v. It has been shown in
[28] that the optimal coltrol u0(t) for the foregoing problem has the form:

(i) forT 2mA- ,n0,0 e 2,

(2.36) uo(t)
v(n 1)

F( +c[V--U] for t [O,e],

F(t) ] for t [e, 2],

(P)
C2

(p)where c are constts, nd F(t) is a certain function which is ex-
tended to the vhole axis with a period 2 (see [28]);

(ii) for T

no(t) . (t).(2.a7)

The sme problem ws solved by the "method of waves" [30]. The results
do in fact coincide with those obtained earlier, namely,

(i) if T= 2n+ e,n 0,0 e 2,then- Qo(t) + Q() d + for

Qo(t) + Q() d- for (e, 2],

where K0 is a constant ad the function u(t) is extended so that it has
period of 2;

(ii) if T 2, then

1 1(2.39) uo(t) g Qo(t) + Q(r)

Similar problems for two-dimensional wave equations are discussed in
[291 nd [301.

3. Optimal control of systems governed by partial differential equations.
Now we shall proceed to discuss optimization techniques for systems de-
scribed by partial derential equations. First, we shall give an account of
the optimality conditions for certain specc types of equations. The gen-
eral approach will be discussed toward the end of the paper.
There is a considerable amount of work devoted to optimal processes

governed by parabolic equations and systems. The first works pertaining
to such processes are described in [12] and [13]. The problem of existence and
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uniqueness of optimal control is discussed in [20], where the particular
system considered is given by

(3.1) Oy_ Oy
0 < x < 1, 0 < < T,

Ot Ox

(3.2) y(O, x) O, Oy(t, O) O,
Ox

Oy((3.3) alp(t) y(t, 1)], a const. - O,

where the control p(t) is a measurable function such that p(t) =< 1 al-
most everywhere on [0, T]. The optimulity criterion is given by the func-
tional

J.[p] [y(T, x) y0(x)] dx - p(t) dr, eonst. > 0,

where T is fixed, nd the final state of the system is free.
It can be shown that given any adnissible control, the so]utio-t to the

corresponding initiM boundary value problem (3.1)-(3.3) is unique. Here,
by solution we mean that the function y(t, x) stisfies (3.1) inside the
domain Q(0 x 1, 0 T) and initial condition (3.2) i: the classi-
cal sense, and satisfies condition (3.3) in the weak sense, i.e.,

lim + ay(t,l e) ap(t) (t) dt 0

for any function Co (0, T), where

Oy(t,x) <suply(t,)5, sup

Hang taken J[p], > 0, as the optimality criterion, it is possible to es-
tablish the existence and uqueness of the optimal control for uny
y0 L[0, 1]. For the case where 0, the optimal control exists but may
not be unique. The uniqueness depends upon the nture of yo(x).
In [20], no method for the construction of J-optimal control functions

with the aid of certain optimality conditions is given. Instead, a numerical
method based on approximating an arbitrary function by a piecewise con-
stant function is presented. Ts approximation procedure leads to the in-
vestigation of the extremum of a certain function of n variables. The corn
vergence of the procedure is demonstrated. Also, the problem where the
initial condition serves as a control, and Jo plays the role of an optimality
criterion, as well as the time-optimal problem of trafer into a certain
neighborhood of the function u0 in L[0, 1] are considered. Existence the-
orems are tablished but no effective method of solution is presented.
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An alternative approach to the optimal control problem is based upon
ideas due to L. I. Rosonoer [31] who had realized them for the case of one
independent variable.
In [32] a process governed by a quasi-linear equation is discussed. The

equation under consideration has the form"

(3.4) 0
Ot

fo(t, x, v, u) + _, fk(t, x, v, u)
Ov

k=l OXk

with flfitial condition

(3.5) (0, ) 0(x)

and a boundary condition of the first kind"

(3.6) v(t, x) v(t, x),

where x (x, x) belongs to a domain D bounded by a surface S
composed of two parts S and S and u is an m-dimensional control vec-
tor. The admissible controls u u(t, x) are assumed to be piecewise con-
tinuous and satisfy the constraints"

(u) 0, 1 1, ..., r m.

It is assumed that the solution corresponding to any adssible control
is uque. The optimality criterion for the foregoing system may take on one
of the follong forms"

J (t, :, v, u) + (t, x, v, u) ov
dx

30(x, v(T, z), u()) Z:,

where the upper limit T is fixed.
A necessary condition for Jl-optimality of the control function u(t, x)

is that the inequality

( o,
H t, x, v, Ox

holds for almost all [0, T] and x D, where p(x, t) is determined from
the equation
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with boundary conditions:

= ov,-- cos (n, x) 0,

where $2 A- S S, H -q -4- pf, and n is the outer normal to
When (3.4) is linear and

o(t, x)v + ,(t, x) ov

the foregoing condition is also sufficient.
Similar results can be established for the J2-optimal problem.

3.1. ]Parabolic systems. The optimal control problems for parabolic
systems of the second order are discussed in [33]-[35]. The exact statement
of the problem is as follows"

Let D be a region in an n-dimensional Euclidean space, bounded by a
class A surface (see [36]). Let L (L, L) be an elliptic operator
of the form:

02Y i 1, m,L: a ",

where the coefficients "ash(t, x), for any [0, T], belong to class C relative
to the variable x (x, ...,x) D F. LetM (M, ..., M)
denote the adjoint opera,tot corresponding to L"

( ]1;z)

l Oa;
i= 1,. m.

It can be easily verified that the following relationship is valid:

(z Li y yi M z) dx

Y Ox]
-f- l) y z X(x)

where X(x) denotes the direction cosines of the outer normal to the sur-
face F. Following a procedure described in [36], it is possible to rewrite the
above expression as

(zLy-- yiMz) dx
i=l fr "f. (z P y y Q z) dz,
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where

P y _, az -{- b y

(3.7)
Qz a;’ dz

In (3.7), the directions l, are chosen arbitrarily except that cos (n, l)
> 0 (n is the outer normal to F) nd the direction cosines belong to class
C on F. The rections are chosen in accordance with those of l.
We shall consider a control process which is governed by the following

system of parabolic equations"

OyL, y .L y f(t, x, y, y, u),
(3.8) Ot

0 T, x D,

where the re continuous in and hve continuous deriwtives with re-
spect to y, ..., y, Oy/Ox, ..., Oy/Ox. Moreover, the f stisfy a
Lipsct condition in u. The sme conditions re imposed on Of/Oy nd
Of/Oy. It is ssumed that the control u tkes on wlues in bounded (open
or closed) region U of p-dimensional Euclidean spce.
Let us ssume further that the solution y(t, x) (y, y) of (3.8)

stisfies the initi,l condition

(3.9) (o, x) a(x), D,
where a(x) is a co-tinuous vector-valued function.
The boundary conditions re chosen, in one of the following forms"

(3.0) y(t,x) (t,x), r, O T, i= !, m,

or

(3.11) P(t, x)y .(t, x, y, v), F, O T, i= 1, m,

where the operators P re defined by (3.8) ia which the functions ’a (t, x),
b(t, x) re continuously erentible, and stisfy the sme coations s
those imposed upon f in (3.9). The prmeter v tkes on values in some
bounded (open or closed) domain V of q-dimensional Euclidean space.
In wht follows, we shll spek bout the first or the second boundary

wlue problem depending on whether the boundary conditions hve been
chosen in the form (3.10) or (3.11). In the first boundary vlue problem,
the dss]ble control functions u(t, x) re piecewise continuous nd tke
on values in V. Also, the form of certi, compomnts of the vector u(t, x)
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may be specified. In particular, they may depend either on only or on x
only. The surfaces of discontiluities are assumed to be smooth and each of
them is either orthogonal to the t-axis or is such that in the neighborhood of
any point on the surface we can introduce a nondegenerate coordinate trans-
formation r t, $(t, x), u 1, n, such that the surface becomes
a portion of the plane 0.
In the second boundary value problem, the admissible controls will be

represented by (t, x) (u(t, x), v(t, x) ), where the u(t, x) satisfy the
above stated conditions, and the v(t, x) are of the sme type as u(t, x),
except that their values belong to some domain V. In each of these problems,
it is assumed that the solution corresponding to each admissible control
exists and is unique.
For the first and second boundary vlue problems, the respective criteMa

of optimality are as follows". a,(x)y( T, x) dx

+ (t, x)y(t, x) dx dt+ (t, x)P(t, x)y dz dt

$ a(x)y( T, x) dx

(, x)y,(, ) d ,(, )y, d d

where , J, , re presoribed oontinuous funotios. The fil sf,te of the
system t tie 7’ stiss th following oonditions"

@:(T,x, y(m,)) O, , "",7,
(.2)

where the C re given constants ndj W k m; the function is ssumed
to be independen of y. i the second boundary vlue problem. The final
time T is not specified in general.
We shll sy that dssible oontrol u(l, )[(f, )], 0 ,
{ D, in the rst [seoond] boundary wlue problem transfers the system

from state (3.9) into se dened by (3.12) if th orrespondint solution
iJtitin fro s:te (3,0) t the ti 0 stises (,l) the tie

In the sequel, two types of optil control problems 11 be considered,
nmely,

(i) the final state stisfies (3.12) nd the ternl T is not necessaJly
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fixed [33], [34];
(ii) the terminal time T is fixed and the final state of the system is free

[35].
To formulate the optimality conditions for the above problems, we intro-

duce the functions H and h defined by

H(t, x, w, u) zifi(t, x, y, y u),

h(t, x, p, v) z,i(t, x, y, v),

where

Let y(t, x) be the solution corresponding to the first [second] boundary
value problem with an admissible control u(t, x) [(t, x)]. We introduce
the functions zi(t, x) defined by the partial differential equations

Mitz OH(t, x, w, u)
(3.13)

+ d (OH(t, x, w,u))-t-,(t,x)= - Oyi

0 <= <=. T, x C: D, i= 1,...,m,

with "i. i t,id" (;ondi

koA/’ z D,

where M(z) 0/0 + Mz, g Og/Oz The eonsangs N and fune-
gions are as ye undeerned. For he firs boundary value problem, he
boundary eondigions for (.1) are chosen as

(a.l) z(, z) (, z), z r, i 1, ..., m,

where he 7 are defined in g.
For he second boundary value problem, he boundary conditions for

(a.la) are chosen as

(3.16) Oy =
x F, i= 1,...,m,
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where the Q are operators defined in (3.7); the Xk(x) represent the direc-
tion cosines of the outer normal to F, and the / are defined in $2
Both boundary value problems (3.13)-(3.16) associated with z(t, x) are

linear and satisfy the same general conditions as those in (3.8)-(3.11).
One can therefore conclude that if the functions a,(x) and constants b are
specified, then the function z(t, x) corresponding to each adssible con-
trol is unique.
Let u(t, x) [(t, x)] be an admissible control for the first [second] bound-

ary problem (3.8)-(3.10) which transfers the system rom state (3.9) to the
set defined by (3.12). Let y(t, x), z(t, x) denote the corresponding solutions
of the first or second boundary value problem (3.8)-(3.11) and (3.13)-
(3.16). We introduce the iunctionals

fJ[u]
J0

H(t, x, w(t, x), u) dx dt,

J[v] h(t, x, p(t, x), v) de dt,

defined for dssible controls u(t, x), v(t, x).
We shll sy that n dmissible control (t, x) of the second boundary

vlue problem (3.8)-(3.11), which transfers the system from state (3.9)
to the set defined by (3.12), stisfies the condition of mximum if, for ny
other (u, v) (]so cpble of transferring the system from state (3.9)
to the set defined by (3.12)), the inequalities

(g.17) ,l [lI(g, x, (, z), u) 1t(, z, (, x), )1 dz dg N 0,

are sagisfied, where r min T, T} and [0, .T] is gle gime inerva,1 on which
is defined.
In a similar way, we can define he condition of maximum for he firs

boundary value problem. If we do no impose any resrieions on he form
of dependency of ghe control functions on he rgumen.s z and , hen in-
equaligies (.17), (.18) are equivaleng o ghe following eondigions"

H(, z, w(, z), (, )) (( )) Sup g(, z, (, z), ), z D, 0 T,

h(,z,p(,z),v(,)) (=) suph(,z,p(,),v), z r, 0 N T,

where ghe symbol denoges equaligy valid everywhere in he domain
(0 N N T, D) excepting possibly points lying on a fiNe number of
-dimension.al surfaees, whose (n - 1)-dimensional volume is equal o
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zero. The symbol (=) is defined analogously except that we taken n 1
and F instead of n and D respectively.
The necessary conditions for optimal control are given by the following

theorem (its proof requires the use of a rather stringent condition, namely,
the completeness of the class of admissible controls [35]).
THEOREM 2. In order that an admissible control u(t, x) Ion(t, x) (u(t, x),

v(t, x) )] of the first [second] boundary value problem, defined on the domain
(0 <= <- T, x D) and transferring the system from state (3.9) to the set
defined by (3.12), be optimal relative to the functional 1[$2], it is necessary that
there exist functions zi(t, x), as(x) and constants b such that"

(i) the functions y(t, x), z(t, x), u(t, x) [o(t, x)], Q(x) and constants b
form a solution of (3.9) and (3.13) with additional conditions (3.9)-(3.12)
and (3.14)-(3.16);

(ii) the control u (t, x) [o t, x) (u (t, x), v (t, x) satisfies the maximum
condition relative to z(t, x)"

(iii) the condition

dSid___( - f,) I.=1 a, (x) d( T, x, y( T, X)

dC,(T,x, y(T,x), ye,(.’,x)) 1 dx 0+
=1 dT

is ,vatisfied at the terminal time instant T, where i 1 for the first boundary
value problem and i 2 for the second boundary value problem.

For problems of the second type, where the termiuM time T is fixed and
the terminal state is free, the optima,lity conditions can be deduced from
Theorem 2. For this case, we set b O, as(x) 0 (a 1, j, 1,

k) in (3.14), and delete condition (iii) from Theorem 2. The require-
ncnt of completeness of the class of admissible controls can also be deleted.
It turns out that when the control functions enter additively into the system
equations and the boundary value problem is linear, the foregoing op-
timality conditions are not only necessary but also sufficient [33], [34].
Also, in this case, it is possible to derive an explicit expression for the in-
crement of the functional. This fact may be used to solve certain linear
problems in the theory of invariance.

In many physical situations, the automatic control systems contain both
distributed and lumped distributed parameter elements. Optimality condi-
tions for these kinds of system are obtained in [39], [51].

In [40] solutions are obtained for the problem of analytical design of
regulators, when the process is describable by

(3.19) Oy f(x, y, y, yz, u), i 1, ..., m,
Ot

where x (x,, x,) is a point in a domain D andf(x, O, O, O, O) O.
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It is assumed that for a given set of initial and boundary conditions and for
any admissible control, there exists a unique solution y(t, x). In particular,
the trivial (unperturbed) solution y 0 corresponds to the solution with
control function u 0.
The optimality criterion is given by the functional

P

Jo wdt,

w L L i(x, )y(x, t)y(, t)d dx + L (x)u dx.

Also, we introduce a n.onncgativc function p(y) (p(0) 0) which serves as
a measure of disturbance and, at the same time, characterizes the stability
of the process. For the system under consideration, we may take p to be

= = k/
dx.

The bsic result of the pper cn be summarized by the following the-
orem.
THEOREM 3. If there exist a continuous positive defini functional v(y)

and a control function u (y) such that the derivative dv/dt, calculated in
accordance with differential equations (3.19), satisfies

)=,o k
+w

where the functional w is positive definite relative to the measure p for u u,
then the unperturbed motion y 0 is asymptotically stable relative to the meav-
ure p and the functional is minimal.
With the aid of this theorem, the author obtains the solution-of the syn-

thesis problem for the linear equation (3.19). Analogous results are obtained
for distributed systems with stochastic parameters [41]. Other problems
related to the optimal control of stochastic distributed systems are scussed
in [42], [46].

In [47]-[50] the optimal control problem is formulated in the framework
of functional analysis. In [48], for example, the process described by the
Cauchy problem

dx F(t, , u), X(to) o,
dt

is considered, where x is n element of a Banach space B, u belongs to a cer-
tain subset U of a topological space and F represents a certain (generally
unbounded) operator from B X V into B. The derivative is defined in the
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sense of convergence in norm. The admissible controls are summable func-
tions taking on values in U.
The optimality criterion is a functional of the form

f(,, ) .
In [49], opgimality conditions are obgained in the form of Ponryagin’s

maximum principle. However, this result is valid only if one performs he
variation of control in ghe narrow srips orhogonal o he -axis, and not in
regions of arbigrary shape. In other words, the ’optimal" control in this
theory is being compared not wigh all he admissible eongrols. In what fol-
lows, we shall present a generalization of Ponryagin’s maximum principle
for disgribuged systems [51]. Also, we shall poin out certain features which
are found only in optimal control problems associated wih distributed
systems.

8.2. General variational aplroach. In what follows, we shall call ’dis-
tributed controls" ghe control functions entering into the basic differential
equations, and ’boundary controls" ghose entering ingo the initial and/or
boundary conditions. One can of course conceive situations where boh
distributed and boundary controls are present.

In many eases, he control functions are subjected to certain restrictions;
let these restrictions be of the form

(3.20) G(u; x, y) O,

where u(x, y) represents a p-dimensional distributed control vector, x and
y are independent variables (for simplicity, only the two-dimensional case
will be discussed here). Similarly, the restrictions for boundary controls
can be represented by

(3.21) g(v; t)

_
O,

where v(t) is the boundary control and denotes a parameter along the
boundary curve. The functions G and g are assumed to be differentiable.
A typical formulation of the control problem is as follows [51]. Let S

denote a closed domain in the (x, y)-plane with piecewise continuous bound-
aries Z1, 2.. Let us consider the following system of partial differential
equations defined on S"

z X(z, , u; x, y) O,

(3.22) H z Y(z, , u; x, y) O,

OX OY O, i 1, 2, ..., n.
Oy Ox
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The latter equations contain total derivatives over all arguments in-
cluded, not only over x and y entering explicitly. Let z (z1, ..., z),
f (.1, .), u (u1, u), where z, fi and uk are functions of x
and y, and u corresponds to a distributed control. The ordered pair (z, ’)
will be called the state of the system.
The equations i (3.22) represent a standard form for any system of par-

tial differential equations (a special form of the Pfaffin system [52, pp.
323-324]). In other words, any system can be reduced to the form (3.22)
(with an increase in the number of dependent variables if necessary). For
example, the Helmholtz equation

z + z + uz 0

is equivalent to the system

Zx Z Zy Z Zx UZ Zy 1 Zx 1 Zya
The wave equation

(kzz ) 0

is equivalent to the system

z =-/k, z =, z =, z
The form (3.22) is more general than that represented by a single partial

differential equation of higher order. For example, the system

z =, z -t-u, z =, z=
is equivalent to equations

AZ
(gU

hz 0___U
Oy’

only if u is differentiable. Note that the latter pair of equations contain
derivatives of the control but not the cotrol itself. The op,imum control
problems for higher order equations depending on controls (but not on
their derivatives) are examined in [17] and [39].
Now, let us introduce the constraints associated with the control func-

tions in (3.22). The first r of these constraints ca be expressed by equali.-
ties

(3.23) G(u;x, y) O, 1 1, r

and the remaining r rl corstraints are given by inequalities

(3.24) G(u; x, y) O, lc r -31-- l, ’’’, r <= p.

Suppose that the values of the first, nx (n _-< n) funcl;ions z on 2 tre
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known, where 21 is assumed to be given, i.e.,

z i ...,
The number nl is determined by the conditions of the giveu problem.
The outer curve Z is not known, a priori. It is assumed that there are

n (n. =< n) ordinary differential equations of the form

dzi(3.26) 0 =--- d- T:(z, v, t) O, i il, ..., i,
defined along
These equations include a set of functions (boundary controls)

v v(t), 1,...,

depending on the parameter t.
The values of zk at 0 are assumed to be known. Also, the boundary

controls satisfy a set of constraints expressed by equalities

(3.27) gk(v; t) O, k 1, ..., p,
and inequalities

(3.28) gk(v; t) >= O, ] pl -t- 1,..., p <= r.

The total number of these constraints is equal to p ___< r. It is essential
that the solutions to (3.22), (3.25), (3.26) under constraints (3.23), (3.24),
(3.27), (3.28) exist. This requirement is satisfied if the physical problem
is properly formulated. Note that there is a basic difference between the
nature of the and u variables in (3.22), namely, the control variable u
can be directly manipulated externally, whereas the variable " can be
dpulated only indirectly through the system. Generally, the solutions to
(3.22), (3.25), (3.26) may not exist for arbitrary u and defined on S. It
is possible that the solutions corresponding to some u exist but they are
mt unique. In the subsequent discussions, we shall not consider such cases.
Now, the M.ayer-Bolza problem can be formulated as follows [51]: In

suitable class of functions, determine the controls u, v and their correspond-
ing solutions z and such that the functional

ff F(z, , u; x, y)dx dy + .]-1J=
(3.29)

fl(z; t) dt

f(z, v; t) dt

takes on its minimum value under side couditions (3.22)-(3.28). The func-
tions X, Y, F, ft, f are assumed to be differentiable with respect to all
their arguments.
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In what follows, we shall clarify what we mean by a "suitable class" of
functions, since this point is crucial for the existence of solutions to the
optimal control problem.
To proceed further, it is necessary to define the class of admissible con-

trols and to investigate the possible behavior of the state variables. The
"distributed controls" are assumed to belong to a certain subset of the class
of all piecewise continuous functions of two independent variables. Also, the
discontinuities of distributed controls, if they exist, lie along smooth closed
isolated curves. In the following discussions, we shall assume, for simplicity,
that there is only one such discontinuity along a curve 2;o whose points lie
inside S; moreover, this curve can be continuously deformed into any one
of the boundary curves 21 and
The state variables z are assumed to be continuous across the curve

The variables are in general discontinuous but their values on both sides
of 20 are related by the requirement that the tangential derivatives
along 2:0 should be continuous, namely,

(3.30) [Xix, + Yiyt]_+= O, i 1,..., n.

Also, the boundary controls v are assumed to be members of a certain
subset of the class of all piecewise continuous functions of t. For simplicity,
it is assumed that there is only one point t, of such discontinuity. This point
corresponds to a corner point of the curve 22 and z is continuous at that
point. The latter assumption is necessary for discontinuity of dz/dt across
t,, because otherwise we would have permitted some line of discontinuity
of Oz/Ox, Oz/Oy, starting from on the boundary 2. and penetrating inside
S. Such a line of discontinuity may be connected only with the jump of
distributed control u across it. But we have already ruled out this possi-
bility earlier by assuming that there is no such line intersecting the bound-
aries

First, we shall transform inequality constraints (3.24) and (3.28) to
equality constraints.

This can be accomplished by introducing (real) artificial control (slack)
variables u (u+1, u,), v, (v+, v,") such that

(3.31) G* G(u; x, y) (u,) O, l r_, + 1, ..., r,

(3.32) g* g(v; t) (v,) O, l p -t- 1, p.

Now, inequalities (3.24) and (3.28) can be replaced by the above equalities.
Thus, we have transformed the problem involving variations of controls
in a closed region to one with variations of controls in an. open region, but
with an increased number of control variables.

Except, perhaps, some hyperbolic problems (see, for example, [61]).
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The equations (3.22) and restrictions (3.23) and (3.31) are taken into
consideration by introducing Lagrange multipliers:

$i(x, y), y(x, y), i 1, ..., n;
* l=rl-t- 1, r.Fk(x, y), l 1, rl Fk (x, y),

In order to present the necessary conditions for stationarity, we iatroduce
the "Hamiltonians""

(3.33) H(z, , u ,u.) X -t- vY F rG r’G*,
(3.34) h(z, v, v.) OT f2 "rg g,

where 0,-, denote the Lagrange multipliers corrcsponding to (3.26),
(3.27), (3.32), respectivcly.
Now, the Eulcr equations can be written as follows"

(3.35) O__j + Ov._A _OII
Ox Oy Oz

(3.36) OH
O,

OH
Ou

O,
(3.37)

OH

The nturl boundary conditions alolg the boundary 2;1 are

Oz

and the corresponding conditions
E2 (i 0, (i /); it= 1) are

long the (unknown) boundary

(3.39) 8 --dO + Oz
yt + Vi xt O, i= 1,...,n,

Oh Oh
(3.40) Ov

O, 1, r, Ov.
2/*v, O,

p+ 1, "",p,

F+ f+ of O,,- =
where p denotes the radius of curvature, and n the outer normal to 2:.
The Weierstrass-Erdmann conditions along the curve 2:0 of discontinuity
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of the distributed controls are

(iYt yiXt)-+ O, i 1, "", n,
(3.41)

(H)-+ z_($)_+ + z_(V)_+
(to sum up over i), and the corresponding conditions at the point t, of
discontinuity of boundary controls on the boundary 2 are (in the second
equation, to sum up over i)

t,
(3.42)

Oil(t,) grad z-(t,) O+0(t,) grd z+(t,), i i, i,.

The necessary conditions for stationarity are supplemented by Weier-
stress’ necessary conditions or a strong relative minimum. The latter are
given by the following inequalities involving the Hmiltonians"

(3.43) H(z, Z, U, U,) <= H(z, , u, u,),

(3.44) h(z, V, V) <= h(z, V, V,).

In the above expressions z, f, u, v denote the optimum values of corre-
sponding variables, and Z, U, V denote any set of admissible functions.
It is evident that the artificial variables are absent from (3.43) and (3.44).
Also, the admissible va,lues of Z corresponding to " variables enter into
(a.4a).
The totality of formulas (3.33)-(3.4,1) forms the analogue of Pontrya-

gin’s maximum principle for our problem.
Here, we notice a considerable difference between optimal control 1)rob-

lems for partia,1 differential equations and those for their ordinary differen-
tial equation analogues. As a matter of fact,, it reveals the fact that the in-
crement of the functional (about its optima,1 value) due to the variation of
control inside some small domain generally depends not only on the value
of the variation itself and the domain area, but also on the limiting form of
the domain of variation (the limit is being taken when the area tends to
zero).
To illustrate this point, consider the following example where the system

equation is given by

0 Oz 0 Oz
oz u +

This equa,tion describes the potential distribution in a medium with di-
electric permea,bility u(x, y), induced by sources whose density is q(x, y).
Some functional of boundary values of z (or Oz/On) is minimized under
definite boundary conditions.
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Let q(x, y) play the role of distributed control and let u(x, y) be continu-
ously differentiable. It is obvious that the increment of the functional due
to the variation of q(x, y) is completely determined by that of the total
charge in the domain of variation provided that the area of this domain is
sufficiently small. The charge is a scalar, and its increment depends only
on that of the density q(x, y) and on the area of the domain of variation
and does not depend on its limiting form. One can see that under these con-
ditions, the variables disappear rom the expression for the Hamiltonian
(corresponding terms vanish in accordance with the Euler equations). The
situation changes substantially if we choose the dielectric permeability
u(x, y) as the control function. The increment of the functional is now deter-
mined by the dipole moment of polarization charges disposed along the
boundaries of the domain of variation (with sufficiently small area). The
dipole moment is a vector, which depends essentially on the orientation or
the form of boundaries of the domain of variation. Performing the compari-
son, one should take all possible directions of the dipole moment into ac-
count. This can be achieved provided the variation is accomplished inside
narrow strip (whose width tends to zero), and this strip is inclined under

different possible angles with respect to certain fixed directions iu the (x, y)-
plane. The expression for the Weierstrass .function (coinciding wih the
difference of Hamiltonians entering (3.43)) essentially depends on the ad-
missible values Z of the ariable. There is, however, a natural way of
elimination" we use the conditio that z should be continuous across the
boundary of the domain of variation. The same must be true for their
tangential derivatives; this leads to the relatiotship

X(z, Z, U; x, y)x -[- Y(z, Z, U; x, y)y
(,.5)

X(z, , u; x, y)x + Y(z, , u; x, y)y.

We denote the direction cosines of the tangent to the boundary of the
domain of variation (this boundary is assumed to be smooth) by x and
y (x - y I). The values of these cosines may be arbitrary if no addi-
tional restrictions are imposed.
Equation (3.45) allows us to express the Z variable in terms of ., u, U,

x(yt). The resulting expression is inserted into the Weierstrass codition,
which can be carried out for arbitrary values of x(yt) or arbitrary inclina-
tions of the strip of variation.
The variation of controls performed in a strip cannot, of course, be con-

sidered as the only way of variation. It turns out, however, that the strong-
est conditions of optimality are obtained from this choice of variation. When
the control are wtried, say, in some elliptic regions tending to their center
with some fixed ecce.tricity, the resulting optiaality conditions will be
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weaker. The weakest conditions correspond to the case with zero eccentric-
ity (variation inside a circle, with no dependence on inclination). On the
other hand, the strongest conditions correspond to the case with unit ec-
centricity (limiting case of a strip with maximum dependence on inclina-
tion).
In [51] a detailed account of the optimality conditions can be found.
In [18], [19] the foregoing theory is applied to the problem of optimal dis-

tribution of conductivity of the working fluid in the channel of a magneto-
hydrodynamical generator. In this problem, the effect of "anisotropy" just
discussed is of great importance, because it leads to the strongest optimality
criteria.

It may be added that this effect manifests itself only insofar as one dels
with a strong extremum. The conditions for a weak cxtremum do not de-
pend on the form of the domain of variation, and are of the same form as if
the region of variation were circular (it seems reasonable that this is true
for a wide class of control problems). This point together with the Weier-
strass-Erdmann conditions shows that the basic differeme between the
solutions which give a strong or weak extremum manifests itself in the struc-
ture of the lines of discontinuity. For a weak extremum, these lines are well-
behaved, and they acquire very oscillatory shape for a strong extremum.

In conclusion, mention should be made about approximate solutions to
optimal control problems. One can indicate two approaches for obtaining
such solutions. The first one is that in which optimal control is found ap-
proximately using certain conditi.ons of optimality. A more common
proach bvolves implifying the bsic eqution.s nd ddiionl condition
from the very beginnirg. Then condition of optimtflity rc formulatedfor
the simplified problem, and the correspodin.g optima! control is treated
as an approximation to the exact one [24], [53]-[58]. In [53], for example, the
minimum is found among admissible controls which are constant over the
rectangles whose sides are parallel to the coordinate axes. A search of op-
timal division of the fundamental region ito such rectangles is then per-
formed. The search procedure is reduced to calculating the increment of the
functional by means of variation of controls in strips parallel to the coordi-
nate axes. These directions are by no means special (that is, they may be
entirely unconnected with the internal peculiarities of a problem). It may
turn out that the approximate control obtained by this approach will not
be really approximate for a strong minimum. In [18] and [19], for example,
the characteristic directions at any point re those of the electric field lines
and the vector lines corresponding to the Lagrange multipliers. A certain
condition imposed upon the tngle between these directions provides the
minimization crieriozz for arbitrary orictttions of srip of writiom As
long as we are going to obtain conditions for a strong minimum, we should
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not llow the possibility for aa increment of the fuactioil to change is
sign. This possibility is however not excluded a priori, if the vriation is
always performed ia strips prallel to the coordinate axes ( similar remark
can be made about [20]). There is, of course, a wriety ot problems where the
foregoing difficulty does not arise, namely, linear problems (with control
functions entering additively) nd other problems free from the influence of
"anisotropy of variation".

Practical realization of distributed control systems is difficult, ad this is
why attempts re mde to optimize not with the use of "ideal" cotrollers,
but on the basis of most rational gthering of information bout the process
[59], [60]. This approach leds to some new mathematical problems which
re beyond the scope of this pper.
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COMPLETELY CONTROLLABLE BILINEAR SYSTEMS*
R. E. RINK AND R. I. MOHLERf

Abstract. Sufficient conditions for complete controllability of systems that are
bilinear in state and control are established by geometrical arguments. It is seen that
bilinear systems generally are more controllable than systems that are jointly linear
in control and state. Bilinear control frequently occurs quite naturally, but in other
cases it can be implemented to improve controllability of a linear system by varying
plant paraneters.

1. Introduction. A physical process is considered to be bilinear if it has
a mathematical model which is linear in the state variables and in the
control variables, but not jointly linear in both; that is, products of state
and control variables appear in the system equations.
Many physical processes have natural models which are bilinear. Per-

haps the best known is the model for the neutron kinetics of a nuclear
reactor [1, p. 1.6]. The control variable is the multiplication constant of the
reactor, and this appears in the neutron-kinetic equations as a parameter
which multiplies the neutron density. The same phenomenon occurs in
problems of biological population. Also, numerous physiological processes
can be described by bilinear models [2]. Iu other cases, it m,’-y be possible to
implement a bilinear mode of control.
The general time-invariant bilinear system with n state variables and m

control variables is written compactly as the vector equa,tion"

(1) (A - uB)x + Cu,
k=l

where A is the n X n matrix of real constants a, C is the n m matrix
of the real constants c, andB is the n X n matrix of the real constants b.
for fixed k.

It is assumed that the state vector x is unconstrained and that the class
of allowable control policies {u(t)} is the class of all piecewise continuous
vector time functions with domain [0, and range , where is a com-
pact, connected set containing the origin in R".
Before proceeding with the controllability analysis of bilinear systems,

several necessary terms are recalled. First a dynamical system is said to be
completely controllable if it can be transferred from any initial state x R
to any prescribed terminal state x R by some admissible control u(t).

* Received by the editors April 28, 1967, and in revised form January 29, 1968.
Department of Electrical Engineering, University of New Mexico, Albuquerque,

New Mexico 87106. This work was supported by the National Science Foundation
under Grant GK-1173.
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The reachable zone from an initial state x, R(x) R", is the set of all
states to which the system can be transferred in finite time, starting at x.
Similarly, the incident zone to a terminal state x1, I(x) R’, is the set of
all initial states from which x is reachable in finite time.
The necessary and sufficient conditions for a linear system to be com-

pletely controllable are well known [3]. These conditions, however, only
apply when the control variables are unconstrained. In fact, linear systems
are almost never completely controllable when the control vector is con-
strained to a compact set. (An exception is the second order harmonic
oscillator, for which any state can be achieved with a sufficiently large
number of control changes.)
Turning now to bilinear systems, this fundamental difficulty disappears.

For each fixed u , the bilinear system is a constant-parameter linear
system with system matrix A -b

_
ukB. The terms ukB in the

system matrix permit manipulation of the eigenwlues of the fixed-control
system. With an appropriate controller it is often possible to shift these
eigenvalues from the left hlf complex plane to the right half plane.

2. Complete controllability. The controllability analysis presented here
can be summarized by the following sufficient conditions.
Mx RESCLT. The bilinear system (1) is completely controllable if"
C1. There exist control values u+ and u-, such that the real parts of the

eigenvalues of the system matrix are positive and negative, respectively,
and such that equilibrium states x(u+), x(u-) are contained in a con-
nected component of the equilibrium set;

C2. For each x in the equilibrium set with an equilibrium control,
u+(x) such that f(x, u+(x)) O, there exists a v R such that g lies
in no invariant subspace of dimension <= n 1 of the matrix E, where

(2) E A +
and

g Cv- v[B(A + uB)-Cu].

Remarlc 1 For phase-variable systems, x x, x, x, x x(-)

condition C2 is always satisfied if C is a nonzero matrix.
Remart 2. Condition C1 is satisfied if all the eigenvalues of the system

matrix A + =1uB can be shifted across the imaginary axis of the com-
plex plane without pssing through zero, as u rnges continuously over a
subset of .

It is the objective of this section to substantiate these statements. First
suppose there exists a fixed control value u- in the interior of ft such that the
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eigenvalues of the system matrix A -4- _k=l uk-Bk all have negative real
parts. Then the trajectories of the system with constant control u u-
cover all of R, and each trajectory approaches the unique equilibrium
state

(4) xe(u-) -(A + ltk-B)-iCu-.
For any initial state x R, the unique trajectory passing through x with
control u- reaches any neighborhood of xe(u-) in finite time.

Suppose, also, that there exists a fixed control value u+ in the interior of
t such that the eigenvalues of the matrix A -t- =u1+B all have positive
real parts. Then the trajectories of the system with constant control u u+

cover all of Rn, and each trajectory corresponds to motion away from the
unique equilibrium state

(5) x(u+) -(A + u,+B)-Cu+.

For any terminal state x, the unique trajectory passing through x with
control u+ reaches x from any neighborhood of xe(u+) in finite time.

If u- and u+ both exist, and if every point of some neighborhood of
x(u+) can be reached from every point of some neighborhood of x(u-),
then certainly any terminal state x can be reached from any initial state
x, and the system is completely controllable. Such equilibrium sets and
their connectedness are described in the Appendix for biliuear systems. Then
the controllability analysis can be completed by means of a local controlla-
bility theorem due to Lee and Markus [4], which provides sufficient con-
ditions for local controllability of a system in a neighborhood of its equi-
librium set.
THEOREM. Consider

f(x, u),

where f(x, u) C in R . If, for x R’, there exists an equilibrium
control value u(x) in the interior of such that (i) f(x, u(x) O, and
(ii) there exists a v R such that Dv lies in no invariant subspace of E of
dimension <= (n 1), where

D Of (x,u(x)) and E Of (x,u(x))o-
are real matrices, then R (x) and I(x) are open connected subsets of R.

If the equilibrium set is a connected proper subset of R and condition
(ii) above is satisfied for every interior u , then the reachable zone from
any equilibrium state x corresponding to an interior control value ue(x)
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includes every other equilibrium state corresponding to an interior control
value in t. For, if R(x) has an equilibrium state y on its boundary, then
I(y) must be disjoint from R (x). But, by the Lee-Markus theorem, I(y)
is an open neighborhood of y if ue(y) is in the interior of . Hence, ue(y)
must be on the boundary of
For the general bilinear system, the matrix D is

(6) D Of (x, ue(x)) [BlxiBx B,nx] -b C,=-
and E is defined by (2). Substitution of the expression for the equilibrium
state (see (A1) in the Appendix) into (2) yields the Lee-Markus theorem
for a bilinear system: The system (1) is locally controllable at the equilibrium
state corresponding to an interior u if there exists a v R such that

+ + Cv
=I k--1

lies in no invariant subspace of dimension <-_ n 1 of the matrix E.
The practical implications of using this criterion for a general bilinear

system appear quite formidable. However, it will now be shown that the
application to systems of the phase-variable type is straightforward, and
in fact such systems always satisfy the criterion when C 0.
The matrix D for the phase-variable system is obtained by substituting

the equilibrium-state expression (see (A6)) into (6). Hence,

0 0 0=_cu 0 0(7) D -k C.
a+’ub b b

The matrix E is simply of the canonical phase-variable form.
The criterion to be satisfied is that a v R is to be found such that the

vectors Dr, EDv, E(’-)Dv are linearly independent. By inspection of
(7), if D is not identically zero it has nonzero entries only in the bottom
row, and there exists a v such that Dv has the nth component nonzero and
all others zero, EDv has the (n 2)th component nonzero, etc. Such a set
is certainly linearly independent.

There remains the question of whether D is identically zero. By inspection
of (7), if C 0 then D 0 and the criterion is not satisfied. Suppose
C 0, and for the particular value of u under consideration,1cu O.
Then D C and the criterion is satisfied. Finally, if= cu O, select
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v u, and then

Dv Du

a + ub

This is not identically zero, since A nonsingular implies a 0. Therefore
the Lee-Markus criterion is always stisfied if C is not identically zero for
phase-variable systems.
As observed in the Appenx for phase-variable systems, condition C1 of

the main result my be stisfied even if one or more eigenvlues pass
through zero. On the other hand, this condition cannot be sutisfied with
scalar control (m 1) in a state-space of odd dimension n. For then an odd
number of eigenwlues must be shifted across the imginury axis, and t
least one of these must pass through zero, since at most (n 1)/2
cross as complex-conjugate paim. In the Appendix it is shown that for
m 1, however, the branches of he equilibrium curve are disjoint.

3. Examples.
3.1. Example 1. It is immediately obvious th the second order system

x-xTu
is completely controllable for unbounded control. For bounded control,
however, this system is only locally controlluble in some vicinity of the
origin. If the process admits an ppropriate bilinear mode of control, the
system is completely controlluble since the Lee-Markus criterion is alreudy
satisfied. For example, consider the bilinear system

-x (l + 4u)x + u,

where u] 1 has the eigenvalues .(u) -(1 + 4u)/2
(1 + 4u) 4 for constant u. For u -1 both are rel and posi-

tive, crossg the imaginary uxis as u complex conjugate pair. Thus, u+

and u- exist and the equilibrium set is connected. The system is of the phase-
variable type and C 0, so that the Lee-Markus criterion is satisfied.
Thus the new system is completely controllable.
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As shown by the next example, however, not all bilinear systems with the
capability of transferring system eigenvalues across the imaginary axis are
completely controllable. Such is the case even though the system satisfies
the Lee-Markus criterion.

3.2. Example 2. The bilinear system

2 2ux - x

2 x -- 2ux. -- u

hs eigenvlues k(u) 2u + 1, h(u) 2u 1. If the constraint set t is
gven by u =< 1, then the wlues u+ nd u- exist. It is esily verified that
the Lee-Mrkus criterion is stisfied for this system. The equilibrium set,
however, is not connected, since m 1 nd both eigenvlues pss through
zero as they cross the imaginary xis in the complex plane. Therefore, the
criteri for complete controllability re not 11 satisfied.
The phase-plane portraits for u + 1 nd u -1 re shown super-

imposed in Fig. 1. The solid triectories re for the system with u -1,
which hs stable node t x -1/2, x -. The dshed trajectories re
for the system with u -- 1, which hsnunstable node tx 1/2, x -.
The equilibrium set is shown s the three heavy solid curves.
The reachable zones from wrious initial phases re esily determined on

this figure by simply considering the directions of llowble motion t ech
point, which is the cone between the extreml directions corresponding to
u --1 nd u -1. It is evident that the system is not completely con-
trollble. For example, the reachable zone from the point y is iust the Shaded
region.

4. Conclusions. A biliner system is completely controllable if the
conditions given by the min result are stisfied. As one might expect, the
conditions re not s simple s the popular conditions for complete
controllability of linear systems with unconstrained control or for null
controllability with constrained control. For phse-wrible systems,
however, the sufficient conditions re esy to pply.

In practice, biliner mode my be implemented by controlling signifi-
cnt plant prmeters in mnner similar to the wrible wing geometry
of high-performance ircrft. For Example 1, simple biliner control
mde locally controllable linear system completely controllable. With
respect to mny systems which re inherently biliner, however, con-
trollbility is further complicated by numerous state constraints. Unfor-
run,rely, state constraints cn pper in such diversity that meaningful
controllability conditions would hve to be specified for prticulr cses.
For the classical neutron kinetics of reactor [1], it is obvious by inspection
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/

FIG. 1. Phase-plane trajectories o/Example 2 for u 1 and u -1

of the model that every desired equilibrium state can be attained in finite
time. Again such controllability is a consequence of the bilinear control
mode.

Appendix. Equilibrium set of bilinear systems. In this Appendix the set
of equilibrium points is described for bilinear systems. This description is
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necessary to understand the connectedness property that is utilized to
show complete controllability. For each fixed u 2, the state

(A1) xe(u) (A - uB) Cu
k=l

is the unique equilibrium state of the bilinear system (1) if the indicated
inverse matrix exists. If the system matrix is singular for a control value
u ’tl, no equilibrium state exists corresponding to ’ unless C/t happens to
lie in the range of A - -’.= uB., in which case an infinite number of
stages are equilibrium states. It will be assumed here that Cu is no con-
tained in the range of A =uB, for any u such that the latter
matrix is singular. This implies, in particular, that A is nonsingular, since
if A is singular, CO 0 is in the range of the singular matrix
A Zkmi OBk. It also implies that C is not identically zero if
A + uB is singular for any u t. With this assumption, (A1)
defines a mapping from 2 S, where S is the subset of 12 on which the system
matrix is singular, onto a subset of R, called the equilibrium set.
The equilibrium set is easily described when u is a scalar. Since

det (A - uB) is a polynomial in u with degree at most n, the equation
det (A - uB) 0 has at most n real roots [u} in . As u ranges over any
interval in t not containing a root, the equilibrium points x(u)

-u(A - uB)-C sweep out a smooth curve. As u approaches a value
u t for which A - ulB is singular, the curve x(u) tends to infinity
asymptotic to the null space of A ulB.
To prove this assertion., let {y, y, y} be a basis of the null space

of A + uB, and let {y, y, y, y,+l, y,.} be a basis of R.
Then one has the unique represen,ation

(A2) xe(u) (u)y + (u)y +... - (u)y,

for every {u}. The equation (A - uB)x(u) -uC must be satisfied,
but asu--u the left-hand side has (u) (A uB)yi-+Ofor i 1,2, r
unless (u)i -- . Since by assumption uiC is not contained in the range
of A - ulB, one or more of the functions (u), (u), (u) must
tend to infinity as u -- u. Thus, at each of the control values u}, the other-
wise smooth curve x(u) blows up, and the equilibrium set {x(u) u gt

S} consists of at most n -t- 1 smooth curves having no finite endpoints,
with the possible exception of the equilibrium states corresponding to the
minimum and maximum values of u in t.

Further, it will now be shown that these curves do not intersect one
another. For, if there exists a common point x* =x(u) x(u), with
u u, then
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(A3) Ax* uaBx* " uaC Ax* u’Bx* u’C O,
which implies that (u u’)(Bx* -t- C) 0. Thus, from (A3), Ax* O,
and since x* is not the zero vector, A must be singular, contrary to the pre-
vious assumption. Therefore, the curves do not intersect one another, but
constitute an unconnected set. Of course, if {ui} is empty, the equilibrium
set is compact and connected.
Extending these considerations to the case where m > 1, suppose that
u 2- S is a control value for which the mapping (A1) exists.
There is an R-neighborhood of u on which (A1) exists, since
det (A + k=l uk Bk) 0 and the determinant of a matrix is a continuous
function of the matrix entries. Hence (A1) defines a continuous mapping of
an R-neighborhood u into an R-neighborhood of xe(uO), which
geometrically corresponds to an equilibrium surface of dimension
d _-< rain (m, n) passing through xe(u). As in the scalar case, this surface
will tend to infinity as u approaches a vector-value u for which
A - Zkml ukB is singular.

If det (A -t- 1uB) is thought of as a function of a single compo-
nent of the control vector, say u, with the remaining m 1 components
fixed, then

u) det (A + uiB1 --(A4) P(ul u u, B)
k-2

is a polynomial of degree at most n in u, and has at most n real roots
{Ul (u, u.,) in 2. Since the roots of a polynomial vary continuously
with the polynomial coefficients, as u, u, u range in a small neigh-
borhood about the fixed values u, u, u, each root u’ of (A4) varies
continuously and describes an (m 1)-dimensional root-surface in .

u) at which(This statement needs qualification for points (u2, u,
the number of real roots of (A4) changes. Here two root surfaces intersect
and the corresponding roots are complex at certain points in every neighbor-
hood of (u2, u, ).) In any event, whether the root surfaces intersect
or not, they partition into a number of connected cells, each of which is
mapped by (A1) into smooth, connected equilibrium surface i state-
space. Unlike the scaltr case, these equilibrium surfaces re not necessarily
disjoint, as will now be demonstrated for the phase-variable type of bilinear
system.
A phase-variable bilinear system is one governed by a single differential

equation

dnx( )d(i-i)xa + ubi - cu.
dt = = 5:

With the usual phase variables xl x, x. , x x(-1), the system
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matrix is singular for control vectors which satisfy

(A5) det (A + ukB) 1) n-1 (al - ub) O.
k-l k---1

For this type of system, it is easily verified that the mapping (A1) re-
duces to

(A6) x(u)

k-I

which just expresses the trivial fact that the phase-variable system is at
equilibrium only when the dependent variable x is constant and all its
derivatives are zero.
The mapping (A6) fails to exist when (A5) is satisfied, which can happea

for at most a single value of u with given values u2, u3, u,, due to
the linear nature of (A5). Thus 2 is partitioned into at most two connected
cells by the root-surface of (A5), each of which is mapped onto an interval
of the x-axis by (A6). If (A5) has no roots u t, then IS is mapped onto
a single compact interval of the x-axis by (A6).
Suppose t is partitioned by a root-surface S into 2+ and t- with the

denominator of (A6) positive in gt+ and negative in t-. The x (u) u t+}
and {xe(u) u -} overlap (in fact, each is the entire xl-axis) if the sur-
face T defined by kcu 0 intersects S at a nonzero angle in the
interior of t. For, in this case, there exists a p > 0 such that, for any r
with rl =< p, the closure of 2+ and the closure of t- contain sets U,+ and
U- which intersect S and on which :’= cu r. Upon inspection of
(A6), it is clear that

lue u +} U
Irl__p Irl<=p

both cover the entire x-axis in Rn.
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LOGARITHMIC VARIATION CRITERIA FOR THE STABILITY
OF SYSTEMS WITH TIME-VARYING GAINS*

M. FREEDMAN AND G. ZAMES:
Summary. A new stability condition is derived for a feedback system consisting

of a linear element H(s) and a time-varying gain k(t). It is shown that if ](t) lies
in an interval [a W e, b el, and if the shifted Nyquist diagram H(j at) does
ot intersect a critical interval of tile complex plane and encircles it a number of
times equal to the number of poles of H(s) in tile region Re {s} :> -a.,, then the
closed-loop system is stable, provided tha the average logarithmic variation
satisfies the inequality

1 f+T d /()-- a. a sup-- / : log dr < 4h

for some T > 0. Several alternative statements of this result, including a root locus
interpretation, are given.

The proof, which involves a factorization of the open loop into positive operators,
depends on a lemma on operators having prescribed phase characteristics, and on
another leinma on the factorization of time-varying gains. As a by-product of the
theory, it is shown that the property of being stable for all posi1ive constant gains
is equivalent to n fctorizability property of the open loop.

1. Introduction. The behavior of a time-wrying system over succession
of points in time can often be approximated by the behavior of a sequence
of time-invariant systems, and methods of analysis depending on this fact
are sometimes called "frozen-time" methods. In this paper some idea will
be obtained of the range of validity of frozen-time approximations in a
problem involving the stability of the feedback system of Fig. 1, where
H(s) represents linear time-invarint operator and k(t) is a time-varying
gain.
For the system of Fig. 1, one might ask" If the system is stable for every

constant gain in an interval (a, b) is it also stable for gains in (a, b) that are
time-wrying? This problem plays role ia the theory of time-wrying
systems rather similar to that of the Aizerman problem in the theory of
nonlinear systems.

It seems intuitively reasonable that the system should rem.aia stable for
gains in (a, b) if the rte of time variation is slow enough. More generally,
it would seem likely that validity of a frozen-time approximation ought to
depend on suitable measures of the rtcs of time-variation and decy of
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Cambridge, Massachusetts 02139.
: Guggenheim Fellow, Office of Control Theory and Application, National Aero-
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r--LINEAR TIME INVARIANT

x(t) ylt)

TIME-VARYING GAIN

FG. 1. A feedbaclc system

memory. In the system of Fig. 1, exponential bounds on memory (i.e., on
the impulse response) can be obtained from the geometry of the "shifted
Nyquist diagram" H (j0 1) for various "shifts" al > 0. It is natural,
therefore, to seek stability criteri involving H(j-z) and some measure of
the rate of change of k(t). Here, some new stability criterit will be derived
ulong these lines.
There now is available lrge body of stability results for the system of

Fig. 1. Many of the early results, such as the inequality of Bongiorno [1]
and the circle criterion of Zames [2u] employ no informution about the gain
k(t) other than its rnge of values. Consequently, they offer no insight into
the effects of "freezing time." However, they hve the dvantage of in-
volving only the geometry of Nyquist plot and hence are easy to check.
There are several results which go beyond [1] and [2] in explicitly re-

stricting the rte of change of the gain k(t). For example, the condition of
Brockett and Forys [3], generalized by Gruber and Willems [4], includes
restriction of the type//k const., nd an "RC" multiplier

Zmes [2b] obt,ired codition invo]vig expon.etia] weighting factors,
a shifted Nyquist diagram, arid t’actorizatio coditio on
effect, limits its rte of change. All of t;he previously mctioned conditions
either make use of a multiplier for which n.o explicit construction is given,

criterion in the lit as theor do not reduce to the frozen-time Nyquist

Similar criteri were derived independently by Narendra and Goldwyn [10],
Sandberg, and J. Kuderewicz.

By frozen-time Nyquist criterion the following hypothesis (which is not true in
general) is meant" If the open-loop system is stable and if the Nyquist diagram of
H(jw) does not intersect or encircle an interval of the reul axis lying between -1/a
and -1/b, then the closed-loop system is stable.

For a derivation of the ordinary Nyquist criterion, see Desoer [5].
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rate of variation goes to zero. (For example, in the circle criterion the
critical region does not approach a linear interval.)
In the present paper, although certain multipliers are employed much as

in [2a] and [2b], a constructive procedure is developed so that all final sta-
bility conditions are free of multipliers, and are, in fact, explicit and ge-
ometric. The conditions on the gain lc(t) take the form of bounds on the
average of log [(t)]. The idea of imposing an vcrage variation constraint
on k(t) has bec use(t bc.ore (for example, see Sandberg [6]). ttowever, it is
shown here that criteria of this sort a,re n,tura,lly expressed in terms of the
logarithm of k(t). In fact, the logarithmic variation is shown to be related
to certain factorizability properties of lc(t).

Finally, a by-product of the approach taken here is the result tha a sys-
tem which is stable for all positive constant gains can be characterized by a
factorizability property of its open loop operator.

The remainder of the paper is divided into the following numbered sec-
tions"

2. The main problem and its solution.
3. Basic method" A lemma on multipliers.
4. Construction of M(s):A lemma on multipliers with I)rescribed phase

characteristics.
5. Construction of f(t): A factorization lemma for time-varying gains.
6. Proofs of main results.
7. Concluding remarks.

Appendix.
The main stability results are stated in 2. Their proofs are postponed

until 6 to allow development of the supporting theory, which is contained
in }3, 4 and 5.

2. The main problem and its solution.
DEFINITION 1. Let L[0, m], where p 1, 2, m, be the linear space

of real-valued functions x(. on [0, m with the property that

fo Ix(t) l’dt < if 1 =< <P

or

x(.) is essentially bounded if p m.

Let L[0, m be normed with the norm

The spaces L(- m, m on the interval (- m, m re silarly defined.
The definition of the extended space L is introduced via the notion of
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truncated function xr(. (see [2c, Part I] for a further discussion of extended
spaces).
DEFrNTON 2. For any real-valued function x(. on [0, and any T

>= 0, let xr(. denote the truncated function defined by

x,(t) \o for > T.

Let L2e be the space of those real-valucd functions x(. on [0, whose
truncations x,(. belong to L2[0, for all T >= 0, i.e.,

{x(.) z(. )-[0, Rea s,

and xz(.) L2[0, ) for all T >= 0}.

Remark 1. x(. L2[0, ) if and only if supr>0 xr(. < .
2.1. Feedback equations. The feedback system of Fig. 1 will be repre-

sented for all _>- 0 by the integral equations

( 1 ) e(t) x(t)

(2) y(t) hoe(t) -- Jo e(-)h(t -) dr,

in which the following assumptions are made.
ASSVMeTOS 1. X(-) is in L2[0, ). (The function x(. reprcsents the

combined effects of an input and of possible nonzero initial conditions.)
ASSVMeTON 2. e(. and y(. are in L:o (i.e., existence of solutions in

L:, for these "outputs" is being assumed).
ASSVMTON 3. h0 is a real constant, and there is a real constant a0 (not

necessarily positive) for which h(t) exp (a0t) is in L[0, ).
ASSVMTON 4. l(. is a real-valued function, absolutely continuous on

[0, ). (Since k(. is absolutely continuous its derivative k(-) exists

almost everywhere, and k(b) k(a) Jo. k(t) dt for any real a and b

(see Hobson [7, 406, pp. 592-593]).)

2.2. Shifted llyquist diagrams. Some of the criteria to be established
here will employ a Nyquist diagram plotted on a vertical line outside the
region of convergence of the Laplace integral, but inside region in which
the Laplace transform has suitable "continuation." The definitions of a
Laplace transform, its continuation, and its Nyquist diagram will be
developed next.

It is convenient to separate questions of stability from those of existence, .since
the two can frequently be deduced from entirely different considerations.
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DEFINITION 3. For any ret.d constant zo, let LEo be the set of pairs
[ho, hi(t) ], where h0 is a real constant, and hi(t) exp (0t) is in L[0, ).
DSFINXTO 4. Let s denote a point of the complex plane. The real and

imaginary parts of s will sometimes be denoted by and . For any pair
[h0, h(t)] in some LEo the Laplace transform H(s) with domain Re {s}
_>_ - is defined by the equation.

(3) H(s) ho d- Jo h(t) exp (-st) dt

(for all complex s with Re {s} __> -z0) and is analytic tor Re {s} > -0.

Certain additional assumptions will be made concerning H(s) in order to
allow the definition of a Nyquist diagram.

DEFINITION 5. A function H(s) is said to be meromorphic in a region of
the complex plane if it is analytic in the region except, at most, at a counta-
ble number of poles. For any real constant ,, the meromorphic continu-
ation of H(s) to (r,,, if it exists, is the function H(s) with domain
Re {s} > -a which is meromorphic throughout its domain, and is equal
to H(s) whenever s is in the domains of H(s) and H.(s). (From elemen-
tary continuation theory, if H.(s) and H(s) re two continuations, then
H(s) H.(s) on the intersection of their domains.) If H,,(s) is, in
fact, analytic for Re {s} > -., then H,(s) will be called an analytic
continuation of H s to r,
Two classes of transforms are now introduced for whichNyquist diagrams

will later be defined.
DEFINITION 6. For any rel constant a, let Mer,, be the class of func-

tions H(s) having the following properties" (i) H(s) is the Laplace trans-
form of a pair [h0, h(t)] in some LEo (ii) H(s) has a meromorphic con-
tinuation to -- and (iii) for any --h > --, H( d- j) has a finite
number of poles in Re [s} >_- -a, and approaches h0 uniformly with a

in Re{s} _>- - as ] - .Let Anl be the subset of Mer consisting of those functions that are
nMytic for Re {s} :> .

If H(s) is in Mero, then H(s) is analytic on almost every vertical line
in Re {s/ >
DEFNTO 7. If H(s) is in Mer and has no poles on some line Re {s}
-z,, then the ,-shifted Nyquist diagram of H(s) consists of (i) the

directed curve H(jo z,) with in (- , directed from to ,
and (ii) the point h0.

2.3. A stability theorem. The main problem here is" To find conditions
involving k(t) and a z,-shifted Nyquist diagram of H(s) under which the
system is stable in the sense that (i) e(. is in L[0, with li e II --< const.
]1 x ]], and (ii) limt y(t) O.
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FIG. 2. Regions in the complex plane

The notion of stability adopted here is natural for integral equations. It
implies asymptotic stability in the context of differential equations. With
some additional minor assumptions, it also implies b,ounded-input bounded-
output stability (see [2b]).
The main stability results will be stated in this section, but their proofs

will be postponed (to 6) until after the supporting theory is established.
THEOREM 1. Suppose that (1) and (2), and the related A ssumptions 1-4,

are valid. If:
(i) the Laplace transform H(s) of the pair [ho, h(t)] is in Anl, for some

constant a,, > 0 (see Fig. 2)
(ii) for some constant a 0 < ., < ,.,, the .-shifted Nyquist diagram
of H(s) does not intersect the negative real axis of the complex plane including
the origin;
(iii) there are constants l_c > 0 and/ with the property that, for all .>= O,
_

<_ (t) <= ;
(iv) there is a constant .7’ > 0 for which

(4) 1 sup
1 .f,+ d

then e( is in L[O, ), and in fact
2.4. A stability theorem for gains in a prescribed interval.
DEFINITION 8. If H(s) is the Laplace transform of [h0, hx(t)] of (1) and

(2), and if 1 + aho 0, let H*(s) be the function with domain Re {s}
> -o defined by the equatioa

(5) H*(s) [1 -k bH(s)][1 + all(s)]-.
As the reciprocal of a nonzero analytic function in an open region is

meromorphic, H*(s) is meromorphic for Re s} > 0. In fact, H* (s) is in

Mer.o by the following remark.
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Remark 2. Let H(s) and H*(s) be as in the preceding definition, with
1 -+- aho O, and suppose that b a. Then H(s) is in some Mer, if and
only if H*(s) is in Mer, and, in fact, their continuations to -tten satisfy
the equation

(5a) Hc*(s) [1 + bHcn(S)][1 + aH,(s)]-1.

(For the proof of this remark, see the Appendix.)
THEOmM 2. Suppose that (1) and (2) and the related Assumptions 1-4

are valid. If
(i) for all >= O, /c(t) lies in an interval [a

< (b a)/2;
(ii) there are constants r,, and (see Fig. 2) with 0 < < ,, and

the following properties hold"
(a) 1 - aho O, and the function

H*(s) [1 27 bH(s)][1 -aH(s)]-with domain Re Is} > -z0 is in Anl
(b) the r.-shifted Nyquist diagram of H* s does not intersect the

negative real axis of the complex plane including the origin"
(iii) for some constant T > O,

(6) sup
1 ft+’[d k(-)--a

t>=0 - lgb-
then e(. is in L[0, and, in fact,
COROLLARY 1. [f, in addition to the hypotheses of Theorem "2, ho 0 and

hi(t) isin L[0, ), then limt_., y(t) O.
Remarlc 3. Let/c denote the derivative of It. Then

1 ftt+r / /(r)-a l f,
t-’

(6a) - lgb-- k(r)
dr = (k-- b)(lc-- a)

dr.

Remark 4. As is defined by a,n verge of d log (.)/dt [, there is noth-
ing to prevent d log (.)/dt] from being lrge over small subintervals of
[0, ).

2.5. Encirclement conditions. Instead of plotting the Nyquist did.gram
of H*(s) [1 +bH(s)] [1 +aH(s)]-, it is frequently more convenient to
plot the diagram of H(s). It will appear that it is Mways possible to replace
conditions on H*(s) by conditions on H(s).
DEIITIO 9. For any finite open interval (a, b) of the real numbers, the

critical region for (a, b) consists of the set of real points x of the finite
complex plnne with the property that 1Ix is in the closed hterval [a, b].
For example, if 0 (. a .< b, then the critical region i the intervM [--l/a,

-I/b]; if a < 0 < b, then the criticM region is the union of intervals
(- o, -1 U [-1/a, ).
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TEOnEM 2’. Theorem 2 remains valid if the assumptions (a) and (b) in
(it) are replaced by the following conditions"

(ii)P. There are constants tc, and (r,h with 0 #,, and the following
properties hold"

(a) H(s) is in Mero (so that H(s) has a finite number of poles4 in
Re {s} >__ -with no poles on the line Re {s} -,);

(b) the z-shifted Nyquist diagram ofH(s) does not intersect the critical
region for (a, b), but encircles it a number of times equal to the num-
ber of poles of H(s) in Re s} >

Furthermore, for all j, satisfying 0 < h < , except tor at most a count-
able number of for which there is a pole of H(s) on the line Re {s}

,h, conditions (it) imply conditions (it)’.

Remark 5. Under the ussumptions of Theorem 2, H(s) has a finite num-
ber of poles in the half-plane Re {s} z, whether or not H(s) is rational,
as seen from Theorem 2’. Furthermore, no generality is lost in considering
the Nyquist diagram of H(s) instead of that of H*(s).

2.6. Root locus conditions.
DEFINITION 10. H(8) is rational if it can be expressed as a ratio of finite

orderpolynomials. For a rational H(s), the root locus of H(s consists of those
points s for which there is a real constant c with H(s) -1/c.
THEOREM 2a. Let H(s) be the Laplace transform of [ho, h(t)] in (1)

and (2), and suppose that 1 + aho O. If H(s) is rational, then the assump-
tions in (it) of Theorem 2 are equivalent to the following condition"

(it)" The portion of the root locus for c in [a, b] lies in the region Re
fish

Example. Suppose H(s) (s - p)-, p > O. For whut gins does The-
2"orem predict stability?

This example is easily evaluated ia terms of the root locus. The root
locus is confined to the two lines Re (s} -p and Im {s} 0, and, in fact,
lies in theregioiRe{s} -p ifc ->= 0 and Re Is} =< -p + if
c < 0. Therefore, the system is stable for any constant gin in the interval
(-p, ). If (a, b) is a subinterval of (-p, ), then the system is stable
for any time-varying gain in a subinterval [a - e, b e] of (a, b), provided
(i) < 4p if a => 0, or (it) < 4(p %/-a) if a < 0. Thus for a <: 0,
a tradeoff is obtained between, the interval (a, b) and the rate .
Remark 6. Suppose that the system of equations (1) and (2) is stable

for every constant gain k(t) const, in an interval (a, b). The following
question is raised" Does the system remain stable for every time-varying

The poles of H(s) are deflated to be the poles of its continutio.
This nonbtersectio codition implies that -t- aho O.
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gain k(t).in (a, b),.at least if the rate of variation is small enough? By
Theorem 2’ the answer is affirmative, provided the Nyquist conditions are
satisfied with a nonzero shift.

3. Basic method- A lemma on multipliers. In this section, a lemma will
be stated which forms the skeleton of our method of providing stability.
The lemma is based on the now well-known idea of splitting the open-loop
system into two positive operators. Application of this idea will depend on
finding suitable "multiplier" functions for H(s) and k(t).

DEFINITION 11. Let 0 be the class of operators H" L2e -- L2e satisfying

(7) (Hx)(t) box(t) A- x(r)hl(t- r)dr

for all x L2 and for all -> 0, where [h0, hl(t)] is in LE (Note that H
is nonanticipative, i.e., (Hx)r (Hx.)r for all x in L and all T _>- 0.)
The pair [h0, hi (t)] will be referred to as the kernel of H. The Laplace trans-
form of [h0, hl(t)] is defined as in (3). (Note that H(s) is in Anlo .)

Let 3 be the class of absolutely continuous real-valued functions k(. on
[0, ), with each k(. having constants’k > 0 and / > k for which
k_ <= k(t) <- for all => 0.
IEMMA 1. Let (1) and (2) and the related Assumptions 1-4 be valid. If

there are constants (rc, (rh and r with 0 < r < (rh < r, H(s) is in Anlc,,
and there is an operator M in 2 and a function f(. in 3 (the multipliers)
with the following properties"

(i)

(S)

(9)

M joo .>= 0,

Re {M(jo ah)H(joo o)} -->- /t > 0

for all o (- o, ), where is a constant;
(ii) the function f k is in 3, and f exp (-2rt) and f lc

exp (-2rt) are monotonically nonincreasing functions of t, for in
[0, oo ), then e is in L2[0, ), and e [[ =< const. x ]1.

The proof appears in the Appendix.

4. Construction of M(s): A lemma on multipliers with prescribed phase
characteristics. It will be shown that an operator M in oC, can be found
with any prescribed phase function arg {M(jo )}, provided the phase
and its derivative are suitably restricted. This fact will make it possible to
construct a multiplierM(jo z) to rectify the phase of H(rio ,) so as
to lie in the interval (-90, 90). It will also be possible to show that a feed-
back system which is stable for all positive constant gains can be charac-
terized by the fact that H + eI can be factored into strongly positive oper-
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ators, where H is the open-loop operator, I is the identity operator, and
e > 0 is any constant.
LEMMA 2 (Multipliers with prescribed phase). If
(i) (I)o(w) is a real-valued, continuous, a.e. differentiable, odd function of

o for in (- , ),
(ii) o() and o’() are in L(- , ),

then:
(a) there is a (t) in L , with (t) 0 for < O, and with a

Fourier transform A() having the property that Im h() o();
(b) there is a z(t) in L(-, ) with z(t) 0 for < O, and with a

Fourier transform Z(w) hauing the property 1 + Z() exp [A(w)];
(c) if -- < o() , then there isa z(t) in LI(-- , ) with z(t) 0

for < O, 1 + Z() O, and urg {1 + Z()} o().
(In fact, if Z(s) is the Laplace transform of z(t), then I + Z(s) is minimum

phe, i.e., has no right half-plane zeros.)
Proof of Lemma 2. (a) The proof is based on two main ideas: (i) if the

inverse Fourier transform of complex-valued function vanishes on
(-, 0), then the real aad imaginary parts of the function are in 1-1
correspondence; (ii) if a function and its derivative are in L( , ), then
the inverse Fourier transform is in L( , ).
The inverse limit-in-the-mean Fourier transform of j0() is defined by the

equation
1

lira jo() exp (j) d.

Sinceo() is in L:(- , ), the limit-in-the mean exists, md Oo(t) is also
in L(- , ). Since jo() is purely imaginary and odd, Co(t) is real and
odd. Let O(t) be the function on (- , defined by

f 0(t) for 0,(t) --0(t) for < 0.

Now it will be shown below that 60(t) is in L(-, ). Consequently,
6(t) is also in Ll( , and has a Fourier transform (w). Since
6(t) is real-valued and even,(w) is purely real. Let h(t) 6(t) + 60(t).
Therefore h(t) 0 for < 0, h(t) has a Fourier transform A()
+ j0(), and o(w) Im{A()}.

It remains to be shown that 6o(t) is in L( , ). Note first that since
o() and its derivative o’() are in L2(- ), 0(t) s" m" L2(-
(see Titchmarsh [Sa, Theorem 68, p. 92]). Consequently,

by he chwa,r inequality. Therefore, Oo<t] is in L<-
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(b) Ifx(t) and y(t) are any two functions in LI(- , ), le (x. y)(t)

denote their convolution x(t- r)y(r)dr. Let z(t) be the function

defined on [0, oo by the sum

(o) z(t) x(t) + (x *2!x)(t) + +

times

,x)(t)
n!

n= 1,2,....

Now if x and y have the property of belonging to LI(- , and vafish-
ing on (- , 0), then x y also has this property, and x y ]]1 -<_ [[ x I]1
"]l Y ]]1. When this result is applied to (10) it can be concluded that the
sequence {zn(t)] converges faster than the sequence of real numbers
defined by

(11) s I]),lll-t-: 2- n!

in the sense that z zm [] <= s s, for any positive integers m and n.
Now {s.} is a Cauehy sequence in the real numbers (whose limit is exp
111 x II1} 1). I follows that [z} is a Cauehy sequence in LI(- m, o and,
since LI(-, is complete, there is a limit z(t) in LI(-, oo ), with
z(t) 0 for < 0, to which [z,} converges. Furthermore, if the Fourier
transforms of z(t) and X(t) are denoted Z(o) and A(o), then Z(0) is in
L.(-oo, (which is defined to be the space of complex-valued, essen-
tially bounded functions on o, cc ), and

a() +z() () + 2(12)
exp [A(o)]- 1;

part (b) of the lemma is proved. (Term-by-term transformation of the
series for z(t) is permitted, since the Fourier transformation is a continuous
map of L(- , into L(- , ).)

(c) This follows immediately from (a) and (b).
LEMM_ 3 (Construction of the multiplier). If there are constants Crc and

(r. 0 < (r,a < (r, for which H(s) is in Anl,, there are no poles of H(s)
on the line Re{s} -z,, and the r.-shifted Nyquist diagram of H(s does
not intersect the negative real axis, including the origin, then there is art oper-
ator lYl in2 with the properties that

(13)

(14) Re {M(joo a,)H(.jo a)} -> 8. :> 0,

where and are constants, for all o ire ).
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The Nyquist diagram assumption implies that the argument of
H(jo ) lies in the interval -r, ). If the conclusions of the lemma are
to be fulfilled, M(j ) and M(j n)H(j ) must clearly have
rguments in ( w/2, /2). Upon recalfng that

rg {M(j- )H(j- )} rg {M(j- )} + rg {H(j )},

our initial attemp at constructing M might involve choosing

rg {M(j ,)} -- rg {H(jw- )}.

The construction which will ctully be dopted here will deprt from
this choice for lrge [w ], in order to meet the dded constraint that
M must be in. In fct, the construction which will be employed here
will ensure that rg [M(j" ,)} nd its deriwtive ll be in L(- , ),
whereupon Lcmm 2 will be used to show that M is in 2,.
The following remarks will be needed.
Remark 7. If F() is cominuous complex-wlued function on , ),

F() 0, rg F() < /2 nd limF() exists nd is positive
nonzero number, then there is a constant > 0 with the property that

Remark 8. If H(s) is n nlytic function of the complex wrible s on
Re {s} -, where is constant, nd if H(jw ) 0 for ny ,
then arg {H(j ) is continuously differentible with respect to .
Remark 8 follows immediately from the fct that
(i) rg {H(s)} Im {log H(s)}, so that

Arg {H(j ,)} Im d{g(j ,)}/d.
d H(j- .)

(ii) H(j ,) is infinitely differentiable with respect to in a region
of analyticity;

(iii) H(jw ) has no zeros on Re {s} -.
Proof of Lemma 3. The proof is in the three following steps. Step 1: Con-

struction of a phase function 0(w); Step 2" Determination of an operator
M in L, with arg {M(jw a,)} 0() Step 3: Verification of inequali-
ties (13) and (14).

Step 1: Construction of 0(). Under the assumptions on H(s),
H(j- ,) approaches rel constant h0 as goes to (by the Rie-
munn-Lebesgue theorem). The Nyquist condition ensures that h0 0,
nd so rg {H(ju a)} approaches 0. Let W > 0 be constant th the
property tht]arg{H(j a)}] v/6 for > W. Let o() be u
function on , defined by the equutions
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-1/2arg{H(jo- )} for Il =< W,
(15) 0(0)

W
c-- for > w,

where c 1/2 arg {H(jW )}. By this construction it is ensured
that < /2 and Io() + arg {H(j )}1 < r/2.

Step 2" Determination ofM in2.M will be determined using Lemma 2.
From the definition of o() (see (15)) and Remark 8, it follows that
o() is continuous for all , and continuously differentiable, except pos-

sibly at W. Further, o() and o’(o) asymptotically behave like
-i cons, and const., respectively. Therefore, it can be concluded that
0() and0’() are in L2(- , ). Thusqo(o) satisfies the hypotheses of
Lemma 2c, and there is a unique function z(t) in L[0, with Laplace
transform Z(s), 1 -t- Z(j)2, 0 for any , and arg 1 + Z(.7")
0(). Let M be the operator in 2, with kernel [1, z(t) exp (-t)].
Step 3" Verification of inequalities (13) and (14). It can be checked that

the functions M(jo ) and M(jo z)H(jo () satisfy the hy-
potheses of Remark 7. Therefore, inequalities (13) and (14) are valid, and
the lemma is proved.

4.1. A characterization of stable systems. An operator H in 2o is called
strongly positive if there is a constant ti > 0 for which Re {H(flo)}
The following useful characterization of a feedback system stable for posi-

crterlon The feed-rive gains is obtained from Lemma 3 and the Nyquist
back equations (1) and (2) are stable (in, lhe sense of Theorem 1), for all posi-
tive constant gains k(t) c >= O, and only if the operator H -4- e I can be
factored into two strongly positive operators for every e > O, where I is the
identity operator.

5. Construction of f(t)" A factorization lemma for time-varying gains.
The problem to be solved here is" Given k(t) in and a constant r > 0, is
it possible to factor k(t) into two parts k(t) k+(t)k_(t), so as to make
k+(t) exp (2rt) nondecreasing and k_(t) exp (-2rt) nonincreasing? If
such a factorization is possible, then a suitable multiplier function f(t) for
Lemma 1 can be obtained by settingf(t) 1/k+(t).
LEMMA 4. If k(t) is in and there are constants r > 0 and T > 0 for

which the inequality

1 [t+r d(16) ,t logk(r) dr-<_ 4r for all >= 0

In the context of differential equations a similar characterization is considered
in R. W. Brockett and J. W. Willems [11].
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is valid, then there are functions tc+(t) and lc_(t) in with the following prop-
erties

(i) (t) k+(t)_(t)
(it) /+ (t) exp (2rt) is nondecreasing;
(iii) k_(t) exp (-2rt) is nonincreasing.

Instead of Lemma 4, the following equivalent lemma will be proved.
LEMMA 4’. Let (t) be a real-valued, absolutely continuous, bounded (i.e.,

from above and below) function of for in [0, ). Suppose there are constants
T > 0 and r > 0 for which the inequality

1 ft
t+T

(17) l[(r) dr =< 4r for all >= 0

is valid, where [(r) denotes the derivative of (r). Then, there are two real-
valued, absolutely continuous, bounded functions +(t) and

_
(t) on [0, ),

with the following properties for almost all >= O"

(t) e+(t) + ,,_(t),

(19) d+(t) > --2r,
dt

(’zo) e_( t) <= 2r.
dt

Clearly Lcmma 4’ is equivalent to Lemma 4, as the assumptions on g(t)
are equivalent to those on log k(t), etc.

Proof of Lemma 4’. The functions .+(t) and g_(t) will be defined by the
equations

() e+(t) e(t) + (t),
2

(:) e_(t) (t),
2

where the function (t) will be constructed presently, with suitable restric-
tions on ’(t) nd d(t)/dt. It is clear thttt (18) will be satisfied.

Construction of (t). Condition (17) is equivalent to the following i-
equality, in terms of a convolution"

(23) ]0’ g()ll.w(t r) dr <= 4r for 11 ->- 0,

where w(t) is a "smoothing kernel," defined on [0,

w(t) fl/T on [O,T],(4,) \o on (;/’, ).

by the equation
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Let

]g(r)[ 1 w((r) d dr.

With the definition of g.(t) and #_(t) by (21) and (22) now complete, it
remains to be shown that these fimetions ttnd their derivatives arc suitably
bounded.

Boundedness of,#+(t) and g_(t). The smoothing kernel has the property
that

t

(26) 0 <- 1 w(z) d(, <= Tw(t- r) forll >= r.

From (26), (25) and (23), it follows that 0 -<_ g(t) _-< 2Tr, and so .g(t) is
bounded. Since #(t) is bounded by hypothesis, it follows from (21) and (22)
that g+(t) nd .g_ (t) are bounded.

.Bounds on d+/dt and d#_/dt. From (25),

d( t) 1 1 ft()
dt 2

I/(t) :2 Jo g(r)[w(t r) cir.

Therefore,

(2s) de+(t) . f0dt 2
{(t) q- {(t)!} ].g(r)lw(t r) dr,

(29) dg_(t) 1 1 fotdt 2
{/(t) g(t) l} -t- - g(-) w(t r) dr.

Now (19) of the lemma follows from (28), (23), and the inequality
.[(t) A- (t) => 0. Similarly, (20) follows from (29), (23), and the in-
equality [(t) (t) -<- 0.

6. Proofs of the main results.
Proof of l’heorem 1. Theorem 1 will follow from Lemmas 1, 3 and 4.
Under the hypotheses of Theorem 1, the kernel [h0, hi(t)] has a Laplace

transform which satisfies the hypotheses of Lemma 3. Therefore, there is
an operator M in , and a constant > 0 satisfying inequalities (8) and
(9) of Lemma 1.
Furthermore, under the hypotheses of Theorem 1, k(t) is in ;E and the

hypotheses of Lemma 4 are satisfied. Therefore, there are functions k+(t)
and k_(t) in with the properties that: (i) k(t) k+(t)k_(t); (ii)
k+(t) exp (2rt) is nondecreasing; and (iii) k_(t) exp (-2rt) is nonin-
creasing. Letting f(t) 1/k+(t), we observe that f(t) satisfies the hypoth-
eses of Lemm 1. Thus, all l;he hypotheses of l,emmt 1 are satisfied, and
Theorem 1 follows.
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Proof of Theorem 2. Theorem 2 is established by transforming the feed-
back equations into a form in which Theorem 1 applies. The following new
terms are defined"

(30) k* (k a)(b k)-I,
(31) H*(s) [1 + bH(s)][1 + att(s)l-,
(32) x* ( + *)x,
(33) e* e + ay,

(34) y* e by.

By Remark 2, H*(s) is the Laplace transform of a pair [h0*, hl*(t)]. It
can be verified that

(35)
e*(t) x*(t)- k*(t)y*(t),

where the equations (35) represent a system satisfying the hypotheses of
Theorem 1.

Consequently, e* is in L2[0, and e* il --< const. x* II. Since er
(1 -t" aH)-ler* and (1 -t- all)-1 is bounded from the assumptions on

H*, it follows that [I er I1 =< const. e* ll- Clearly also xr* ll -< [1 + ]*]
"II xr l], and so it may be concluded that e is in L[0, ), and, in fact, e II
-< const. II x il-
Proof of Corollary 1. Corollary 1 follows from the fact that the convolu-

tion of two L. functions is the Fourier transform of an L1 function, which
must approach zero at infinity by the Riemann-Lebesgue theorem.
Proof of Theorem 2r. Only the nontrivial case a 0 will be considered.

To begin with, it can be checked that 1 z7 aho 0 under either assumption
(ii) or (ii)’, and that the nonintersection conditions are equivalent. Next,
it will be recalled that, for any constant a, H(s) is in Mere1 if and only if
H*(s) is in Mere1, by Remark 2. Theorem 2’ can now be deduced from the
following.
Remarl 9. If H(s) and H*(s) are in Mer, thee.t, for ll < tor

which there are no poles of H(s) on the line Re Is} -a, the following
statements are equivalent:

(i) The za-shifted Nyquist diagram of H(s) does not cut the point
-l/a, but encircles it a number of times equal to the number of
poles of H(s) in Re {s} -> .

(ii) H*(s) is in Anl,.+, for some e > 0.
Proof of Remark 9. By the principle of the argument, (i) is equivalent to

the condition that 1 all(s) has no zeros in Re {s} >= -,,. As all* b
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-t- (b a) [1 -t- aH(s) ]-1 for Re s} >- 1, (i) is equivalent to the condi-
tion that H*(s) is analytic for Re {s} -> -ash. Finally, for any function
//*(s) in Mere1, H*(s) is analytic for Re {s} -> -h if and only if H*(s)
is in Anl[h+ for some e > 0, by a simple argument involving the distribu-
tion of the zeros of a function in Mer.

7. Concluding remarks. A stability condition has been derived in terms
of the geometry of the shifted Nyquist diagram (Theorems 2 and 2’) or of the
root locus (Theorem 2"). For slowly time-varying systems the condition
approaches a "frozen-time" Nyquist condition (Remark 6). The proof
involves the construction of a multiplier having a prescribed argument
(Lemmas 2 and 3) and factorization of the gain/c(t). It has been shown
that the fact that the system of Fig. 1 is stable for all positive constant
gains can be characterized by the property that H -t- eI can be factored into
two strongly positive operators (4.1).
Although it has been assumed for simplicity that the gain/c(t) is differen-

tiable, the results of this paper can be extended to a gain having jump dis-
continuities provided its logarithm has a finite variation var [log 1(. )] on
every finite interval It, + T]. The variation condition on/c(t) then becomes

sup var [log/(. < 4.
_o

It is emphasized that although thc conditions derived here restrict the
transform H(s) to be mcromorphic in a half-plane, there is nothing to
prevent H(s) from having essential singularities in the other half-pin,m,
and so the results are applicable to distributed systems.

Appendix. Proof of Remark 2. Only the nontrivial case a 0 will be
considered. The proof will be developed in a series of propositions. Suppose
first that H(s) is in Mer,.

P1. H(s) is the transform of a pair [h0, hi(t)] in some LE,o, by definition
of Mer,o.

P2. limllH(j g0) h0, by P1 and the Riemann-Lebesgue the-
orem. Also, H(s) is bounded in Re s} _-> #0.

P3. limll. H(s) ho in Re {s} _-> -t0, by P2 and a theorem of Phrag-
mn-LindelSf (Titchmarsh [Sb, 5.63]).

P4. Let t be any constant satisfying > -. Then H(z jo)
approaches h0 as I1 -- uniformly with z in Re {s} >= -t, by defini-
tion of Mer,o.

P5. limil H(s) ho in Re Is} _-> -m, by P3 and P4.
P6. The zeros of 1 + all(s) in Re {s} >- t*, lie in a closed bounded sub-

region of Re [s} >- -m, by P5 and the assumption that 1 -t- aho O.
PT. 1 all(s) has at most a finite number of zeros in Re {s} => -,h,
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since a fuaction meromorphic in a closed bounded region can have at most
a finite number of zeros in the region. ,* whereP8. By PT, H*(s) is analytic in some Re {s} _>- -0
la.rge enough constant.

Pg. H*(s) is the transform of a pair in LE, where pl max 0,,
-p0 by an argument based on a theorem of ]?aley and Wiener [9, Theorem
XVIII, p. 60 (with a shift

I-)10. Clearly H*(s) as defined by (5) is the meromorphic continuati.(.m

of H*(s) to -.
Pll. In Re {s} z, Ho* (s) has. a finite mmber of poles by P7, and

H*n (a + jx) approaches h0 uniformly with as I -- , by P4 and the
assumption that 1 -t- aho O.
From P9, P10 and Pll, it caa be coacluded that H*(s) is in Mer,o,,.

The converse part of Remark 2 has a similar proof, which will be omitted.

Poof of Lemma 1. The following proof falls into the category of "energy
balance" arguments, having as its starting point an equation which can be
interpreted as a statement of conservation of energy of
discussion, see [2c, Part I]).

Since f(. is in , there are constants f > 0 and ] > f for which f <= f(t)
a [1 r/rr]if and observe tha this choic of p is=<fforallt_>_ 0. Letp=

small enough to ensure that If(t) p] ep (-2aat) is a nonincreasing func-
tion of and that f(t) p >= 0.
The hypotheses of this lemm assure thut M(s)H(s) is n Anl for
> 0. This condition is sufficient to imply that MH is a bounded map of

L:[0, to L[0, ); in fact, the following is true, although the proof will
be omifred.
Remark A1. Let Z be in 20 for some 0, and further assume that Z(s)

is in A.nl., for , > 0. Then, for any <: . and x(t) with x(t) exp (alt)
L[0, ), (Zx)(t) exp(zlt) is iu L[0, ) and its Fourier transform is

Z(jo r)X(jo ), where X(s) denotes the Laplace transform of x(t).
In particular, if x(t) is in L.[0, and > 0, then Zx(t) is in L[0, o

with Fourier transform Z(j)X(j). Furthermore, by the Parseval theorem,
for any x in L[0, the inequality Zx =< ’(Z)" x II is obtained, where
,(Z) sup_<< Z(j) !.
The following "conservation of energy" equation is obtained from (1)

trod (2), for any T _-> 0"
r

x( t) f( t) [lYIHe](t).dt

(A1) p e(t).[lYIHe](t).dt zt- e(t).(f(t) o).[MI-Ie]() dt-- k(t).y(t).f(t).[My](t) dt.
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The first term in (A1) is bounded using the Schwarz inequality and the
fact that M and H are nonanticipative"

(A2) x( t) f( t) [lYItte]( t) dt <= ]lxr[[’ll

where a dot indicates either the product of two real numbers or of two re,l-
vMued functions, ttere ,(MH) sup_<< M(j)H(jo) as in Remark
A1. It will be shown below that the remaining terms in (A1) satisfy the
following inequalities"

(A3) e(t). [lYIHe](t) dt _-> i er for some tt > 0,

(A4) fo e(t).(f(t) p).[lYIHe](t) dt >_ O,

(AS)
r

y(t).k(t).f(t).[My](t) dt >___ O.

From (A1) through (A5) it can be concluded th,t

where

(A6) A
f.6,[1

and since (A6) is valid for all T _>- 0, the lemma is established.
Inequalities in (A3) through (A5) will be proved using Parseval’s the-

orem. In (A4) and (AS) the exponentially weighted form of Parseval’s
theorem will be needed, and the second mean value theorem (Hobson [7,
Chap. VII, 422] will be used.

Inequality (A3). Let Er(s) be the Laplace transform of e,r(t). Recalling
that MH is nonant,icipative and in Anl, one obtains

e(t). [MHel(t)

(AT) 1.
M(jo).H(jo). Nr(joo)12 do

2r
(Parseval’s theorem and Remark A1)

(AS) 1 fo Re [M(j).H(j)} Er(j0)] d.

Now M(s)H(s) is in Anl,. Hence, M(s)H(s) is analytic in Re
> za and approaches a limit as Is I- . Consequently, the real part
Re [M(s)H(s)l cannot take its minimum inside the region. Since M(s)H(s)
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is continuous on the boundary, i.e., on Re {s} -8, it follows from (9)
in Lemma l(i) that Re {M(jo)H(jo)l >= . From (A8) therefore,

(A9) e(t) .[MHel(t) dt >= - Er(j)i

Inequality (A4). By construction, (f(t) p) exp (-2a.,t) is monotone
nonincreasing. By the second mean value theorem, there is a point .7" in
[0, T] for which

r

e(t). (f(t) p). [MHe] (t) dt

T

(A10) J {(f(t) p).exp (--2z.t)}.{e(t).[lYIHe](t).exp (2r,t)} dt

T/.

{f(0) p} Jo e(t).[MHe](t).exp (2a8t).dt.

Now f(0) p ->- 0 by construction.. Also, the integral in (A10) is non-
negative by (9), the argument here being similar to the one used in proving
(A3), but with Parseval’s theorem in its exponential version. Therefore
(A10) is nonnegative.
[nequality (AS). The proof here is similar to the proof of (A4), drawing

oa (8) and assumption (it) of Lemma 1, (i.e., on the fact that f(t)k(t)
exp 2rt) is nonincreasing).
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A TIGHT UPPER BOUND ON THE RATE OF CONVERGENCE OF
THE FRANK-WOLFE ALGORITHM*

M. D. CANON’f AND C. ]). CULLUM:
Introduction. The Frank-Wolfe algorithm [1] is a well-known iterative

procedure for computing the minimum of a convex function f(x) over a
convex polyhedron. It was shown by Frank and Wolfe that if : is a solu-
tion to the problem, and xk, lc 1, 2, are the iterates obtained via the
algorithm, thenf(xk) f() <-_ /k for some positive constant a, and for all
/ sufficiently large. Empirical data, moreover, indicate that the rate of
convergence of f(xk) f() to zero is not significantly better than 1//c.
The purpose of this paper is to make precise the phrase "not significantly
better than 1/]". In particular, we shall prove under usually satisfied
:ssumptions that no matter what e > 0 and a :> 0 are, f(xk) f()
>_ a//c+ for an infinite number of k.
For simplicity in presentation, we have taken f to be a positive definite

quadratic form. To the specialist, however, it will be clear that the same
result can be obtained as long as f is convex, twice continuously differenti-
ble, and the Hessian matrix, 02f()fOX, evaluated at the optimal solution, is positive definite.

Finally, to avoid possible confusion, we point out that Frank and Wolfe
also gave in [1] a separate algorithm for solving quadratic programming
problems which converges in a finite number of steps. The algorithm
referred to in this paper is the Frank-Wolfe convex programming algorithm.

1. Problem statement. We shall consider the following quadratic pro-
gramming problem P"

Minimize

f(x) 1/2.(x, Qx) - (x, d)

subject to the constraints

Bx<c.

Here Q is u positive definile symmetric n X n matrix, B, d and c are s X n,
n X 1, and s X 1 mtrices, respectively. We shall assume that problem P
hus solution, und so without loss in generality we shall assume that the
set of feasible solutions is bounded.

* Received by the editors October 16, 1967, and in revised form May 9, 1968.
International Business Machines Corporation, San Jose Research Laboratory,

Sn Jose, Californi 95114.
$ International Business Machines Corporation., Thomas J. Watson Research.

Laboratory, Yorktown Heights, New York 10598.
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For the purpose of analysis, it is convenient to restate problem P in the
following equivalent form. The set t {xlBx <_ c} is a bounded convex
polyhedron. Let a, i 1, 2,.... l, be the extreme points of this set; t
is the convex hull of its extreme points, i.e.,

lx]x A, E= 1, >= 0},

whereA is mn X matrix whose columns are the a,i 1, 2, ...,1.
Problem P cen be stated in the following form"
Minimize

subject to the constraints"

f(x) -(x, Qx} + (x, d}

>=0.

Since a - ; is compact and convex, and f(x) is continuous and strictly
convex, problem P has a unique solution in x, which henceforth will be
denoted by 2.

Let Vf(x) Qx -- d. When specidized to problem P, the Frank-Wolfe
algorithm reads as follows:
FW-ALGomTM: Given x It, select a such that

(a, Vf(x)} rain (a’, Vf(x)},
i=1,

and let s (a z). If (s, Vf(x)) >= O, then x solves problem P.
Otherwise, let ),. be such that

min f(x + s) f(x -f- s),
X>0

(1.1) k

and set

g rain {,, 1},
(1.2)

x+ x - lkS.

Repeat the above procedure with x+ replacing x.
For later reference, let us note that if x A, with ’ 1 and

In this paper is the empty set, 02 is the relative boundary of , and 2 its
relative interior.
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>= 0, and l, is a vector whose i0th component is one and whose remaining
components are zero, then it follows from (1.2) that- #kli,]

/

Ak+I, with +1 1 and + >_- 0. We may then write"

+ > 0, l 1,2,x+ A+I, + 1,

where

(1.3) +1 (1 g), -t- .:l,, ]c 1, 2, ....
Concerning the above algorithm, Frank and Wolfe established the fol-

lowing result.
THEOREM 1. Let "2 be the solution to problem P. There is an integer K and

a constant a > 0 such that for all lc >= K, f(x) f(2) <= nile.
Remark. In particulur, it follows that f(xk) -- f(2), so that x

since 2 is the unique solution to P.
The principal result of this pper is contained in the next theorem.
THEOREM 2. Let 2 be the solution to problem P, and suppose that
(i) : Oft,
(ii) xk -( f for infinitely many lc . [1, 2, }.

Then, for every constant a > 0 and for every e > O, f(x) f(2)
for infinitely many lc 1, 2, }.
Some remarks are in order concerning the hypotheses made in Theorem

2. Properties (i) and (ii) guarantee that the algorithm does not terminate
in a finite nmnber of steps. The real reason for imposing them, however,
is more subtle, and will be discussed in detail in 3. We point out that in the
majority of practical problems property (i) holds and, although i may not
appear obvious, the same remark also applies to (ii). In any case, if property
(i) holds, and x ft is chosen so that

f(x) <-f(a) for i 1,2,...,1,

then it is easily shown that property (ii) holds.

2. Proof of Theorem 2. We shall assume throughout this section that
the hypotheses of Theorem 2 are satisfied. We begin by proving two lemmas
which will be useful.
]EMMA 1. Let b,, n 1, 2, be a sequence of real numbers such that

the series __[ bn ]diverges. Then, for every e > O, E:=k bn 1/]l+e for
infinitely many lc {1, 2, ..-I.

Proof. The proof is by contraposition. Suppose there is an e > 0 and
an integer K such that for k >= K,

(2.1) b, <- 1,/k+.
---k

We shall prove that the series b, converges. Equivalently, since
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b b n(+’)%-(+’) -< ( bn2l*) 1/2 ( 1/+’) 1/2

by the Schwarz inequality, and the series 1/n1+ converges for > 0,
we shall prove that the series " +o, n converges. Using (2.1) we hvc

=K =k k=K =k

Now

and since

it follows that

k=K =k =K k=K

[ 1 bl+ K+

1 E bn2( bld’e- KI+) E 1/l?+’.
1 + ,= =

Since e > 0, the series on the right converges, and so the series on the left
converges. By (2.1), the series b converges, and, therefore, the series

2 I+, n converges.
LEMMA 2. Let 0 <-_ b, < 1 for n 1, 2, .... Then, II’= (1 bn) ----> 0

if and only if the series b, diverges.
(A proof of this lemmu can be found in any good text on infinite series.)
Returning now to the iterative procedure described in 1, we prove the

following elementary propositions.
I)ROPOSITION 1. There is an integer K such that for all
min{k, 1} k < 1.

Proof. Since x for any/c 1, 2, it follows that g > 0 for
k 1, 2, ..., so thatf(x+) < f(x) for k 1, 2, .-.. If 1, then
x+ x -t- (a’ x) a which, in view of our above remark, can occur
for only a finite number of
By Proposition 1, (1.2) and (1.3) can be written in the form

(2.2) Z >= K,
+ (1 ),) -4- },l,

where

(2.3) X <s, vf(x,)>
<s,, Qs}

s (a’ x).
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Substituting (2.3) into (2.2) we have, for k >- K,

1f(x ) f(x )

PROPOSITION 2. There is a constant fl such that (s, Qs} > 0 for
k 1,2, ....

Proof. Since Q is positive definite symmetric matrix, it is well known
that

(s,Qs} ls[I for k 1,2,...,

where > 0 is the smallest eigenvalue of Q. Thus, to prove the proposition,
it suffices to show that there is a constant fl such that s fl > 0 for
k 1, 2, .... We claim that 2 a for ny i 1, 2, l, for otherwise
2 would be an extreme point of , and the itertive procedure would
terminate in finite number of steps. Hence, there is fl such thut

lla- 2 2fl > 0 for i 1,2, ...,1.

Since x 2, the result now follows.
PROPOSITION 3. The series h diverges.
Proof. The proof is by contradiction. Suppose that the series

converges. By (2.2),

for all k K. Moreover, by Proposition 1, we have that 0 h < 1 for.= (1 X) a > 0, and soall k K. Thus, by Lemma 2,

(2.5) +
for all k K. Recall that 0, so that belongs to some face (or edge)
of the polyhedron . Let a, i I 1, 2, ---, 1}, be the extreme points
of which also lie in this face. Now, by assumption, x for infinitely
many k {1, 2, }. Consequently, there is an integer L
with

x A.
,? 1,

O,

and such that for some s i (the complement of I) f > 0. To simplify
notation we assume that L K, so that

(2.6) fg+ a’ > 0
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for all k >= K. The sequence /k}kl is bounded and, therefore, has a con-
vergent subsequence, say --+ . Since z A with 1 and
k, >- 0, and x -+ 2, we have that 2 A with 1 and >= 0.
Using (2.6) we conclude that ’ > 0 and, hence, that s I; but s (_ ],
and so we have arrived at a contradiction.

Proof q[ Theorem 2. By (2.4), for k >- K,

1 k--1

f(x) f(2:) [f(xu) f(2)] -,)- (s, Qs,}X,,
nK

and, since f(x) --) f(2), it follows that the right-hand side converges to
zero. We may then write

Let/3 be the positive constant envisaged in Proposition 2, and let
Then

f()- f() >= Z: x,
C =k

and, since the series X diverges (Proposition 3), it follows from Lemma
1 that for any e > O, f(x) f(2) >= ot/lc+ for infinitely many
lc {1, 2, }. It is now easy to see that this inequality must hold in-
finitely often for any real a > 0 and > 0.

3. Some further observations. In the preceding section it was shown that
under usually sat;isfied assumptions the series diverges, and so, in
the sense of Lemma 1, we obtained an upper bound on the rate at which,2 tends to zero. It is clear, therefore, that the result of Theorem 2
remains valid under the simple hypothesis that the series ’ X diverges.
The following example illustrates a case when this series converges.
Example. Take n 2, 3, and

aa col(0, 1), a col (2,0), col (--2,0).

L(z) (") + (x ),
where 0 -<_ e _<_ 1 and will be specified later. We denote this problem by
P. The solution . to P is clearly given by (0, e), and the level sets
will be circles centered at (0, e).

Case 1. Let 0 < e < 1. First note that lies in the interior of the con-
avex hull of the vectors a, a, and that it has a unique representation

as t convex combination, of the a, i.e.,

ea At- --(1 e)a: + 1/2(1- e)aa.
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(0,0
(-2,0)

(b)
FI(}. 1

As a starting point for the iterative procedure, we take xl a col (0, 1 ),

col (1, O, 0).

In the case 1/2, the first few iterates xk are shown in Fig. 1 (a). The reader
should have no diffieult,y in seeing that for every/c 1, 2, and every
0 < e < 1, eithersk (a z) or s (a xa,), or equivalently,
s (a z) for any lc 1, 2, .... It is also clear that 0 < X0(e) < 1,
/c 1, 2, -.., and that the iterative procedure does not terminate in a
finite number of steps. By (1.3),

/ ( x),/ z , 2,

and so, recalling that 1, we have that
k--I

, H(1- x,,).
nl

Since 2 has a unique representation, , (, . Since e, i follows that

H ( x()) ,
so that by Lemma 1, the series X(e) converges for every 0 < e < 1.
Indeed, it can be shown that the rate at which f(z) f(2) converges
to zero is geometric.
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Case 2. Let 0. In this case (see Fig. l(b) ), 2 (0, 0) belongs to the
boundary of ft. If the iterative procedure is again initiated at xl a,
then it is clear that xk t for all k 2, 3, .... By Proposition 3, for
e 0, the series ),k(e) diverges.

Concerning the above example, one may conjecture that, loosely speak-
ing, the rate at which f(x) f(2) tends to zero becomes more and more
like 1/k as e tends to zero.

Acknowledgment. The uthors wish to thnk their colleague D. Chzan
for supplying the proof for Lemma 1.
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EXISTENCE THEOREMS FOR OPTIMAL CONTROLS OF THE
MAYER TYPE*

LAMBERTO CESARI
In the present paper we give existence theorems for weak and usual

solutions of (one-dimensional problems) of calculus of variations and opti-
mal control written in the Mayer form.
In previous papers [1], [2] we have given a few of such theorems for prob-

lems written in the Lagrange form. These theorems were based on certain
properties of variable sets in E, particularly on a modification of Kura-
towski’s concept of upper semicontinuity, which we denoted as property
(Q). Subsequently this property (Q) has been investigated by others [3],
[6], [9]. We required the property (Q) as a hypothesis in our "Closure
Theorem II", as well as in the ensuing existence theorems in [1], [2]. Closure
Theorem II is connected with the use of Helly’s selection process on certain
components of a minimizing sequence in our paper [1] (the same Helly’s
selection process has been subsequently used for the same purpose also by
,IcShane [7] and Nishiura [8]).
In the present paper we show first (2) that certain growth conditions

as those used in our erlier paper [1], as well as others used in the papers by
B.cShane [7] and Nishiura [8], necessarily imply property (Q), or variants
of it, for the sets under investigation. We also show that a much weaker
form of the same growth condition (2, 4), though not strong enough to
ssure property (Q), is still capable of assuring the equiabsolute continuity
of the componets of the minimizing sequence for which not Helly’s but
Ascoli’s selection process is being used. In 3 we prove a "Closure Theorem
III" which extends slightly our previous Closure Theorem II of [1] uder
Yariant of property (Q).
In 4 and 5 we prove new existence theorems for optimal usual and weak

solutions of Mayer-type problems of the calculus of variations and optimal
control, nd again in these theorems we require property (Q), or variants
of it, as a hypothesis. These properties (Q) re certainly stisfied under the
growth conditions metioned above. The existeacc theorems of 4 and 5
extend in a number of ways previous existence theorems. As in [1] we first
prove existence theorems for usual optimal solutions (4), nd then we ob-
tain existence theorems for weak solutions (Gamkrelide’s sliding regimes)
as simple corollaries (5).

* Received by the editors January 29, 198, and in revised form April 16, 1968.
J" Department of Mathematics, The University of Michigan, Ann Arbor, :Michigan

48104. This research ws supported ia part by US-AFOSR GraC 942-65 t The Ui-
versity of Michigan.
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1. The concept of upper semicontinuity of variable sets and some of its
variants. As usual let t, x, u be variables, El, x (x1, x) E,
u (u1, um) Era. Given any set F in a Euclidean space, we shall
denote by cl F and co F the closure and the convex hull of F, respectively,
so that cl co F denotes the closure of the convex hull of F.

Let A be a fixed closed subset of the tx-space E1 X E, and, for every
(t, x) A, let U(t, x) be a given subset of Era. For every (, ) A and
> 0, let N(, ) denote the set of all (t, x) A at a distance -<_ from

(, ), and let U([, , ) U U(t, ), where the union U is taken over all
(t, x) N([, "2). Thus U([, 2) U(t, x, ) for every i 0.
The set U(t, x) is said to be upper semicon.tinuous (in the sense of

Kuratowski) at the point ([, a) A, or, briefly, U(t, x) has property (U)
at ([, 2), provided

(1) U(, ) na cl u(t, x, ).

We say that U(t, x) has property (U) in A if U(t, x) has property (U) at
every point (, 2) A. A set U(t, x) possessing property (U) is necessarily
closed as the intersection of closed sets. Note that in verifying property (U)
at (g, 2) all we have to prove is that

since the opposite inclusion is trivial. In other words, we have to prove that
2 f’l el U(, a, ti) implies 2 ff U(, 2).

In [1] and other papers we made extensive use of property (U), together
with an analogous property, or property (Q), for convex closed sets. For
every (t, z) ff A let Q(t, x) be a given subset of the x-space E. We say
that Q(t, x) has property (Q) at the point (, 2) A provided

(2) Q(’, 2) n, cl co Q(, :,
We say that Q (t, x) has property (Q) in A if it has the property above at
every point (, a) A. A set Q (t, x) possessing property (Q) is necessarily
closed and convex as the intersection of closed convex sets. Note that, in
verifying property (Q) at (, 2), all we have to prove is that

Q(, 2) n co Q(, 2, ),

since the opposite inclusion is trivial. In other words, we have to prove that
n cl co Q (g, 2, ti) implies 2 Q (, 2). In [1] we used property (Q) as

one of the assumptions in Closure Theorem II [1, p. 386], as well as in the
existence theorems, and analogously we use property (Q) in Closure
Theorem III of the present paper, and in the existence theorems.

If we interpret Closure Theorem II (or III) as property of lower semi-
continuity (see Remark 8 of 3.1 below), then Brunovsky [3] has proved
that the convexity requirement i property (Q) is not only sufficient, but
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also necessary, under suitable restrictions, for lower semicontinuity. For
further use of property (Q) see also La Palm [6] and Olech and Lasota [9].
We should note in passing that since Q(t, x)

the set co Q(, 4, ) above is the union of all points z E of the form
z kz, where ranges over all / 1,..., , where k >_- 0,

]., V, }tl -- + 1, and z Q(t, x), (t, x) N([, 2),, 1, , for some,, say, , n + 1.
In the present paper we shall need a slight variant of property (Q).
For every (t, x) A let Q(t, x) be a given subset of the -space E+,

(z, z) (z, z, z), and let Q(t, x) denote the projection of
((t, x) on the z-space E.. We say that Q(t, z) has property (Q) with re-
spect to Q(t, x) at the point ([, ) . A provided

(3) (0, ) E l cl co (,
implies 2 Q (, 2). We say that Q (t, x) has property (Q) with respect to
)(t, x) in A if it has the above property at every point (, 4) A. Note
that (3) implies trivially that

since the latter relation is the proiection of (3) in E. For the sake of
brevity we may refer to the property (Q) relative to ((t, x) as property

(i) If Q (t, x) satisfies property (Q), then Q (t, x) stisfies property (Q)
relative to ((t, x).

Indeed for property (Q) we must only verify that - Q(, 2) when both
l cl co Q(, 4, ) and (3) holds. Thus property (Q) is a weakening of

property (Q) for the sets Q (t, x). In other words, property (Q) for Q (t, x)
implies property (Q) for Q (t, x).

(ii) If (t, x) satisfies property (Q), then Q (t, x) satisfies property (Q)
relative to (t, x).

Indeed if ((t, x) has property (Q), then. (3) implies (, ) (, 2),
and hence Q(, 2) since Q is simply the projection of ) on the z-space.
In other words, property (Q) for )(t, x) implies property (Q) for Q (t, x).
The following trivial example shows that property (Q) implies property

(Q) neither for Q (t, x) nor for Q (t, x).
Indeed, take A [0 =<. =< 1, 0 =< x =< 1], n 1, and let us write z, z

z 0 < z _-< 1],instead of z, z. Let us tke Q [(z, z)[z -Q [zl0 < z =< 1], both(and Qindependent of (t, x).Wehavehere
co ((t) [(z, z)[ z >= z- for0 < z < 1, or (z 1, z 1)], cl co )(ti) E,
lclco(ti) E, whereE [(z,z)]z >= z-, 0 < z =< 1].Thus(2, 1) E,
but (2, 1) Q. Analogously, coQ() [z]0 < z _-< 1],clcoQ(ti) E,
clcoQ(ti) E, whereF [zl0 _-< z _-< 1]. Thus (z 0) CF but
(z 0) ( Q. Thus, neither ) has property (Q), nor Q has property (Q).
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Nevertheless, Q has property (Qr). Indeed, if (z, z) E, then z >= z-I,
0 <z =< 1, andthusz Q.
We give below a few criteria for properties (Q) and (Qr).

2. Some criteria for properties (Q) and (Qr).
2.1. We have mentioned in [1] that certain hypotheses, analytic in

character, guarantee property (Q) for some particular sets Q(t, x) which
were considered in [1] (see, for instance, [1, p. 379, (xvi), and p. 405, (ii)].
Below we shall give other examples of greater generality of criteria for
properties (Q) and (Q).

Let A be a given set of the tx-space, for every (t, x) A let U(t, x) be
a given subset of E, and let M be the set of all (t, x, u) El+n+ with
(t, x) A, u U(t, x). Given two functions (t, x, u) (1, 8),
G(t, x, u) in M with G >= 0, we say that is of slower growth than G as
u -- uniformly in A provided, given e > 0, there is some (e) > 0
such that (t, x) A, u U(t, x), ul >= implies I(t, x, u)l
<= eG(t,x,u).

(i) Let A be a given compact subset of the tx-space En+, for every
(t, x) A let U (t, x) be given subset of the u-space E,, and let M be the
set of all (t, x, u) with (t, x) A, u U(t, x). Let fo(t, x, u), f(t, x, u)

(f,..., f) be given continuous functions on M, and for every
(t,x) A let (t, x) betheset of all (z,z) En+ such thatz ->- fo(t,x, u),
z f(t, x, u), u U(t, x). If f0 >= 0, if 1 is of slower growth than f0 uni-
formly in A, if f is of slower growth than f0 uniformly in A, if U(t, x) has
property (U) in A, and (t, x) is convex for every (t, x) A, then. (t, x)
has property (Q) in A.
Remarl 1. Statement (i) is modification of [1, p. 405, (ii)] and is a

particular case of (ii) below as we shall show in Remark 4.
Remar] 2. If f0 -M0 for some constant M0 0, then statement (i) still

holds provided 1 and f are known to be of slower growth than f0 - M0 uni-
formly in A. Because of statement (i) and this Remark, the requirement
made explicitly in Theorem I of [1, p. 390] that the sets ((t, x) defined
there possess property (Q) in A is now a consequence of the other hypothe-
ses of the same Theorem I.
Remark 3. It is easy to verify that U(t, x) has property (U) in any closed

set A if and only if the set M is closed. Thus, the hypothesis of the closure of
M very well replaces the property (U) of the sets U(t, x) in satement (i)
as well as in all other statements of the present paper.

2.2. Let f(t, x, u) (f f,), G(t, x, u) be functions defined on M,
and let the components f of f be divided into two sets" f, i 1, a,
andf, i a - 1, n, for some 0 -<_ a n, so that either set may be
empty. Letz (z1,...,zn) E, (z, z) (z, z, z’) E+I’
denote variable points in E and E+. For every (t, x) A let Q(t, x),
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Qa(t, x) denote the sets

q(t, x) [z z f(t, x, u), i 1, a, z >= fi(t, x, u),
i a-- 1,...,n,u U(t,x)] E.,

(4) Qo(t, x) [z (z, z)[ z >= G(t, x, u), z fi(t, x, u),
i 1, a, z _>_ f(t, x, u), i a + 1,... n,

u U(t, x)] E+.
Thus, Q is the projection of Qe on the z-space E,.

(ii) Let A be given compact subset of the tx-spce E+, nd for every
(t, x) A let U(t, x) be given closed subset of the u-space E,. Let M be
the set of all (t, x, u) E+n+, with (t, x) A, u U(t, x). Let G(t, x, u),
f(t, x, u) (f, f,) be given functions defined on M, let G, f,+, f
be nonnegative nd lower semicontinuous on M, and let f, f be con-
tinuous on M. Let 1, f, f, be of slower growth than G (as u --uniformly on A, and assume that U(t, x) stisfies property (U) in A. If
the set Qv(t, x) is convex for every (t, x) A, then Qa(t, x) stisfies
property (Q) in A. If only Q (t, x) is known to be convex for every (t, x) A,
then Q(t, x) stisfies property (Q) with respect to Qa(t, x) in A.
Remark 4. This statement (ii) contains (i) s prticulr case, as can be

seen by tking G f0, a n. The proof of (ii) which is given below is
modification of the one in [1, p. 405, (ii)].
Proof of (ii). We have to prove thut

implies Qv(, ), where Q, Q ure defined in (4), and Qa(, 2, ),
[J Qa(t, x), where [J ranges over M1 (t, x) Nn(, ). In the second

lternative we have to prove that the sme assumption implies z Q(, ).
Let be a given point (20, ) cl co Qa(, , ), nd let us prove

thut Qe(, ). For every 6 > 0 we hve (2o, ) cl co Q_(, , 6),
nd thus for every t} > 0, there are points
distance as small as we wnt from (, ). Thus, there is sequence of

z) co Qa(, 2, 6) such thatnumbers ti > 0 nd of points (z,
i -- 0, - as/ - . In other words, for every integer k there is
system of points (t, x) N(, ), , 1, u, sy u n + 2, cor-
responding points (z, z) . Q(t, x), points u U(t, x),
and numbers }, >= 0, , 1, u, such that

1 . k,
O E )kk" Zkz h’ z z i 1, n,

(5) zk >- G(t x’ u)
i 1, a,ze fi( te, x, u

i > fi( t, x, u) n,zk i= a+ 1,."

Zk (Zk1, Zk ), Zk
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where ,y 1, v, where ranges over all "y 1, v, and tr ,
-0 -ixff 2, k -- , z ---> z z , z z i 1,. n, " 1, v, as

The numbers hff are all between 0 and 1; hence we can extract a subse-
quence, say still [/], such that hr __. as k -- , 1, , and hence,

-00 <= r _<_ 1, ’ 1. The third relation of (5), where z -- z, z >= 0,
0 >= 0, zk >= 0, shows that for every l at least one of the numbers z is
between 0 and z nd therefore forms bounded sequence. We may well
ssume, by a suitable reindexing, that this occurs for the same index . By
a suitable extraction and further reindexing we may ssume that certain
sequences [z, k 1, 2, -..], "r 1, , are bounded, 1 =< ’ _<- v,
while the remaining sequences [z, k 1, 2, ...], , -t- 1, ..., ,, are

0"unbounded, and actually z -- -t- as k -- o, , -t- 1, . Then
the fifth relation of (5) shows that the corresponding sequences
[uff, k 1, 2, ], , 1, v, are also bounded sequences because of the
assumed property of growth of G. We can further select a subsequence, say

0, Z0rstill [k] such that u--ur,z -- as / , 1,..-,. Now
ur U(tk", xr) with tff --. , xff -- as k -- , 1, , and uff- ur

as k - o, 1, , and consequently, ur cl U(, , z) for every
> 0 nd all k sufficiently large. Hence ur f3 cl U(, 2, ) U(, )

since U satisfies property (U) at (, ), and finally (, , u) M,
1, ,. Since G is lower semicontinuous and f, f, are con-

tinuous on M, the fifth and sixth relations of (5) as k -- yield
O’y Z0z - _>_ (, , u),

i 1, ,a, " 1, v.z ---* z f,(, , ur),
0rFor v -t- 1, v, we have z - -t- o as k - , and the third rela-

0Ttion of (5), where ll numbers ?,, z re nonnegtive, shows that__
r 0 as k -- "r v q- 1, v. If we denote by ]’, " sums

ranging over , 1,... v, and , v 1,... v, respectively, then
the first relation of (5) shows now that 1 ]t }J, since kr 0 for

go and all numbersv -t- 1, . The third relation of (5), where zk --r, z are nonnegative, shows tlmt the sequences r,,r r0r, k 1, 2, ],
+ 1, , are bounded. Thus, we cn take the subsequence, say

still [k], such that ffzr -- A => 0 as/c --. . Then, taking the limit as
k -- on the same third relation (5), we obtain, , hz0.z rz + Ar >= ’or oTSincezk -- q- ask- +o,andz >= G(ff, xff, uff) for/ v -t- 1,
.-, v, then, for each such /, either G(tff, x, uks) is unbounded, nd

then also ur is unbounded, and we can tke the subsequence so that
u + , a(C, x, u) - + s + or G(t, , u) is
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bounded, and then uk is also bounded, and we can take the subsequence so
that uk

T - uT as k -- m, and G(g, , u) z liminf G(t, x, u) as
m. Now f, i 1,.-., a, re of slower growth than G; hence

z i= 1 ,wheree 0ask , v + 1,...,v.k k

The fourth relation of (5) then becomes

wherekzT-+A_>_ O,e -+Oas/c-+ , v + 1,
as lc -- , we obtain

v, and finally,

Thus

XTzO,Z >

i= 1,...,a,

z >- G(, , u),

z f,:(t, x, u),

1 ’ kT, i= 1,.-.,a.

iv . i a+ 1, n, " 1 vz -z >=L(,,u),

Finally, the fourth relation of (5) yields 2 >_- * XTz, i a + 1.,
Thus, we have

where z -- andv >= aT/2 > 0 for k large. This implies that the sequences,
[zT,/c 1, 2, ...], y 1, v ,, a + 1, n, are bounded. There

iTis, therefore, a subsequence, say still [/], such that z -- z*T >= 0 as
lc -- m, i a + 1, n, and the seventh relation of (5) and the lower
semicontinuity of the functions f,+, f yield, as 1 - m,

2> E* ki’lz Tz i a+ 1, n,

iTwe havez ->_= 0, z >- 0, X >_- 0, andhence,

Ez &z i a+ 1,...,n,

SinceX > Ofor/ 1,... v Ofory v + 1,...,v, byasuit-
* , 0 forable reindexing we have X > 0 for 1,..., v,, + 1, v with v* ’. On the other hnd, the relation 1 ’ X

shows that v* 1. Thus 1 v* v’ v. If we denote by * ny sum
ranging over all 1, v we have 1 Since X X > 0
ask m fory 1,...,v we have also aY g aY/2fory 1, ..-, v

and all lc sufficimtly large. For i a + 1, n in the fourth relation of
(5), or
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0 >= , Xz0,

= *z, i 1,...,

>= *z, i

1 *.
These relations show that (0, ) (0, , ) co Q(, ), nd
since Q is by hypothesis convex, we hve Q(, ); hence Q possesses
property (Q). If Q (, x) only is known to be convex, then the sme rel-
tionsboveshowtht ( ) coQ(,);hence Q(,)
nd Q possesses property (Q). Statement (ii) is thereby proved.

9..3. For existence theorems for wek solutions we shll need wright

of statement (ii) bove. Using the sme notations s in 2.2, let
p (p, p), 1, ...,n 1, be new wrible stisfying p

[P P" ->- 0,j 1, , p z7 - p 1], where r is the simplex so
defined. Let v (u(1), u(1)) denote a new variable, where each u() is
an m-vector required to vary in U(t, x); thus u
or equivalently, v [U(t, x)]’. Letz (z,..., z) E, 2 (z, z)

(z, z1,..., zn) E+. As in 2.2 let f(t, x, u) (f,... f,)
G(t, x, u) be functions defined on M, let a be n integer, a 10, ", n }, nd,
let f*, G* be the new functions

f*(t, x, p, v) (f*, f*) pf(t, x, u()),
(6)

where . ranges over allj J, ,/. Then G* and* are defined on. the
set M* of all (t, x, p, v) E,++,+,,, with (t, x) A, p I’, v U’(t, x).
Note that, if G, or a given f, is continuous on M, then G*, f* are con-

M*.tinuous on If G, or f, is nonnegative and lower semicontinuous on M,
then G*, f* are nonnegative and lower semicontinuous on M*. For every
(t, x) ff A, now let R(t, x), Ro(t, x) be the sets

R(t, x) [(z, zn)I Z f*(t, x, p, v), i 1,

z >=f*(t,x,p,v),i a+l, ,n,p

(7) Ro(t,x) [(z z z)iz> G*(t,x,p,v)
Zz =f*(t,x,p,v),i 1, .,, >=f (t,z,p,v),

i a 1,...,n,p F,v U’(t,x)] En+.
Thus, R is the projection of R on the z-space E. As it was pointed out in
[1], the sets R(t, x), R(t, x) are the union of all convex combinations of
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points of Q(t, x) c E and Qa(t, x) c E+I. Therefore, if we take g n + 1
or g n + 2 or larger, the sets R(t, x), Ra(t, x) are certainly convex
R(t, x) co Q(t, x), Ra(t, x) co Qe(t, x).
Note that any set co R([, 4, ti) is the union of all points z E E of thc

form z , h,z, where , ranges over all , 1, v, say, v n + 1
or higher, where h, => 0, , 1,..., , hi + ,, 1, and
z, R(t,, x,); that is, z, f* t, x, p v, i 1,..., a,

z >_- fi (t, x, p, v), i a + 1,..., n, v U"(t, x),
(t, x) N(, ), - 1,..-, . If p and v re denoted by
p (p,...,p),v (u,...,u,),then .p. 1,, 1,..., ,
and

i 1 0

i= -- 1,’" ,n,
and then co R(t, x, ) is the union of 11 points z (z, z") of the form

zi= X E ’,P,Zi, i= 1,..., a,

(,Zj Zj ZI

with p O, p 1, z f(t x u), u U(tv x),
(t, x)6 N([, ), 1,..., v, j 1,..., . In other words,
co R(, , ) can be defined in terms of the original functions f instead of f*,
provided we take suitable convex combinations of v original points z.
An analogous remark holds for the sets Ra(t, x). These remarks show
statement (ii) above holds not only for the sets Q, Qa, but also for he
R, Ra. In other words, we hve the following stemcnt.

(iii) Let A be a given compact subse of the tx-spacc E+I, and for
every (t, x) A let U(t, x) be a given closed subset of the u-spcc E,.
Let M be the set of all (t, x, u) R.++ with (t, x) A, u U(t, x).
G(t, x, u), f(t, x, u) (f, A) be given functions defined on M, le
G, f,+, f be nonnegative and lower semicontinuous on M, nd let
fx, f, be continuous on M. Let 1, f, f, be of slower growth thn G
(as ul uniformly on A, and assume that U(t, x) stisfies property
(U) in A. If the set R(t, x) is con.vex ’or every (t, x) A, th.ea R,(t, x)
satisfies property (Q) in A. If only R (t, x) is known to be convex for every
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(t, x) A, then R(t, x) satisfies property (Q) with respect to Ra(t, x)
in A.

Remarlc 5. The interest of statement (iii) lies in the fact that the growth
property for fi and G required in (ii) and (iii) does not imply n analogous
property for fi* and G*, as we shall show by n example in 5.

3. A closure theorem.
3.1. A sequence of continuous vector functions xk(t), tl <- <-_ t2,

lc 1, 2, is said to be convergent in the p-metric toward u continuous
vector function x(t), t <- <= t, tl, t finite, provided t --, t, t2 t
as/ -- , and x(t) --> x(t) as l uniformly in (- , -t- (where
all x, x are extended in (- , + by continuity and constancy outside
their interval of definition). We showed in [1, p. 371] that this mode of
convergence corresponds to suitable metriztion of the space of ll
continuous vector functions x(t), a <- b, defined in arbitrary finite
interwls of the real line.

Hypotheses. Let A be a closed subset of the tx-spce E. X E, for every
(t, x) A let U(t, x) be , closed subset of the u-space ’,, let M be the
set of all (t, x, u) 1++, with (t, x) A u U(t, x) and let ](t, x, u)

(f0, f) (f0, f, f) be a given continuous vector function on M.
Let (t, x) ](t, x, U(t, x) E+, Q(t, x) f(t, x, U(t, x) E,,
and let a be given integer, a 0, ..., n}.

Let x (y, z), y (x, x"), z (x"+1, x"), and let A be of
the form A Ao X I,_ where Ao is closed su.bset of E,+. Let us assume
that U(t, x), ](t, x, u) are indepede.t of z, thtt is, th:tt U(t, x’) U(t, x" ),

x", (y, ). Then ((t, x),.(t, x, it) ](t, u) whenever x (y,
Q(t, x) ulso re independent of z. We shll often use the simple notations
U(t, y),](t, y, u), (J(t, y), Q(t, y). Let us ssume that U(t,y) has property
(U) in A0.

x) x tk < < t,Let x x y z
sequence of trajectories in En+ for which we assume that the a-vector
y(t) (x, x:) converges in the p-metric toward the absolutely
continuous (AC) vector function y(t), tl -<_. t: t -- t t -- t and

(t)) (x,? + x?) con-that the (n a + 1)-vector (x(t),z ,x ,...
verges pointwise for almost all (t, ts) toward ,n vector (x(t), z(t)),

xt =< _-< t, with x (t) - (t), z(t)
Let us assume that x(t), z(t) admit of decomposition x X + S,
z Z - S, where (X(t), Z(t)) is an AC vector functionin Its, t], where
dS/dt O, dS/dt 0 a.e. in Its, t2], that is, (S, S) is singular and possibly
discontinuous in It1, t], and where X(tl) x(t), Z(t) z(t), S(t) O,
(t) o.

Instead of A A En_a, we may well assume A of the form
A Ao )( I, where I is finite interwl of E_,, I [a,+, b,+l]
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X [an, bn], and each xki(t), tlk _-_ t2k, l 1, 2, has range in [ai, b],
i=a-l,...,n.
CLOSVRE THEOnE III. Under the hypotheses above, if (t, x) is convex for

every (t, x) A and has property (Q) in A, then (t) (X(t), y(t), Z(t) ),
tl < < t2 is a trajectory in n+ If Q(t, x) only is lnown to be convex for
every (t, x) A and has property (Q) with respect to (t, x) in A, then
X(t) (y (t), Z (t)), t <= <= t, is a trajectory in E.
Remart 6. In C].osure Theorem III as usual we have said that

2(t) (x, x), t <= <- t is a trajectory in En+ provided that 2 is AC in
[t, t] and there is u measurable function u(t), ti - t2, such that"
(a) (t, x(t)) A for every It1, t:]; (b) u(t) U(t, x(t)) a.e. in [t, t];
(c) dx/dt fo(t, x(t), u(t) ), dx/dt f(t, x(t), u(t) .e. in Its, t.]. Analo-
gously, x(t), tl t2, is said to be a trajectory in E,, provided x is AC
in [t, t2], and there is a measurable function u(t), t <-_ <= t, satisfying
(a), (b) bove, and (c’) dx/dt f(t, x(t), u(t)) a.e. in [t, t]. Thus, if
2(t) (x, x) is u trajectory in En+l, then x(t), t <= <= t, is a trajectory
in E. In any case, we say that u(t), t <_- <_- t, is u control function, or a
strategy, and that u generates the trajectory x in En (or 2 in E+).

Remarlc 7. Closure Theorem III and its proof below are simple modifica-
tions of [1, pp. 386-389, Closure Theorem II]. (Actually the first part of
Theorem III differs only in notations from Theorem II.) As we shall see in
4 (proof of Existence Theorem B), sequences verifying the convergence
properties of Closure Theorem III re obtained by applying subsequently
Vitli’s extraction process on the components x, i 1, ..., a, and Helly’s
extraction process on the components x, i 0 and i a - 1, n. For
the last process it is sufficient to know that the sequences x (t), t =<__ =< t2,
k 1, 2, are equibounded with equibounded total variations; in par-
ticular, this is certainly the case if we know that, say, f >_- -M, M con-
stant, and that the sequences [xk(t) [x0 (t) re bounded (i 0 and
i=a+l,...,n).
Remark 8. Closure Theorem III (as well as Closure Theorem II with non-

negative f0) can be expressed as a lower semicontinuity statement" if the
functions f, i 0 and i a - 1, n, are nonnegative, then

(8) X(t) -< liminfx (t),

(9) X(t) =< liminfx(t), i a z 1,..., n,
where actually lira inf can be replaced by lira as/ -- , since the extraction
process has been performed already. Under the weaker alternate hypothesis
of Closure Theorem III (Q(t, x) convex with property (Q)), then only (9)
holds. This will be clear from the proof below, and holds even if the
hypothesis fi .>= 0 is replaced by f >= -M, M constant, i 0 and

i c -t- 1, n. In the particular case in which I[x, u] fo(t, x, u) dt
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(Lagrange problems) and a n, then xk --> x in the p-metric, and Closure
Theorem III (under the hypothesis convex with property (Q)) (or
equivalently Closure Theorem II of [1]) can be expressed as follows" there
exists a control function u (t), tl -< -<_ t2, such that

(10) I[x, u] <= lim inf I[x uk].

Finally, it should be noted that there may be other control functions, say,
u, still generating x, and for which (10) does not hold. For instance, for
a =n= 1,f=u(1-u),f0=v,m 2,(u,v) U= [v>-u,O-<-u<= 1],
then Q [z[z u(1 u), 0 <-_ u <= 1] [zl0 -_< z =< 1/4],= [(0, z)lz>_-u,z=u(1-u),o=<u-_< 1] [(z,z)[z1/2(1

1 4z) /2), 0 =< z =< 1/4]. Both Q and ( are independent of t, x, are convex,
and trivially satisfy property (Q). If we take uk(t) v(t) O, x(t) O,
0 =< =< 1, k 1, 2,..., thenx(t) 0, 0 =< =< 1, and x is generated by
bothu(t) v(t) 0, 0 _-< =< 1, and by(t) O(t) 1, 0 _-< -<_ 1. Here
I[x, u, v] I[x u v] O, t 1, 2, I[x, , ] 1, and (10) holds
for u but not for .

3.2. Proof of Closure Theorem III.Let u(t), t, <= <= t lc 1, 2, ...,
be a given strategy generating the trajectory 2 (xk, xk). Then the vector
functions

(t) )’ (t) (Z’(t), X’ (t)) (X’ (t), y’ (t), Z’ (t)),

tl _-<_ h,
(11) ., o, z.’(t)),(t) :c (t) (: (t), x (t) (x’(t), y (t),

t <-_ <-_ t, k 1,2,...,

are defined almost everywhere, a,re L-integrable, and

(t) (t, x(t), u(t) ((t, x(t)

for almost all [h, t2], lc 1, 2, ..., and hence also 4k(t)
f(t, y(t), uk(t)) a.e. in [h, t.], k 1, 2, -... We have to prove that

(t, y(t), Z(t) A for every [h h], and that there is a measurable
function u(t), h <= -<. t, such that

.’(t) (X’(t), y’(t), Z’(t)) f(t, y(t), u(t)), u(t) . U(t, x(t)),

for ahnost all [h, t2] (only u(t) U(t, x(t)) and X’(t) (y’(t), Z’(t))
f(t, y(t), u(t)) i the weaker alternate hypothesis of Closure Theorem

lII).
First t- tl, t -- t; hence if (h, h), or h < < t, then

h, < < t for all / suiIiciently large, and (t, y(t))(= Ao. Since
y(t) -- y(t) as lc and A0 is closed, we conclude that (t, y(t) . Ao for
every with h < < t, and finally (t, y(t)) . A0 for every h _< N t since
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y(t) is continuous at tl andt t2. Finally, (t,y(t),Z(t)) Ao X E,_,,
or (t, X(t)) A, h <= <= t2.
For almost all [h, t2] the derivative [x’ (t), X’ (t) (x’, y’, Z’) exists

and is finite, So’ (t), S’ (t) exist, So’ (t) 0, S’ (t) 0, and xk (t) -- x (t),
z, (t) -- z(t) as l --) . Let to be such a point with h < to < t. Then, there
is a o" > 0 with tt < to o" < to 4- z < t2, and, for some/co and all lc leo,
also t < to--(r < to-F < t. Let Xo X(to) (yo, Zo), yo y(to),
Zo Z (to), Zo z (to), So S(to). We have S’ (to) 0, hence z’ (to) exists
and z’ (to) Z’ (to). Also, we have z (to) -- z (to) zo, x (to) -- x (to) xo.
We have y(t) -- y(t) uniformly in [to o-, to -F ] and all flmctions y(t),

y(t) are continuous in the same interwfi. Thus, they are equicontinuous in
[to r, to + ]. Given e > 0 there is a ti > 0 such that t, t’ 5/ [to r, to
It t’[ =< , lc -> /o implies y(t) y(t’)[ _-< e/2, y(t) y(t’)] =<_ e/2.
We can assume 0 < ti < (r, t =< e. For any h, 0 < h -< it, let us consider the
averages

h

h-’ _f. (to + s) ds h-’[iT(t,, + h)
(])

h

h- Jo -=h [z,(to+ :m (to + s) ds t (to)]

Y, z)both of which are (n + 1)-vectors, X (X, y, Z), x: (x,
Given n > 0 arbitrary, we can fix h, 0 < h N 6 < z, so small that

m, (to)l --< ,,
S(to + h) S(to)! < ,/S, IS(to + h) S(to)[ <

h

This is possible since h- .L 4, (to + s) ds -- 4’ (to) and [S (to -F h) S (to)
---. 0, [S(to + h) S(to)]h- -. 0 as h -- 0+. Also, we can choose h in such
a way that z(to + h) Z(to + h), x(to + h) --+ x(to + h) as lc -- .This is possible since z(t) -- z(t), xk(t) -- x(t) for almost all t, h < < t2.
Having so fixed h, let us take Ic _>_ /o so large that for lc = kt we have

y,(to) y(to)l, y,(to + h) y(to Jr" h)l min[nh/8, e/2],

z(to) z(to)l, zo(to + h) z(to + h)l =< vh/16,

x (to) x(to)l, x(to + h) x(to + h)l = nh/6.

This is possible since y(t) ---. y(t), z(t) --> z(t), x (t) -- x(t) both
to and to -t- h as lc -- . Then we have

h [y(to --F h) y(to)] h-l[y(to Jr- h) y(to)]l

" -1h lye(to + h) y(to -F h)]! + -h [y,(to) y(to)]l
<_ h-’ nh/8 4- h- nh/8
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Analogously, since z Z + S, we have

h-’[z(to d- h) z(to)] h-’[Z(to -J- h)

]h-l[z(to -[- h) z(to)] h-l[z(to -[- h) Z(/o)]

[,(t)

+ -’[(to + h) (to)]l

h-’(h/16) + h--(h/16) -F h--"(h/8) /4.
By the sme trgument nd x X + S, we huve

-1 X[ (to + h) (to)] h-[X(to + ) (to)I]
Finally,

We conclude that, for the chosen vluc of h, 0 h 5 z, ad every
k k, we hve

(13) m--(o) ,, ,,- .m ,, ],(to) -(t,,) /.

For0 s hwenowhve

y(to + ) (o) ,(to + ) ,(to)] + ,(o) (to)

](to+ s) to] ,
](to + s, y(to + s), u(to + s) O(to + s, y(to + s) ).

Hence, by definition of Q(to, yo, 2e), lso

(to + s) ](to + s, y(to + s), u(to + s) (to, yo,

for Mmost MI s [0, hi. The second integral relation (12) shows that we
hve lso

since ghe lager is a closed convex seg. inally, by relagions (la) we deduce

nd hence,

+ (to) [cl co Q(to, uo, 2) ]. c .+.



EXISTENCE THEOREMS FOR OPTIMAL CONTROLS 531

Here by the notation [H]:, we denote the set of all points of E+ a a
distance =< 2v from some point of the set H. Here > 0 is an arbitrary
number, and the set in brackets is closed. Hence,

4)(t0) cl co )(t0, y0,2e),

and this relation holds for every > 0, and therefore,

(14) )(t0) (X’(to), X’(to)) clco(t0, y0, 2e) En+l.

Since Q (t, x) has property (Q) we conclude that

.’(to) (X’(to), X’(to)) . O(to, yo) ](to, yo, U(to, yo)),

where ] does not depend on z, and where yo y(to). Thus, there is some
point (t0) U(to, y(to)) such that

.’(to) ](to, y(t(,), ").

This holds for almost all to [tl, t].
We shll now m,ke use of the implicit function theorem in the following

form. Let S be a measure spnce, Y t Hmsdorff space, and X a metrizble
space which is the union of a countable number of compact metrizable sub
sets. Let F’X-- Y be a continuous function, md g’S Y mesurable
function, such that g(S) F(X). Then there exists measurable fuuction
w’S X such that F[w(s)] g(s) for all s

_
S (see [10, Theorem 1]). Let

S be the set of ll [tl, t.] for which X-"(t) ](t, y(t), u) i’or some u
U(t, y(t) ).As we have proved above S is measurable and mes S t -t.

Let X M0 be the set of all (t, y, u) with (t, y) Ao, u U(t, y). Then
M0 is a closed subset of E+,+, since U(t, y) has property (U) in the
closed set A0 (Remark 3), and M0 is the union of the countubly muny
compact subsetsM [(t,y,u) M011tl -t- [Yl + ]uJ =< /],lc 1,
2, .... Let Y E2+a+n and let g:S Y be defined by g’t --> (t, y(t),
2’(t) ), nd let F’Mo -- Y be defined by F" (t, y, u) -- (t, y, ](t, y, u)).
Then g is measurable and F is continuous, and g(S) F(Mo). There
exists, therefore, a measurable w’S---> Mo such that g Fw, or w:t --(t, y(t), u(t) with ’(t) ](t, y(t), u(t) for all ( S, nnd u(t) is meas-
urable in S. By defining u(t) arbitrarily in [t, t] S, we conclude thut
there is a measurable unction u(t), t -<- <= t, with X’(t) ](t, y(t),
u(t)), u(t) U(t, y(t)) a.e. in It1, t]. The first part of Closure Theorem
III is thereby proved. If we know only ht Q(t, x) is convex nd has
property (Q) with respect to Q(t, x), then from (14) we conclude that

X’(to) Q(to, yo) f(to, yo, U(to, yo)).

By the same trgumet bove we then conclude that there is mesurble
function u(t), t <= <- t with X’(t) f(t, y(t), u(t) ), u(t) U(t, y(t)
a.e. in [t, t]. The statement of Closure Theorem III is thereby proved.
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If we assume f,,: _>-_ 0, i 0 a,nd i a -t- 1, n, we conchlde that all
functions xki(t), xi(t) are monotone n.ondeereasing, and so are the functions
X(t), S(t). Since Si(h) 0 we conclude theft-the same S;(t) are non-
negative, and

X(t,) x(t) S*(h) -<_- x(t:) limx (t),
(15)

i- 0 and i n I,.-. ,n"

If we assume only fl --Mi, ]]//: a constant, then.f; -}- li O, and then
all functions x (t) -t- Mi(t hk), x(t) -Jr- M(t h), X(t) + M(t h),
S(t) are monotone nondeereasing; hence Si(t) >= 0 as before, and relation
(15) holds without changes. Also Remark 8 is thereby proved.

4. Existence theorems for usual solutions.
4.1. We consider Mayer-type optimization problems. We are concerned

therefore with a differential system

dx
f(t, x(t), u(t)),

dt

with boundary conditions

(h, x(h), t:, x(t.) B c E:n+,
with a functiontl to be minimized"

I[x, u] e(h, x(h), t:, x(t) ),

and constraints’

(t, x(t) A, u(t) U(t, x(t) ).

Let us define the terms more precisely.
Letx (x, / u (u, ,u .E,andletxdenote

the space variable and u the control variable. We shall denote by A a given
subset of the tx-space E X En, and for every (t, x) A let U(t, x) be a
given subset of the u-space E,,. Let M denote the set of all (t, x, u) with
(t, x) A, u U(t, x). Let G(t, x, u) be a real-valued function and
f(t, x, u) (fl f) be a vector-valued function, both defined on M.
Let B be a given subset of the tlxitx.-space En+, x (x x ),
x (x,. x), and let e(h xl t. x) be a given real-valued function
defined on B.
We shall say that a pair of functions x(t), u(t), h <= <-_ t, is admissible

provided" (a) x(t) is absolutely continuous (AC) in [h, t]; (b) u(t) is
measurable in [h, t]; (c) (t, x(t)) A for all [h, t]; (d)
u(t) -( U(t, x(t)) a.e. in [h, t.]; (e) dx/dt f(t,x(t),u(t))a.e, in [h, t],
(f) (h, x (tl), t, x(t)) B. The point (h, x (h), t, x (t)) will be denoted
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briefly by n(x), and we seek the minimum of the functional I[x, u] e[(x)]
in the class of all admissible pairs x, u.

4.2.
EXISTENCE THEOREM A. Let a, n, 0 <-_ a -<- n, be given integers, and for

X (X X (X‘+1, Xlety, zdenotey (x, ,x ),z ),so
that x (y, z). Let Ao be a compact subset of the ty-space E,/ let I be a finite
closed interval of the z-space E,_, I [a,+, b,+] X [an b], and
thus A Ao X I is a compact subset of the tx-space E+ For every (t, y) . Ao
let U(t, y) be a given closed subset of the u-space Em satisfying property (U) in
Ao. Let Mo be the set of all (t, y, u) with (t, y) Ao, u U(t, y), and
M Mo X I is then the set of all (t, x, u) with (t, x) A, u U(t, y),
x (y, z). Let f(t, y, u) (fl, fn), H(t, y, u) be functions defined on
Mo, and assume that f,..., f, are continuous on Mo, and that H,
f,+ f, are nonnegative and lower semicontinuous on Mo. Let us assume
that for every i 1, a, the following growth condition holds"

(.) Given > 0 there is a constantM >= 0 such that If(t, y, u)l -<_- M
+ eH(t, y, u) for all (t, y, u) Mo.
For every (t, y) Ao let Q,(t, y) be the set of all (z, z1, z) E+
defined by

Q,(t, y) [lz _>- H(t, y, u), z f(t, y, u), i 1, a,
(6)

z >- f(t, y, u), i a + 1, ..., n, u U(t, y)] E+,

and assume that Q,(t, y) is convex for every (t, y) Ao and satises property
(Q) in Ao. For every (t, x, u) M, x (y, z), we shall writer(t, x, u)

f(t,y,u),H(t,x,u) H(t,y,u), U(t,x) U(t,y),Q,(t,x) Q,(t,y).
XlLet B be a closed subset of the txtx-space E,+:, x (x,...

a+l
X2 (X21, x2n), and assume that B is independent of x x.
hence B is of the form B Bo X En_a where Bo is a closed subset of E,++,.
Let e(t x t x) be a real-valued continuous function defined on B, which is

a+lmonotone nondecreasing with respec to each ariable x Let be
the class of all admissible pairs x, u (defined as in 4.1 in relation to the sets A,
U(t, x), M, B and functions f and e), for which It(t, y(t), u(t) is L-in-
tegrable in [t t] and

(17) H(t, y(t), (t) dt -<_ M

for some constant M > O, and assume that is not empty.
Then the functional I[x, u] e[v(x)] has an absolute minimum in (and

the optimal pair satisfies (17)).
The hypothesis H >__ 0, f _-> 0, i a + 1, n, can be replaced by the

weaker requirement H >__ -K0, f >_- -K, i a + 1, n, for some
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constants Ko, K, provided we replace (,) by the analogous requirement
[f(t, y, u)l <= M + e[H(t, y, u) + K0].
For any of the indices i 1, a, condition () can be disregarded,

provided we impose a further restriction on t, namely, that t is made up of
only those pairs x, u for which (17) holds, and also

dxl(18) dt < M

for some constants Me 0 and p > 1, and at least all i 1, a for
which () does ot hold.
The condition that Qt(t, y) (if convex) satisfies property (Q) is certainly

satisfied if we know that 1, f, f, are of slower growth thn H uni-
formly in A0, and then conditions (), i 1, a, are all satisfied.

Finally, H may be one of the functions f,+, f,, sy H f,, and
then 0 a n 1, and a relation (17) is satisfied by all admissible pairs
x, u with M b, a,. In this situation, if we disregard (17), then instead
of Q. we mty consider the simpler sets Q(t, y) of all z (z, z") E,
defined by

Q(t, y) [z z f(t, y, u), i 1, a, z f(t, y, u),
(9)

i + , n, u U(t, y)] E,.

Then we shull replace the requirements concerning Q,(t, y) by unulogous
requirements concerning Q(t, y). In other .words, we shall require that
Q(t, y) is convex for every (t, y) A0 and that Q(t, y) satisfies property
(Q) in A0.
Remarl 9. In Existence Theorem A, if the set A is of the form

A Ao X En_,, where A0’ is only a closed subset of the y-space E,, then
conditions should be added to guarantee that, for any minimizing sequence
of admissible pairs x, u satisfying (17), the trajectories are contained in
some compact set A0 X I as required in Theorem A. (For examples of such
conditions, see [1] and [7].) Having stated above Existence Theorem I and
a number of its wriants, we proceed now with proof of the theorem.
Proof of Existence Theorem A. Let us denote by i the infimum of the

functional I[x, u] e[v(x)] in . Since (x) B (A X A), A compact
und B closed, then B (A X A) is compact, nd the continuous function
e is bounded there. Thus, i is finite. Let x(t), u(t), ta t,
1 1, 2, be minimizing sequence for I[x, u] in . Then (t, x(t) A
or [h, t:], and if we write x(t) (y, z), then (t, y(t)) Ao,
z(t) I for t [t, t]. Also, u(t) U(t, y(t)) a.e. in [ta, t],
’ H(t, x(t), u(t)) dt 5 M, 1, 2, ..., e[n(x)] as .and i
lk

Since A is compact, the sequences [t], [t] are bounded, and we have
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d =< t =< t. =< $ for all/ and some constants nd . Also, a <= x(t) <= bi
for all [h, t], k 1, 2, i a -t- 1, n.

Let x denote u new vrible satisfying dx/dt H(t, x, u) and x (t) O.

Let x(t) H(r, x(r), u(r)) dr, t -_< <- t,/c 1, 2,..- and

then a0 0 =< x(t) _-< M bo for the same nd/. We denote by A the
compact set A’ A X [a0, b0] En+
We shll prove that the functmns x (t), t _-< _-< t, ] 1, 2,...

i 1, 2, a, are equiabsolutely continuous. Nmely, we shll prove that
their derivatives dx/dt are equiabsolutely integrable in [t, t]. Given
e 0, let a e/2M nd let E denote any mesurable subset of [t, t].
Then lf(t, y, u)! <= M + aH(t, y, u), i 1, a, for all (y, t, u) M0
and hence,

f dxff/dtl dt f f(t, y(t), uo(t))] dt

[M, q- (rHt, y(t), uo(t)] dt

_<_ M,, meas E q- o- M
M meus E + e/2.

Thus, for meas E <- e/2M we hve f, dx/dt dt <- el2 + /2

x,0 (t),i 1,... a, nd this proves our nssertion. Thus, the functions
t _-< =< t,, k 1, 2, i 1,... a, are equibounded nd equi-
absolutely continuous, nd the sequences [t], [t] are bounded.

First, we extract subsequence, say still [/], such that t ---> t, t --. t,
nd hence a =< t -< t =< . Then we consider the same functions x:i(t),
i 1, a, as defined in the whole interval [a, ] by continuity nd
constancy outside [t, t.]. By Ascoli’s theorem there is further subse-
quence, say still [k], such that x(t) --. x(t) as k --> uniformly in [a,/],
and the limit functions x(t) are not only continuous but lso AC in
and constant outside [t, t]. We shall restrict x(t) to the interval [t, t].

x (t) x - x (t),Because of the uniform continuity we have x
i(x (t) x ---+ x x t.,.) as 1-+ m, i 1, a. Since y (x*, x"),

we can write ye(t,) ---+ y(t,) (x, ..., x ), y(t=) -+ y(t,.)
x") asl--+ .(X2

We shall now consider the n a q- 1 sequences of scalar functions

() g(, (), ()) &,

( yk(r),x t) xk q- fi(r, u(r)) dr, i a q- 1, n
lk

t < < t k 1,2,...
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where H >- 0, fi >_- 0, and hence these functions are monotone nondecreasing
and also equibounded as mentioned before, We shall extend these functions
in the fixed interval [a, ] with a =< tlk =< t2k -< , tl tl, t2 -- t, by con-
tinuity and constancy outside [t., t]. By Helly’s theorem in [, ] we shall
now extract a further subsequence, say still [/], such that x(t) -- xi(t) as
/ -- for every [a, ], i 0 and i a - 1, n. We may well
extract the subsequence in such a way that the limits also exist"
x =limx(t),x =limx(t)ask-- ,i=0andi=a-l,...,n,
and then x 0.
Note that the functions x(t), a =<- -<_ , i 0 and i a - 1, n,

are monotone nondecreasing in [, ], possibly discontinuous, constant in
.X[a, t) and in (t, b]. Let us prove that x (t -t- 0), x(t 0) _-< x2.

Indeed, if we take any with t < t and any e > 0, there is some/
Xsuch that x () < () + e, t < for every/ >- /, and hence xk(tl)

=< x(’) -< x() -t- e, and finally, as/c , also x -_< x() -t- e. Here e is
Xarbitrary, hencex =< (),andas’--t + 0, weobtainx =< x(t 0).

Analogously, we cn prove that x(t 0) _-< x..
We shall restrict x(t) to the interval [t, t] and modify xi(t) at t and

t, if needed, by tking x(tl) x lim x: (t), x(t) x lira x (t),
i 0 and i a + 1, n, so that, in particular, x(t) 0. By doing
this the functions x(t), t _<- _-< t2, are still monotone nondecreasing in

X[t, t], and we still have lim x (t) (t) for all (h, t.), i 0 and
+1 x) we have thus z(t) -- z (t)i= a-l- 1,...,n. Sincez- x ,...,

(x"+, x ), z(t) -- z(t) +
(x. ,x as well asx(t)

< M1 We hve obviously a < x(t)-- x(t) O, x(tk) --> x(t:) x
_-< b for all t -< t-< t.andi= 0andi= a-l,...,n.
Note that (t, y(t) Ao for t =< =< t implies (t, y(t) Ao for every
(h, t), and by continuity of y we conclude that (t, y(t)) A0for every

t -< --< t2. Thus, (t, y(t), z(t)) A Ao X I, and (t, x(t), y(t),
z(t)) A’ A X [a0, b0] for all t -_< =< t.
We shall now decompose x’(t), t =< <- t, i 0 and i a -t- 1, n,

into an AC part X (t) and a singular part S(t), x(t) X(t) -V S(t),
S Swith X(t) x(t) xl, (t) O, X, both nondecreasing, hence

i 0 andS(t) ->_ O, andx’ X X(t) =< X(t) X =< x(t),
i=aq-1,...,n.

Let (v, u, u, v=+, v) (v, u, v) denote an auxiliary
control t-vector, m q- n a q- 1, let (t, y) be the set of 11 E
with u (u, ..., u") U(t, y), v >- H(t, y, u), v >-_ fi(t, y, u),
i a -t- 1, n. Let(t, y, u),f(t, y, u) denote the (n + 1)- and n-vector
functions

7f(t, u) (]o, A, ,’",

](t, y, u) (f f ],+ ],),
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with f’o v, O v, i a q- 1,
differential equations

n. Finally, we consider the auxiliary

d2/dt f(t, y, u), x (x, x1, x’) (x, x) (x, y, z)

or

dx/dt v, dxi/dt fi(t, y, u), i 1,

i=a-l,dxi/dt v, ..., n,

with costraints (t) U(t, y(t)) or

v(t) >- H(t, y(t), u(t) ), u(t) U(t, y(t)),

v(t) >= f(t, y(t), u(t)), i a q- 1, ..., n.

Note that (t, y, (t, y)) Q,(t, y), ](t, y, (t, y) Q(t, y), where
Q,, Q are the sets (16) and (19), and Q. satisfies property (Q) in A0.
Let us prove that U(t, y) satisfies property (U) in Ao. By Remark 3 it is
enough to prove that the set Mo of all (t, y, v, u, v) 1,+,+, satisfying

v > H, v => fi, i a q- 1, n, is closed.(t, y) Ao, u U(t, y),
Indeed, having already denoted by Mo the set of all (t, y, u) with
(t, y) Ao, u U(t, y), we see that 1o is the cylindrical set of all (t, y,
v, u, v) with (t, y, u) Mo and v >--_ H(t, y, u), v >= f(t, y, u),
i a + 1, n. Here Mo is closed because Ao is compact and U(t, y)
has property (U) on Ao. Ou the other hand, for every integer lc, the part
21ro of 3r0 contained in the slab u <= k, v <= lc, vl <= k, i a + 1,

n, of E:++ is the set of all (t, y, u, v, v) with (t, y, u) in the compact
v>f(t,y,u) > O,set [(t, y, u) io, ul < 1], -and v > It(t, y, u) > O,

i a + 1, n, and this set Mo is compact since H, f are nonnegative
and lower semicontinuous. Thus Mo is closed, and U(t, y) has prope_rty
(U) on Ao. Thus, by Closure Theorem III (first part, with A’, 2, U, f
replacing A, x. U,]), there is a measurable function R(t) (v,u, ...,

a+l vnu v (v, u, v), tl -<_ =< t2, with t(t) (t, y(t)), hence)=
u(t) U(t, y(t)), such that

dX
v >= H(t, y(t), u(t)) >= O,

dt

dx
fi(t, y(t), u(t)), i 1,

dt

dX
v >- f(t,y(t),u(t)) >= O, i a- 1,

dt

a.e. in [t,, t:].
We shall take
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Z(t) H(r, y(r), u(r) dr,

Z(t) x + f(r, y(r),u(r)) dr, i a- 1,...,n,

and thusxl Z(tl) < Z2 Z(t2)where h <= <= t2, x. x (h),
<= X(t2) =< x2,x 0, i 0andi a- 1, ...,n. Let us consider
now the pair (Z, X), u, or

(t) (Z(t), y(t), Z(t)
(20)

(ZO, x Z,+, Z) u(t) h < < t2)’’’X

This pair obviously satisfies properties (a) and (b) of 4.1 with A’, 2
replacing A, x. Also, it satisfies property (c) sinceA’ A0 X I [a0, b0],
and [x, Zi] [x, Zi(t2)] c [x, xi] [ai, bd, i 0 and i a - 1, n.
In particular, for i 0,

0 <= H(t,y(t), u(t)) dt Z(t) <__ X(t) <= x(t) <= bo M.
1

Obviously the pair (20) also satisfies properties (d) and (e) of 4.1.
Finally, B is closed and B is independent of x"+, x’; hence,

v(x) (h y(h), z(h,), t, y(t2), z(t) B

yields, as lc-- ,
(h, y(h), Z(h), t, y(t,), Z(t) B,

and also

(X) (tl, y(h), Z(h), t, y(t2), Z(t2) B.

We conclude that the pair (20) satisfies properties (a)--(f) of 4.1 and’
therefore, is an admissible pair. Hence X, u belongs to ft, and e[n(X)] >_- i"

,+ and henceOn the other hand, e is monotone nondecreasing in x x
a+l.t x: x Ze[n(X)] e(h x x

e(h, z(h), , z()) Jim e(n(z)) i,

or e[ (X) N i. Thus, e[(X) i, and he main par of Nxisenee Theorem
A is ghereby proved.

If for any of he indices i 1, ..-, he corresponding relation (7)
does no hold, bu a is resgrieged o only hose admissible pairs which
satisfy (17) and eorresponding relations (18), hen he equiabsolue

dz/d ean be proved by ghe classical argu-ingegrabiligy of ghe funegions
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ment based on the HSlder inequality. The remaining part of the proof of
Theorem A is unchanged.

If 1, fl, "’, .]’ are of slower growth than H, then all conditions (’i),
i 1, c, are necessarily satisfied as we shall prove in 4.3 below, and
the set QH(t, y), which is assumed to be convex, necessarily satisfies prop-
erty (Q) in A0 as proved in 2.2 (ii). Then Q(t, x) trivially satisfies
property (Q) in A.

Let us ssume H f. Then for any admissible pair x, u we have

0 <= H(t, y(t), u(t)) dt x(t) x’(tt) <= b a

that is, a relation (17) is necessarily satisfied with M b, a. If, in
the present situation, we disregard (17), then we can repeat the proof of
Theorem A disregarding the auxiliary variable, x. We shall apply again
Closure Theorem III (first part, with n + 1 replaced by n) and we prove
that X (y, Z) is a trajectory in E,.
Under the weaker hypothesis H -Ko, fi >--_. -K.i, i a nu 1, n,

the proof of Theorem A remains the s’me since we already noticed that
Closure Theorem III still holds under this weaker hypothesis. Note tha
now x(t) + K(t h) is monotone nondecrcasing in [h, t]; hence the
same holds for the AC part, say, X(t) + K(t tl), and for the singular
part, say, S(t); hence, S(t) >=__ 0 as before, i 0 and i a r- 1, n,
and the argument is the same.

Existence Theorem A is thereby proved together with the variants stated
at the end of t,he theorem.

Remarlc 10. Condition (y) for H 0 stated in Theorem A, as well as
the modified form for H _>_ -K0 staed at the end of the same Theorem A,
can well be replaced by the following more general hypothesis"

(y() Given. > 0 there is t nonneg,’:ttive locrlly L-integrable function
M.(t), real, such thai; Ifi(/, y, u) :<.- 211.(,) -t- ell(t, y, u) for all
(t, y, u) ( M0.
Obviously (’r) for e 1 implies that H(t, y, u) >_- --M(t) for all

(t, y, u) - M0. The proofs are the same. This remark applies also to the
remaining theorems of the present paper.

4.3. Here we denote by A any compact subset of the tx-space E
and for every (t, x) A we denote by U(t, x) any closed subset of the
u-space E. Let M be the set of all (t, x, u) with (t, x) A, u U(t, x),
and G(, x, u) >= 0 and let f(t, x, u), f(t, x, u) be given functions
defined on M.
The condition "(a) 1, f, ..., .f are of slower growth than G >= 0

on A" should be compared with the more general condition "() G _-> 0
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and given e > 0, there is some constant M such that fi(t, x, u) <__ M
+ eG(t, x, u) for all (t, x, u) M, i= 1, a."
Let us prove that (a) implies (/3). Indeed, given e > 0 there is some

(e) >_- 0 such that (t, x) A, u U(t, x), u ->_ (e) implies
Ifi(t, x, u) <- eG(t, x, u), while (t, x) A, u U(t, x), ul <= t(e),
together with the continuity of f on the compact set S [(t, x,
(t, x) A, u U(t, x), ul (e)] implies Ifi(t, x, u) <-- M for some
constant M. If M dcnotes the largest ot’ the constants M:, i 1, 2,
-., a, then Ifi(t, x, u) <- M -k- eG(t, x, u) for all (t, x, u) (_ H. The

compactness of the set M is a consequence of the property (U) tor U(t, x)
(see Remark 3) and the compactness of A. We have proved that if A is
compact, U(t, x) satisfies property (U), and f, -.., f, re continuous,
then (a) implies (/3).

Let us prove that there are functions f, G sutisfying (/) but not (a).
Indeed, take

f(t, x, u) t:u + 1, G(t, x, u) tu

.for (t, x) A [0 _-< =<- 1, 0 =< x 1],u U (-, -- ),M A X U. Neither 1 nor f.i is of slower growth than G uniformly in
A. On the other hand, given e > 0, let M 1 -? e-. For u ->-.- e- we hve
f <- ti u I/ 1 <= u I-tu + 1 _<__ M-- eG; for ]u ]_-< e we have
f t] u -- 1 e- -- 1 M, -<- M,-- eG. Thus, the functions f, G,
defined above satisfy () but not (a).

4.4.With the notations of 4.3 we consider here the sets

Q(t, x) [(z z u), i 1, a,..,
z >- f(t, x, u), i a + 1, ..., n, u U(t, x)] En,

Qat, x) [(z, Z Z Z)[ G(t,x,u),z =f.(t,x,u),i= 1,...,a,

z >=f(t,x,u),i a + 1,...,n,u U(t,x)] E,+.

While condition (a) is strong enough to guarantee that the sets Q(t, x),
if convex, have property (Q), md that the sets Q(t, x), if convex, have
property (Q) with respect to Qe(t, x) as proved in 2 (i),instead condition
(/3) does not imply these properties. This can be seen by the following
example. Let n 1, a 1, G(t, x, u) f(t, x, u) (1 + u)-,
u U E. Property () holds trivially with M 1, since 0 =< f =< 1
M -< M + G. Here the sets Q Q(t, x), Qa Qo(t, x) do not de-

pend on t, x), and hence Q(6) Qa(t, x, 6) Q( for all (t, x) and 6 > 0,
and the same holds for Q. Here Q is the half-open segment [z[0 < z _-< 1],
Qo is the set [(z,z1) 10 < z _<- 1, z => z],andclcoQe(6) clcoQais

z z z O)the set [(z, )!0 < =<_ 1, >= zl]. Thus, the point (z O, z
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l cl co Qs(8) and (z 1) fl, cl co Q (ti), but neither (z 0, z 0)
belongs to Qs, nor z 1 belongs to Q. Thus, neither Qo has property
(Q), nor Q has property (Q), nor Q has property (Qr). Analogously, for
n 1, a 0, G = (1 +u:)-,thenQ= [z[z > 0],Qa=[(z,zl)]
z > 0, z > 0]; hence clcoQs [(z, z)Iz 0, z 0], clcoQ

[zliz 0]. The situation concerning the points (z 0, z 0) and
z 0 is now the same as before.

4.5. With the usual notation x (y, z), y ff E,, z ff E__,, let A0 denote
a given closed subset of the ty-space E X E., and let A be the closed set
A Ao X 1_ c En+. For every (t, y) A0 let U(t, y) be a given
closed subset of the u-space E, let M0 be the set of all (t, y, u) with
(t,y) Ao,u U(t,y),andthenM M0 X En_,isthesetof ll (t,x, u)
with (t, x) A, x (y, z), u U(t, y). Let (t, y, u), ..., f,(t, y, u)
be continuous functions defined on M0 and for every (t, x, u) M,
x (y, z), let f(t, x, u) f(t, y, u), U(t, x) U(t, y). Let C be a given
compact subset of A, let N be the set of all (t, x, u), x (y, z), with
(t, x) C, u U(t, y), and let G(t, x, u) be a given nonnegative lower
semicontinuous function defined on N. Let C0 be the projection of C on the
space E X E. hence C0 is compact and C0 A0. For every (t, y) Co
we shall denote by C(t, y) the set of all z E_ with (t, y, z) C. Then

CoAoE XE,,
C [(t, y, z)](t, y) Co, z C(t, y)] A A0 X E_,.

Obviously, C(t, y) is a compact subset of En_. for every (t, y) C0.
We shall now define the nonnegative function H(t, y, u) by tking

(21) H(t, y, u) inf G(t, y, z, u)
z C(t,y)

or every (t, y) Co nd u U(t, y). Thus H 0 is defined on the set
N0 of all (t, y, u) with (t, y) Co, u U(t, y).

(i) If G(t, x, u) 0 is lower semicontinuous on N, then H(t, y, u) is
lower semicontinuous on N0.

Proof. First G is lower secontinuous on N and so is its restriction
on the (compact) set C(t, y). Hence, we can replace rain for inf in (21).
Now let (to, y0, Uo) be point of No, und let lira inf H(t, y, u), where
lira inf is taken s (t, y, u) (to, yo, Uo) with (t, y, u) No. Then there is
a sequence (t, y, u), k 1, 2, of points of No with H(t, y, u) l,
nd we huve to prove th H(to, yo, u0) 1. Here 0 , t to,
y yo, u uo, u U(t, y). Ill thesaementistrivil.
Assume 0 < . By the definition of H(with inf replaced by rain),
for every k there is some point z C(t, y) such thut H(t, y, u)

G(t, y, z, u), 1, 2, .-.. The set C is compact, hence closed,
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and thus C(t, y) satisfies property (U) on Co by force of Remark 3. Also,
(tk, yk, z1) ( C;hence [z;] is a bounded sequence, and we can extract a
convergent subsequence, say still [z], with z1, - z0

_
E_,. Now for every

ti 0, we have z C(t0, y0, ti) for l sufficiently large; hence z0 (i el C(to,
y0, ) for every :> 0 and by property (U), also,

z0. f3clC(t0,y0,ti) C(t0,y0)

or (to, yo zo C. Then t - to, y -- yo u -- Uo z -- zo as l - ,
and hence,

G(to yo Xo u0) < lira inf G(t y zk u) lira inf H(t y u) l,

H(to, yo, uo) inf G(to, yo, z, Uo) G(to, yo, Zo, Uo) <= l,

where inf is taken for z (! C(to, yo). The statement is thereby proved.
(ii) If 1, f(t, y, u), i 1, 2, a, are of slower growth than C(t, x, u)

on C, then 1, f, i 1, 2, ..., a, are of slower growth than H(t, y, u)
on Co.

Proof. Indeed, given > 0, there is ,7 () =>_ 0 such that 1 =< G(t, y,
z, u), If(t, y, u) <= eG(t, y, z, u) for all lu >= (e), and hence,

eH(t, y, u) inf [eG(t, y, z, u)] 1,

eH(t, y, u) inf[eC(t, y, z, u)] If(t, y, u) l, i 1, a,

for all (t, y) Co, u U(t, y), and where inf is taken in C(t, y).
(iii) If for every > 0 there is a constant M __> 0 such that If(t, y, u)

<= M - eG(t, y, z, u) on N, then we have ztlso If(t, y, u) <= M
-4- ell(t, y, u) on No.

Proof. Indeed,

M -4- ell(t, y, u) inf [m zr- eG(t, y, z, u)] ->- If(t, y, u) 1, i 1, ..., a.

4.6. In [7] ]V[cShaue has given au existence statement for usual solutions
[7, (13.12)], in which a relation of the form (17) is assumed to be satisfied
by the elements o1 a minimizing sequence, but the same relation need not
be satisfied by the optimal pairs. We shall prove below an existence theorem
of the same type (Theorem B). In Remark 9 we shall show that Theorem
B includes i..[cShane’s statement. An analogous situation will be shown to
occur for weak solutions in 5.
EXISTENCE THEOREM B. Let a, n, 0 <- a n, be given integers, and for

every x x, x), let y (x, ..-,x"),z (x"+1, x), so that
x (y, z). Let Ao be a closed subset of the ty-space E,+, and then A Ao
X E_, is a closed subset of the tx-space E+. For every (t, y) Ao let
U(t, y) be a closed subset of the u-space E, satisfying property (U) in Ao.
.Let f t, y, u) (f f) be a given vector function defined on the set Mo
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of all (t, y, u) with (t, y) Ao, u U(t, y). Assume f,+l, "", f non-
negative and lower semicontinuous on Mo and fl f, continuous on Mo.
Let B be a given closed subset of the tlxt2x2-space E2,+2 xl (x xn),

aU
X2 (X21 X2) and assume that B is independent of x ..., x
Let e(t x t2 x2) be a given continuous real-valued function on B, which is

a-}-monotone nondecreasing in each of the variables x2 x: Let C be a given
compact subset of A, let Co be the projection of C on Ao and let H(t, y, u)
be a given nonnegative and lower semiconlinuous function on the set No of all
(t, y, u) with (t, y) Co, u - U(t, y). Let Q,(t, y), Q(t, y) be the sets
defined by

(22)
Q,(t, y) [(z, z) z >= H(t, y, u), z fi(t, y, u), i 1, o,

z _>-__ f(t, y, u), i a - 1, ..., n, u U(t, y)] 1+,

(23)
Q(t, y) [z z f(t, y, u), i 1, ..., ,

z >= f(t, y, u), i - 1, ..., n, u - U(t, y)]

and assume that Q(t, y) satisfies property (Q) with respect to Q,(t, y) in Co,
and that Q(t, y) is convex for every (t, y) Co. Finally, assume that for
every i 1, the following growth condition is satisfied"

(’i) For every > 0 there is a constant M >= 0 such that If(t, y,
<= M + eH t, y, u) for all t, y, u) No.
Let be the class of all admissible pairs x, u (defined as in 4.1 in relation to
the ets A, U(t, y), B and function f), and assume to be not empty. Assume
that there is a sequence x(t), u(t), t: <= <-_ t. ] 1, 2, of admissible
pairs (elements of) such that" () (t, x (t) C for all [t t], t 1,

l2k

H(t, y(t), u(t)) dt <= M for some constant M >= 02, ...;

and all/c 1, 2, (c) I[x, u] e[v(x)] --> i as/ -- , where i is
the infimum of I[x, u] in .

Then the functional I[x, u] e[(x)] has an absolute minimum in
If we know that Q,(t, y) is convex for every (t, y) Co and satisfies

property (Q) in Co, then the optimal pairs satisfy

f’ H(t, y(t), u(t) dt <= M.
As in 4.2, any of the requirements (v) and (b) may be replaced by a

corresponding restriction (18) on the class .
Also, as in 4.2, the requirement that Q possesses property (Q) with

respect to Q, is certainly satisfied if we know that Q is convex and that 1,
f, f, are of slower growth than H uniformly in Co. In this situation,
all conditions (-), i 1, a, are certainly satisfied.
As in 4.2, the requirement H => 0, f _>- 0, i a + 1, n, can be
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softened into H >-_ Ko f >= K i a + 1, n, for some constants
K0 ,K, provided in (i) we require If(t, y, u) <- M + e[H(t, y, u) - K0].

Finally, if H is one of the functions f,+l, "’, f,, say, H f, then
0 -<_ a =< n 1, and a relation as in (b) is satisfied by all admissible pairs
with M1 b a. We can then disregard requirement (b) and require
as in 4.2 that Q(t, y) is convex and satisfies condition (Q) in Co.

Proof of Existence Theorem B. The same proof of Theorem A holds with
obvious changes, and Co replacing A0. We shall then apply the second part
of Closure Theorem III instead of the first one in order to conclude that
X(t) (y(t), Z(t)) is a trajectory iu E. Then X(t) is proved to be
optimal by the same argument as for Theorem A.
Remark 11. McShane’s statement for usual solutions [7, (13.12)], dif-

fers essentially from Theorem B because of the following two points"
(i) the role of our function H(t, y, u) nonnegative and lower semicontin-
uous on No is taken in [7] by a function G(t, x, u) nonnegative and con-
tinuous on the set N of all (t, x, u) with (t, x) C, u U(t, y),
x (y, z); (ii) insted of the hypothesis "Q is convex, Q has property
(Q), and conditions (,) hold, i 1, a," there is in [7] the hypothesis
that Q is convex and 1, f, f are of slower growth than G uniform].y in
C. If we introduce the auxiliary function H as in 4.5, then the hypothesis
that G is continuous implies certainly that H(t, y, u) is lower semicon-
tinuous, and the hypothesis that 1, f, ..., f, are of slower growth than G
implies that the same functions are of slower growth than H (4.5, (ii)),
that all conditions (,) are satisfied (4.5, (iii)), and Q has certainly
property (Q) (2.2 (ii)). This shows that McShane’s statement [7,
(13.12)], is essentially contained in Theorem B.
Example. Taken 1, m 1, f tu,G tu,0 < < 1,0 < x < 1

U [- < u < -t- ]; then condition () is satisfied; that is, G 0,
and for every e > 0 there is a constant M with fl =< M eG, as we
have shown in 4.3. Also we have H G. On the other hand, the sets
Q, Qa are hereQ(t,x) [zlz tu, - < u < -], andQa(t,x)

[(z,z)iz >= tu,z tu, - < u < +]. If A, say, is the set
A [0, 1], then Q(0, x) [z 0], Qa(0, x) [z _>_ 0, z 0], while
for 0 < < 1, Qa(t, x) [z > g-a(zl) z,-- < <-{-],Q(t,x) =[-
< z < -t- ]. Thus, the set Qa(t, x) possesses property (Q) in A, and the
set Q(t, x) possesses property (Q) with respect to Qa(t, x) in A. Let us
taker1 0,0 =< t-<_ 1, x(0) 0, x(1) 1, letB [t 0, x 0,
0 _-< t. =< 1, x 1], and take e t (problem of minimum time to transfer
x from 0 to 1). Let 2 be the class of all admissible pairs x, u such that

dt <-_ Mo and take M0 sufficiently large that 2 is not Thenempty.

there is an absolute minimum for ely(x)] t. in 2 by force of Theorem A.
Here 1 is not of slower growth than G uniformly in A.
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4.7.We list below only two corollaries of Theorem A for Lagrange
problems. Here we have a functional I[x, u] of the form

(24)
t2

I[x, u] fo (t, x, u) dr,

system of ordinary differential equations dx/dt f(t, x, u) with
x (x1, xn), f (fl, fn), with boundary conditions of the form
(tl x(tl), t2, x(t2) B En+, and unilateral constraints on the space
wrible and the control variable of the usual form (t, x(t)) A,
u U(t, x). Thus the class 2 of admissible pirs x(t), u(t), tl <__ <= t,
is now defined by the requirements" (a) x(t) AC in [t, t]; (b) u(t) measur-
able in [tl, t]; (c) (t, x(t)) A for all [t, t2]; (d) u(t) V(t, x(t))
.e. in [t, t]; (e) dx/dt f(t, x(t), u(t) .e. in [h, t]; (f) (t, x(t), t.,
x(t)) B; (g) fo(t, x(t), u(t)) L-integrble in [t, t].
With the use of the variable x satisfying x(t) 0 and dx/dt
fo(t, x, u), the new vector variable is 2 (x, x1, xn), and I[x, u]
e x thus e is monotone nondecreasing in x, f0, f, f do not

depend on x and B is now replaced by (xl 0) E X B, which is
independent of x.
CorollARY 1 (for Lgrange problems nd usual solutions). Let a,

n, 0 --< a =< n, be given integers, and for eery x (x, x) let y, z denote
y- (x (x"+,,x"),z ,x),sothatx (y,z) LetAobeacom-
pact subset of the ty-space E,+ let I be a closed finite interval of the z-space
E_, so that A Ao X I E+I is also compact. For every (t, y) Ao
let U(t, y) be a given closed subset of the u-space E, satisfying property (U)
in Ao. Let fo(t, y, u), f(t, y, u) (f, f,) be given functions defined
on the set Mo of all (t, y, u) with (t, y) Ao u U(t, y). Assume fo f,+..,f nonnegative and lower semicontinuous on Mo, andre, ..., f, continuous
on M. Assume" (i) that the set Q]o(t, y) [(z, ..., z’) lz >= fo(t, y, u),

i=a--i n,u U(t,y)]z f(t, y, u), i 1,... a, z >= f(t, y, u),
is convex for every (t, y) A0; (ii) the set Q]o(t, y) satisfies property (Q)
in A0 (iii) for every > 0 there is a constant M >= 0 such that f(t, y, u)
-< M + efo(t, y, u) for all (t, y, u) Mo, i 1, a. Let B be a closed
subset of the txtx-space E+ and assume that B is independent of x

x. Let o be the class of all admissible pairs x, u as defined above, and
assume that o is not empty.

Then the functional I[x, u] fo(t, y(t), u(t))dt has an absolute

minimum in .
Note that both conditions (ii) and (iii) are certainly satisfied if (a) 1,

f, f, are of slower growth than f0 uniformly in Ao.
COROlLArY 2 (for Lagrange problems and usual solutions). Let A be a

compact subset of the x-space E,. For every (t, x) - A let U(t, x) be a closed
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subset of the u-space E,, satisfying property (U) in A. Let fo(t, x, u), f(t, x, u)
(fl, fn) be given functions defined on the set M of all (t, x, u) with

(t, x) A, u

_
U(t, x). Assume fo nonnegative and lower semicontinuous,

and fl, "", f, all continuous on M. Assume" (i) that the set Qfo(t, x)
[(z, ...,zn) lz>=fo(t,x,u),zi=f(t,x,u),i= 1,...,n,u

_
U(t,x)]

is convex for every (t, x) A; (ii) the set Qfo (t, x) satisfies property (Q) in
A; (iii) for every > 0 there is a constant M > 0 such that lf(t x, u)
M + efo(t, x, u) for all (t, x, u) . M, i 1, ..., n. Let B be a closed

subset of the hxt.x-space En+ Let o be the class of all admissible pairs x, u
as defined above, and assume that o is not empty.

Then the functional I[x, u] fo(t, x, u)dt has art absolute minimum

in o.
Note that both conditions (ii) and (iii) are certainly satisfied if (a) 1,

f, f. are of slower growth than f0 uniformly in A.
In Corollary 1 the hypothesis f0 => 0, f => 0, i a + 1, n, can be

softened into f0 _-> -K0, f => -K, i a -+- 1, n, for some constants
K0 ,K, provided in (iii) we require If(t, y, u) <= M, + e[f0(t, y, u) -t- K0],
i 1, a. An analogous remark holds for Corollary 2 where a n.
Remarlc 12. Corollary 1 contains as a particular case Corollary 2 (for

a n) and this in turn contains as a particular case Existence Theorem 1
of [1, p. 390]. These statements are thus particular cases of Existence
Theorem A of the present paper. Note that in Theorem 1 of [1, p. 390]
we required the strong growth condition" () there are constants C, D >= 0
and a continuous function (’), 0 -<_ i" < + , with ()/" --. + as

f-- +,suehthat If(t, x, u) <-_ C + Dlul,fo(t, x, u) (lul) for
all (t, x, u) M. This condition ($) certainly implies (a) of Corollary 2,
and then both conditions (ii) and (iii) are satisfied. As mentioned in
Remark 2 of 2.1, the hypothesis that Q satisfies property (Q) of Theorem
1 in [1, p. 390] has been proved here to be a consequence of the other h.y-
potheses of the same Theorem 1. Note that condition () certainly im-
plies f0 >_- -K0 for some constant K0.

5. Existence theorems for weak solutions. Instead of the problem
sketched at the beginning of 4, we consider here the differential system

dx(2)
dt

f*(t, x(t), p(t), v(t)) p(t)f(t, x(t), u()(t)),

with the same boundary conditions

(h, x(h), t, z(t) ,B E,+,
the same functional to be minimized"

I[x, u] e(h x(h), t, z(t) ),
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and constraints"

(26)
(t, x(t)

pi(t) >= O, pj(t) 1,

where ranges over all j 1, , and (p, v) denotes the new control
variable (p, v) (p, ..-, p,, U(1), u(")). The constraints (26) can
be written in the usual form

(t, x(t) A, (p(t), v(t) V(t, x(t) ),

where now V(t, x) g X [U(t, x)]", and r is the simplex [pi _>- 0, j 1,, pi 1]. In other words, wehave a new Mayer-type problein with
an extended system of control variables. The systems x(t), p(t), v(t)
relative to the new problems are called "weak solutions" or "generalized
solutions" of the original problem. As in 4, we shall now define the terms
more precisely.

5.1. Letx (x1, ...,x
given subset of the tx-space/+t, and for every (t, x) A let U(t, x)
be a given subset of the u-space E. Let M denote the set of all (t, x, u)
with (t, x)

_
A, u (: U(t, x). Let G(t, x, u) be a real-valued function and

f(t, x, u) (ft, ..., f,) vector-valued function both defined on M.
Let p (pt, ..., p,) and let

Pi 1], where
with u() - U(t, x), and let f*, G* be the new functions

G*(t, x, p, v)

f*(t, x, p, v) (f*, ..., f*) pf(t, x, u(i)),

which are defined on the set M* of all (t, x, p, v) with (t, x) A, p F,
v [U(t, x)]". Let B be a given subset of the hxtx-space E,+.
We shall say that system of functions x(t), p(t), v(t), h <= <-_ t, is

admissible provided" (i) x(t) (x, ..., x) is AC in [h, t]; (ii) (p(t),
v(t)) (p, ..., p,, u(), u()) is measurable in [t, t]; (iii)
(t, x(t)
)< [U(t, x(t))]" a.e. in [h, t]; (v) dx/dt f*(t,x(t), p(t), v(t)) a.e. in [h, t];
(vi) (h x(h), t x(t) B. As in 4.1 we consider the functional I[x, p, v]

cir,(x)] e(h, x(tl), t, x(t)).
We say that [p(t), v(t)] is a generalized strategy, that p(t) is a probability

distribution, and that x(t) is
mentioned tbove, that x(t), p(t), v(t) is : weatc, or generalized solution.
Given :my ite.:’er: a, 0 =< a =< n, w(; shdl den()te by R(t, x), R(t, x)

the sets"
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R(t,x) [(z1, ..., z’) lz f*(t, x, p, v), i 1, ..., a,

z >=_ f*(t, x, p, v), i a -? 1, n, p I’, v U"(t, x)],

Ro(t, x) [(z z zn) z G*(t, x, p, v), z f*(t, x, p, v),

z * i= a+ 1, n,p Fi= 1, a, >= f (t, x, p, v),

v U(t, x)].

As we have shown in [1, p. 415], the sets R(t, x), R(t, x) are the sets
of all points of E, or En+l, which are convex combinations of all possible
systems of t points of Q(t, x), Qa(t, x), respectively. Thus, by taking
t >= n -t- 1, or -> n -t- 2, the sets R, Ra are the convex hulls of the sets
Q, Q, respectively, and thus R, Ra are certainly convex.

5.2. Condition (a) of 4.3, that is, (a) 1, fl, ..., f, of slower growth
than G >= 0, does not imply an analogous situation for 1, f*, f,*, G*.
Indeed, for instance, take n 1, m 1, G u,f u, u U [- u
< + ], 2, so that G* p(u()) - p(u()), f* pu() + pu(),
withp => 0, p => 0, p + p 1,-- u(i),u() + . Then, for
u() 0, u(:) 0, p 1, p 0, we have G* O, f* 0. Thus,
G* 0though u()] + [u()] k +, thatis, lisnot of slower
growth than G* uniformly in A when (p, v) , and this last relation
is meant as the norm u() + u(:) + (or the same with any analogous
norm). Nevertheless, condition () of 4.3, that is, () G 0, and for
every e > 0 there is some M such that f] M + eG, i 1, ..., a,
does imply n analogous situation on f*, G*, since

fi*(t, x, p, v) pfi(t, x, p, u())

pfi(t, x, p, u())

p(M, + G(t, x, p, u())

M + eG*.

If G, fa+l, "’’, fn are nonnegative and lower semicontinuous, and
condition (a) of 4.3 holds, that is, 1, fi, f, are of slower growth than
G, then fl*, -.., f,* may not verify an analogous growth property with
respect to G*; nevertheless, the set Ro(t, x) (now certainly convex) satis-
fies property (Q) as proved in 2.2 (iii), and the set R (t, x) (now con-
vex) satisfies property (Q) with respect to Ro(t, x). On the other hand,
the weaker condition () of 4.3 (If:l =< M - eG, i 1,..., a) implies
an analogous property for f*, G*, and this property cm be used, as in the
proof of Theorem A, to show that the corresponding coordinates x of
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the trajectories xk(t) of a minimizing sequence xk(t), pk(t), u(t),/ 1, 2,
of generalized systems, are equiabsolutely continuous.

We are now in a position to state Existence Theorems A*, B* for weak
optimal solutions, which are analogous to Theorems A, B of 4.2 and 4.6
for usual solutions. With the remarks above, Theorems A*, B* are essem
tially corollaries of Theorems A, B. As mentioned, we always assume below
that has been chosen large enough so that all sets R, Ra, or analogous
ones, are convex.

5.3
EXISTENCE THEOREM A* (for weak solutions). Let a, n, 0 <= a n, be

given integers, and for x (x1, x) let y, z denote y (x, x),
(x+, x), so that x (y, z). Let Ao be a compact subset of the

ty-space E+, let [ be a finite closed interval of the z-space En_,
I [a+, b+] X X [a, b], and thusA Ao X Iisa compact
subset of the tx-space E,+. For every (t, y) . Ao let U(t, y) be a given closed
subset of the u-space .E, satisfying property (U) in Ao. Let Mo be the set of
all (t, y, u) with (t, y) Ao, u U(t, y);M Mo X I is then the set
of all (t, x, u) with (t, x) A, u U(t, y), x (y, z). Let f(t, y, u) (f,
.-, f), H(t, y, u) be functions defined on M0, and assume that f, ...,
f are continuous on Mo and that H, f+ f are nonnegative and lower
semicontinuous on Mo. Let us assume that for every i 1, ..., a the fol-
lowing growth condition holds"
() ThereisaconstantM: >= Osuchthat If(t, y, u) M ell(t, y, u)

for all (t, y, u) Mo.
For every (t, y) Ao let R,(t, y) be the set of all z (z, z

defined by

R,(t, y) [lz >- H*(t, y, p, v), z f.*(t, y, p, v), i 1,

(27) z f*(t, y, p, v), i a - 1, ..., n, p F,

v U’(t, y)] E,+,

and assume that the (convex) set R(t, y) satisfies property (Q) in Ao.
For every t, x, u) M, x y, z we shall write f t, x, u) f t, y, u

;, (xetc. Let B be a closed subset of the txtx.-space E,.+ x x
a--ix (x, x ), and assume that B is independent of x. ,x Let

e(t x t x:) be a real-valued continuous function defined on B, which is
monotone nondecreasing with respect to each variable x"+, ..., x,. Let

* be the class of all admissible systems x, p, v for which H*(t, y(t), p(t),
v(t) is L-integrable in [t, t] and

(2s) H*(t, y(t), p(t), v(t) (:t .<= M

for some constant M >= O, and assume that fi* is not empty.
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Then the functional I[x, u] e[(x)] has an absolute minimum in
(and the optimal generalized system satisfies (17) ).
The requirement H 0, f 0, i a + 1, n, cn be replaced by

the weaker one H -K0, f -K, i a - 1, n, for some con-
stnts K0, K, provided we replace () by the nlogous requirement
f(t, y, u) M + [H(t, y, u) + K0].
For ny of the indices i 1, a, condition () cn be disregarded,

provided we impose further restriction on *, namely, that * is made up
of only those systems x, p, v for which (28) holds, and also

for some constants M 0 nd p > 1 md t least all i 1, a, for
which () does not hold.
The condition that R,(t, y) stisfies property (Q) is certainly satisfied

if 1, f, f, are of slower growth thun H uniformly in A0. In this situa-
tion conditions (), i 1, a, are all necessarily stisfied.

Finally, H muy be one of the functions f,+, ..., f, suy, H fn,
nd then 0 a n 1, nd relation (28) is stisficd by all admissible
systems x, p, v withM b a. In this situation (28) cn be disregarded
nd instead of R, we may consider the simpler set R(t, y) of
z (z, ...,z) Edefinedby

R(t, y) [zz f*(t, y, p, v), i 1, ..., a, z f*(t, y, p, v),
(o)

i= a+ 1, n, p ( I’, v ( U’(t, y)] E.
Then we shall replace the requirement concerning R by an analogous
requirement on R (t, y). In other words, we shall require that the (convex)
set R(t, y) satisfies property (Q) in A0.
EXSTSCn TUEOnnM. B* (for weak solutions). Let a, n, 0 <= a <= n, be

given integers, and for every x (x*, ..., xn) let y (x*, ..., x),
z (x"+, x), so that x (y, z). Let Ao be a closed subset of the ty-space
E,,+ and then A Ao X E_, is a closed subset of the tx-space E+. For
every (t, y) Ao let U(t, y) be a closed subset of the u-space E, satisfying
property (U) in Ao. Let f(t, y, u) (f f,) be a given vector function
defined on the set Mo of all (t, y, u) with (t, y) Ao, u U(t, y). Assume
f,+ ..., f, nonnegative and lower semicontinuous on Mo, and f ..., f,
continuous on Mo. Let B be a given closed subset of the tlxtx:-space E+,

and assume that B is independentx (x, x., ), x, (x x ),
+.1ofx x Let e (t x t: x,2) be a given continuous real-valuedfunction

on B, which is monotone nondecreasing in each of the variables x"t-,- x,2.
Let C be a given compact subset of A, let Co be the projection of C on Ao,
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and let H(t, y, u) be a given nonnegative and lower semicontinuous function
on the set No of all (t, y, u) with (t, y) Co, u U(t, y). Let R(t, y),
R (t, y) be the sets defined by relations (27) and (30), and assume that
R(t, y) satisfies properly (Q) with respect to Rn(t, y) in Co, and that R(t, y)
is convex for every (t, y) Co. Finally, assume that for every i
the following growth condition is satisfied"

(/) For every E > 0 there is a constant M >= 0 such that ]f(t, y,
<= M - EH(t, y, u) for all (t, y, u) No.
Let * be the class of all admissible systems x, p, v and assume * to be not
empty. Assume that there is a sequence x p v t <- <= t
k 1, 2, of admissible systems (elements of *) such that" ()

ft H*(t, y(t), p(t),(t, x(t)) C for all [t, t], k 1, 2,... ;(b)
t

v(t) dt <= Mfor someconstantM >= Oandall] 1, 2, (c) I[x p;,v]
=e[v(x)] i as k -- where i is the infimum of I[x, p, u] in *.
Then the functional I[x, p, v] e[(x)] has an absolute minimum in *.
If we know thut the (convex) set R(t, y) stisfies property (Q) in Co,

ghen ghe opgimal system satisfies H*(, (), p(), ())d. =<_ Mr.
As in the previous theorem, the requirement H >= 0, f ->_ 0,

i a -t- 1, n, can be replaeed by he weaker requirement H >_._ --K0,
f _>_ -K, i a -t- 1,... , for some constants K0, K, provided in
(’)’) we require f(t, y, u)! -<- M -- e[H(t, y, u) -- K0].
Analogously, any of the requirements () may be replaced by a cor-

responding restriction (29) on the class *.
The requirement that he (convex) set R possesses property (Q) with

respect to R is certainly satisfied if 1, f, f, re of slower growth than
H uniformly in Co. In this situation, all conditions (,), i 1., a, are
certainly satisfied.

Finally, if H is one of the functions f+, f, say H f, then
0 =< a -<- n 1, and a relation s in (b) is satisfied by ll admissible systems,
with M bn a,. We shll then disregard requirement (b), and require
as usual that the (convex) set R (t, y) stisfies codition (Q) in Co.

Remarlc 13. By considerations similar to those of Remark 1.1 we can easily
see that Existence Theorem B* for weak solutions contains McShne’s
Existence Theorem 2.7 of [7]. Also, s in 4.7 we cn deduce from Theorem
A* existence statements relntive to wek solutions of Lgrange problems,
which improve the corresponding statements of [1, pp. 427-428].
Remark 14. In [7] criteri are given, involving Pontryagin’s principle, to

insure that n optimal generalized solution , p, v is actually a usual solu-
tioa, that is, all p. are zero but one which is equal to
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INVARIANT SUBSPACES AND THE CONTROLLABILITY AND
OBSERVABILITY OF LINEAR DYNAMICAL SYSTEMS*

D. A. FORD AND C. D. JOHNSON$

Summary. The geometric mechanism of uncontrollability and unobservability
for a particular class of scalar input-scalar output linear dynamical systems is
characterized in terms of the invariant subspaces of the system matrix A and its
transpose.

1. Introduction. An important class of linear dynamical systems can be
described by the vector-matrix differential equations"

(1) +/- Ax + u(t)f,

(lb) y(t) (h, x(t)},

where x is a rel n-vector, the system state vector; A is a rel, constant,
n X n matrix; f is rel constant n-vector; u(t), the system control, or input,
is scMr function of time, h is a constant n-vector nd y(t) is the (scalar)
system output.
Two basic notions in the study of dynamical systems are the concepts of

complete controllability and the duM concept of complete observability.
These are described in the following definitions.
DEFINITION 1. The dynamical system (1) is slid to be completely con-

trollable (c.c.) if and only if, for each pir of finite states (x0, xr), there
exist finite interval [to, T] and control u(t) u(t; x0, xr, to, T),
to <= _<- T, such that the corresponding solution x(t) of (la) satisfies
x(t0) x0 and x(T) xr.
In order to define complete observbility in a like mnner, it is convenient

to consider, together with (1), the homogeneous (unforced) equation

(2) +/- Ax.

DEFINITION 2. The state x of the dynamical system (1) is said to be com-
pletely observable (c.o.) if and only if, for each finite output y(t) which satis-
fies (lb) and (2) on a positive interval to -<_ =< T < , there corresponds
a unique initial state x(t0).

* Received by the editors May .5, 1967, and in revised form April 1, 1968. This
research was conducted at the University of Alabama Research Institute, Huntsville,
Alabama, and was supported in part by the National Aeronautics and Space Ad-
ministration under Grant NsG-381.

Department of Mathematics, Emory University, Atlanta, Georgia 30322.
: Department of Electrical Engineering, University of Alabama in Huntsville,

Huntsville, Alabama 35807.
(x, y} denotes the inner product of x and y.
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The general concepts of controllability and observability, as defined
above, were originally introduced by Kalman [1], and have since been
studied in some detail [2]-[7]. In [2] it was shown that, in special cases, the
failure of (1) to be completely controllable can be ascribed to certain geo-
metric conditions which exist between the vector f and the one- and
(n 1)-dimensional invariant subspces of the matrix A. Simibr results
were obtained for the case of observability involving the vector h and the
invariant subsptces of the transpose of A. I.. the present note, the results
obtained in [2] are generalized to include invariant subspaces of arbitrary
dimension. By this means, it is possible to give a general characterization
of the geometric mechanism of uncontrollability and/or unobservability for
the system (1). In particular, explicit geometric descriptions a,re given for
the set F(A) of all vectors f for which (1) is not completely controllable,
and the set H(A) of all vectors h for which the system (1) is not completely
observable.

2. Invariant subspaces. Controllability and observability of the class
of linear dynamical systems described in 1 can be characterized in several
ways. The particular characterizations given by the following well-known
theorems [3], [4] will play a central role in the discussion which follows.
THEOREM 1. The linear dynamical system (1) fails to be completely con-

trollable if and only if there exists a real polynomial p(s) of degree less than n
such that p A f O.
THEOREM 2. The linear dynamical system (1) fails to be completely observable

if and only if there exists a real polynomial q(s) of degree less than n such that
q(A’)h 0.:
Theorems 1 and 2 are often stated in the following alternative forms.
THEOREM la. A necessary and sucient condition that (1) be completely

controllable is that the matrix K, whose columns are the vectors
f, Af, Af, A-lf, has maximal rank n.
THEOREM 2. A necessary and sucient condition that the system (1) is

completely observable is that the matrix , whose columns are the vectors
h, A’h, (A’)h, (A’)n-h, has maximal rank n.

In accomplishing the aim of characterizing the sets F(A) and H(A),
strong use will be made of the observation in [2], and elsewhere, that the set
F(A) is the union of all proper invariant subspaces of the matrix A, and the
set H(A) is the union of all proper invariant subspaces of the transpose of
A. In [2], it was shown that if X is a real eigenvalue of A, and if ’ is a row

The transpose of the matrix A is denoted by A.
It is remarked that Kalmatt atd Gamkrelidze used the condition det It: 0 in

independen and (almost) simultaneous researches published in 1957 [10], [11] (see
also [12]).
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eigenvector associated with X (i.e., @’A X’), then F(A) contains the
(n 1)-dimensional hyperplane orthogonal to @. It is shown in the present
paper that if the system (1) is to be controllable for any vector f at all, then
each real eigenvalue, whether repeated or not, must yield only one eigenline.
(That is, the row eigenvector @’ associated with a given eigenvalue must
be unique to within a constant (scalar) multiplier.) To see why this is the
case, suppose that a repeated real eigenvalue has two row eigenvectors
1’, ’) which are linearly independent. It follows that @1, @) span a two-

dimensional linear subspace S of E, every vector of which is a row eigen-
vector associated with . It was observed above that the (n 1)-dimen-
sional hyperplane orthogonal to any one of the vectors in S is a subset of
F(A), but the union of all such hyperplanes, and consequently F (A), would
fill up all of En. Thus no vector f could exist for which the system (1) is con-
trollable. The situation is the same with regard to complex eigenvalues with
the exception that the on.e-dimensional "eigenlines" in the argument above
are replaced by the real, two-dimensional, "eigenplmms" associated with
each pair of complex conjugate eigenvalues.

Before proceeding to the details of the characterizations of F(A) and
H(A), some well-known definitions and results from the theory of matrices
will be stated.

DEFINITION 3. A subspace S of E is called A-invariant if Ax belongs to S
whenever x belongs to S.

DEFINITION 4. The minimal A-polynomial p(s) of a vector x is the poly-
nomial of least degree such that p(A)x 0. The minimal A-polynomial
p(s) of an A-invariant subspace S is the polynomial of least degree such
p (A)x 0 for every vector x in S.
DEFINITION 5. If X is any real n-vector, then the subspace spanned by the

vectors
x, Ax, A2x,

is called an A-cyclic subspace of E generated by the vector x. Any subspace so
obtained is called an A-cyclic subspace of E.

3. Characterization of the set F(A). Theorem 1 indicates that the cri-
terion for the system (1) to be completely controllable is that the minimal
A-polynomiM of the vector has degree n; that is, that E be A-cyclic with
f as generator. This implies, in particular, that there cannot exist a poly-
nomial q(s) of degree less than n such that q(A) 0. Thus if (1) is com-
pletely controllable for some , the characteristic polynomiM c(s) of A is the
(unique) monic polynonial of least degree such that c(A) 0. A matrix

K’Mmn [13], [14] has recently shown this critcriot to be equiwlet to the abstract
algebraic condition that generates a module over the polynomial ring.
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having this latter property is said to cyclic. Since the matrices A and A are
similar, and hence have the same characteristic polynomial, these same ob-
servations apply also to the case of complete observability as characterized
in Theorem 2. In the remainder of this paper, we make the following basic
assumptions.
ASSUMPTION 1. The matrix A is cyclic.
ASSUMPTION 2. The characteristic polynomial c(s) of A has factorization

into irreducible (real) divisors in the form

(3) c(s) pl(s) p2(s)k2 p,(s)’,
where the polynomials p(s), i 1, 2, m, are mutually distinct and,
being irreducible over the field of real numbers, are either linear or quad-
ratic.
As a result of Assumption 1, the following well-known properties, which

will be useful in the sequel, hold (for a proof, see [8]).
THEOREM 3. Suppose A is a real, n X n cyclic matrix, S is an A-invariant

subspace of E, and p(s) is its minimal A-polynomial. Then S is A-cyclic, the
degree of p (s) is equal to the dimension of S, and S is the null space of p (A).
We are now in a position to state our min result on controllability.
THEOREM 4. Suppose that c(s) has the factorization (3) and define poly-

nomials q( s by

(4) q(s)p(s) c(s), i 1, 2,..., m.

Then, the set F A of all vectors f for which 1 is not completely controllable is
the union of all the null spaces T of the matrices qi(A). Moreover, T has
dimension n 1 or n 2 according as pi( s is linear or quadratic.

Proof. Suppose f is an n-vector, and for some i, q(A)f 0. The degree of
q(s) is less than n, so f F(A).

If F(A), then there is a proper divisor p(s) of c(s) such that
p(/k) 0. Then p(s) divides q(s) for some i, so f T.

Finally, by Theorem 3, each subspace T has dimension equal to the
degree of its respective minimal A-polynomial q(s), which is n 1 or
n 2 according as p(s) is linear or quadratic.

4. Characterization of the set H(A). Since a matrix and its transpose
are similar, and therefore have the same characteristic polynomial, all the
results of 3 apply also to the case of complete observability if A is replaced
by A. Thus our main result on observability may be stated at once.
THEOREM 5. Suppose that c(s) has the factorization (3) and define poly-

nomials q(s), i 1, 2, m, by q,(s)p(s) c(s). Then the set H(A) of
A matrix havirg this property is sometimes referred to as a "nonderogatory"

matrix. A test to determine whether or not a matrix is cyclic is described in the
Appendix.
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all vectors h for which (1) is not completely observable is the union of all the
null spaces Ui of the matrices qi(A’). Moreover, the space U has dimension
n 1 or n 2 according as p(s) is linear or quadratic.

5. A duality theorem. It is possible, by means of the theorem proved
below, to characterize F(A) in terms of the polynomials p(s) rather than
the polynomials qi(s) of Theorem 4. If n is larger than four, the pi(s) are
of smaller degree than the q(s), thus indicating the desirability of such a
characterization. The theorem establishes a duality between the A-invariant
spaces and those spaces invariant with respect to the transpose of A.
THEOREm[ 6. Suppose that p(s) is a divisor of c(s). Let S be the null space of

p(A). If S" is the orthogonal complement of S, then S" is the null space of
q(A’), where q(s)p(s) c(s).

Proof. Since p(A’) [p(A)]’, S" is the range of p(A’). Thus if x S ",
there is an n-vector y such that p(A’)y x, so that q(A’)x q(A’)p(A’)y

c(A’)y 0. Thus S" is a subspace of the null space of q(A’).
If/c is the degree of p(s), then, by Theorem 3, the dimension of S is 1,

so the dimension of S is n lc. The null space of q(AP), by Theorem 3,
has minimal polynomial q(s), and consequently its dimension is equal to the
degree of q(s), which is n 1. Thus S is the null space of q(A’).
Theorems 4, 5 and 6 can be combined to obtain a characterization of the

sets F(A) and H(A) in terms of the null spaces S" of the matrices pi(A’),
and the null spaces S of the matrices p(A). By this means we obtain the
following theorem.
THEOREM 7. The set F(A) is the set of all vectors f which lie orthogonal to

one of the spaces Si ’. The set H(A) is the set of all vectors h which lie orthogonal
to one of the spaces S.
Appendix. A test for cyclic matrices. It was observed in [2] that the

linear dynamical system (1) is alwuys uncontrollable nd unobservable,
irrespective of the choice of the vectors f and h, if and only if the matrix A
is not cyclic; that is, if and only if A satisfies a polynomial equation of
degree less than n. It may be shown that this ltter condition implies the
existence of an irreducible factor p(s) of the churacteristic polynomial c(s)
of A such that the dimension of the null space of p(A) is greater than the
degree of the polynomial p (s). This cannot happen unless p (s) is a factor of
c(s) with multiplicity greater than one.

Thus, in order to determine whether or not A is cyclic, one need only check
the ranks of the matrices p (A), where p (s) is repeated irreducible factor
(linear or quadratic) of the characteristic equation c(s) of A. This procedure
appears to be simpler than finding the minimal polynomial of A, or than

matrix which is not cyclic is sometbnes called a derogal,ory matrix.
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reducing A to one of the various canonical forms which are similarity
invariants.

Almowledgment. The authors wish to acknowledge the mny helpful
suggestions furnished by the referees.
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L.-STABILITY OF TIME-VARYING SYSTEMS--CONSTRUCTION
OF MULTIPLIERS WITH PRESCRIBED PHASE

CHARACTERISTICS*
M. I. FREEI)MAN

Abstract. A system consisting of a linear element G(s) and a time-varying gain
n(.) is considered. It is assumed that this system is stable for all constant gains in
the sector [0, k] (i.e., for n(t)-l, 0 k). It is then shown that the system is
stable for ll n(.) in that sector satisfying

log
1 :r)/k/J--+2a dr- 2z ---t

for some K > 0 nd all > 0.
IIere a is constant determined by an equation involving (inversely) the deriva-

tive of the phase function arg {G(iw) + l/k}. The proof follows wht re by now
established lines in employing "multiplier" operator. However, method is used
to eliminate any "multiplier" dependence from the final results, so that these results
are explicit nd geometric.

1. Introduction. Mny of the erly frequency domain stability criteri
fforded simple geometric interpretations. These criteri ssured stability
on the bsis of the plot of Nyquist curve nd its position with respect to
some other line or geometric figure. (Consider for instance the Popov
criterion or the circle criterion.)
Some of the more recent work hs resulted in theorems of a less geometric

character. Brockett nd Forys [1] cosidered feedback system with time-
itvariant element G(s) and time-varying element n(. ), 0 n(. k (see
Fig. 1) and concluded that if there exists some Z(s) of the form Z(s)
i1 i/(8 + i) with a 0 and z attd with Z(s)l[G(s) + l/k]

positive real, then the system would be stable for all n(. satisfying
(t)/n(t) 2(1 n(t)/) fort 0.

In the context of integral equations, a result of Falb and Zames [2]
showed that for a system consisting of a covolution operator G and a
monotone nonlinearity f(. satisfyitg 0 N af(a) N lea, stability can be
proven if there exists au operator Z" L[0, L[0, defined by

(Zx) (t) x(t) + ] z(t- )x()d,
o

where

* Received by the editors March 29, 1968, and in revised form July 5, 1968.
National Aeronautics ’nd Space Administration, Electronics Research Center,

Cambridge, Massachusetts 02139.
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zl(.) LI(0, ), f0
and

for some a > 0 and all real

]z(t) dt < 1

1]t > >0) + 7

Both of the preceding results depend on the existence of a "multiplier"
operator which, when combined with [G(s) -t- 1//], yields a positive op-
erator. This idea, expressed as a factorization property of G(s), first ap-
peared in Zames [3a]. The usefulness of the multiplier approach as por-
trayed in [1], [2] and [3a] is limited by the absence of any explicit method
for finding suitable multipliers.

In Freedman and Zames [4] the stability of a system involving a linear
time-invariant element G(s) and a time-varying gain n(. was considered
(as in Fig. 1 ). The method of proof in [4] involved introduction of a multi-
plier much as in [2] above. However, a constructive process was developed
which allowed for removal of this multiplier from the final results, so
that these results were geometric in nature.

It is this author’s contention that [4] contains the core of a procedure
which can be used to initiate a program aimed at returning more closely to
the geometric character of the earlier results. More explicitly it is felt that
the ideas in [4] can be utilized to remove the multiplier from many of
the more recent stability results, thus yielding criteri depending only on
G(s) and its properties.
For the purpose of this pper the result of Brockett and Forys [1] men-

tioaed above was cosidered and u criterion was developed which is free
from dependence on any multiplier.
To describe this criterion more fully consider the feedback system rep-

resented by Fig. 1, and assume it is stable for all constant gains in sector

linear time

(t) r invariant
_

time_varying jain
n(t)

FIG. 1. A feedbaclc system
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{

FIG. 2. Plot of the phase function ()

[0,/]. Denote by () the phase function arg {G(i) -- 1//c}. Thett bythe
criterion to be presented here the system will be stable if there is a K > 0
such that

for all > 0 (ad so more weakly if (t)/n(t) <= 2(1 n(t)/k) or
(t)/n(t) >= 2(1 n(t)/k)), where a is determitmd by a equatio
involving (see Fig. 2)"

1. the magnitude of the closest approuch of () to
2. u "cutoff frequency W", i.e., a frequency after which the values of
(o) re of no importance in this theory;
3. the magfitude of the square integral of the derivative of (I,(o) over

[-W, W].
One sees therefore that ot only does the geometric

N:

come io play here, but also i some sense the "angular" rate at which
this set is traced out as varies (as represented by ’()). In fact it will
appear that such rotes are closely related to the existence and properties of
certain multipliers.
The crucial lemma oa which the theory presented here rests is Lemma 1

ia 4, which shows that a multiplier operator with any prescribed phase
function can be constructed provided only that its phase fuactio,. and its
derivative satisfy suitable integrability conditions. This result appeared in
[4, 4, Lemma 2] and the reader is referred to that paper for the proof.
However, a short sketch of that proof is included here.
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2. The main problem and its solution.
DEFINITION. Let L[0, ), where p ) 1, 2, , , be the linear space

of real-valued mesurable functions x( o1 [0, with the property that

f0 [x(t)]dt < if 1 <P

or x(. is essentially bouded if p . Let L[O, be ormcd with the
Ilorm

Ix(.) Ix(t) d

The spaces L(- , on the interval (- , are similarly dcfimd.
The definition of the extended space L is itroduced mxt. (For a more

complete discussion of such spaces, see [3b].
DEFINITION. Let L: be the space of those real-valued measurable fmc-

tions x(. on [0, satisfying
T

Ix(t) [edt < for all T 0.

2.1. Feedback equations and stability. The feedback system of Fig. 1
will be represeted for all 0 by the integral equatio

() (t) :(t) (t) ()(t ) g

or, ltertively, the pir"

e(t) x(t) n(t) y(t),

y(t) ]o e()rz(t ) d,

in which the following ssumptions re mde"
ASSUMPTION 1. X(. is i L[0, ). (The fuactio x(. represets the

combined effects of a input ad of possible nonzero iitil coditios.
ASSUMPTION 2. g(. is i L[0, ).
ASSUMPTION 3. n(" is real-wlued fumtioa, bsolutely cotim;ous oa

[0, ). (Since n(. is bsolutely continuous, its deriwtive (. exists
Mmost everywhere, nd

n(b) n(a) J (t) dt

for ny nonaegtive rel a nd b (see ttobsoa [5, 406, pp. 592-593]).)
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ASSUMPTION 4. e(. (and also y(. )) is in .L2e (i.e., existence of solutions
in L2e for L2[0, )-inputs is being assumed1).

DEFINITION. Feedback system 1 will be termed L2-stable if for any pair
(x(.), e(- for which (1) (or (2)) and the related Assumptions 1-4 hold,
then e(. )is in L,[0, ), with IIe(- )ll -< const. x(.

This notion of stability is natural in the setting of integral equations.
In the context of differential equations it implies asymptotic stability
(limt, y(t) O) and with additional mirror assumptions can also be used
to show bounded-input, bounded-output stability.

2.2. The main stability theorem. This section contains the main stability
results. A few definitions and remarks will provide the setting.

DEFINITION. For any/ > 0, let,

W (.) L[0, )1 F(ioa) -k i- 0

< o < anda,lll, 0for

where F(s), the Laplace transform of f(. ), is the complex-valued function
with domain {siRe {s} => 0} defined, as usual, by the ittegral

F(s) Jo e-"ef(t) dt;

i.e., f(. W if and only if the set {F(i0) o (- , )} does not cut
the negative real axis from - up to and including the point -1/k.

Rein,ark 1. The statement g(. W may be interpreted via the
"principle of the argument" to be equivalettt to the statement" The equa-
tion G(s) -lilt has no complex roots in Re {s} >___ 0. Also the classical
Nyquist, criterion assures that g(. i.t W is a necessary and sufficient
condition for feedback system (1) to be L-stable for all constant gains
between 0 ,’:nd lc, i.e., for n(t) l, where is a constatt 0
Remark 2 and some special notation. Givett g(. W, define the phase

function"

(a) () art {G(i) + /}.

Then since G(ioa) q- lilt does not cut the negative real axis as 0 passes from
-m to q-m, it follows that (0) is uniquely defined for all o and takes
values only in (-rr, r). Further, since g(. L[0, m the Riemann-

The problem of existence of L solutions will not be discussed it this paper, ex-
cept to say that suclh quest,ions may be settled favorably by various minor additional
hypotheses.
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Lebesgue lemma assures that limll_ G(io) 0 and so

limarg {a(i) + a/k,} 0

also. Therefore a simple continuity argument shows that the function
G(ioo) + 1/1 must have a "closest angular approach" a to the negative
real axis; that is, letting"

(b) a min (- ,I(w)[),
then > 0.

Next, let"

(c)

and define the cutoff frequency"

(d) W. & min {W/I (w)[ u for I W}.

Here the existence of W, is assured by au argument employing the con-
tinuity of q,(w) and the fact that lim q,() 0.
The importance of W, is that it represents a frequency value beyond

which information about the phase function ,b(w) need not be utilized in
the theory to follow.

In the remainder of this paper, the notation introdueed in (a) through
(d) above will be used fi’eely.
The main result may now be stated.
THEOREM 1. Suppose (1) (or equivalently (2)) and the related Assump-

tions 1-4 hold for a pair (x(. ), e(. )). Let 1 > 0 be given and assume that"
(i) g(. W (i.e., the system is L-stable for n(t) for any l, 0 N

Nk),
(ii) 0 < infn(t) N n(t) sup N n(t) < k.
Then"
(a) ff ()[ N /2 for < w < the system is L-stable by a simple

positivity argument. (Note that [() N /2 for- < < implies
Re {G(i)} -lilt for < < and the desired result follows from
the basic Popov theorem.
On the other hand"

(b) if () > /2 for some , the cutoff frequency W, is strictly positive
and one may define

(3/16)
* +W

d--W

where ’() denotes the derivative of the phase function().
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Suppose then that there exists a constant K > 0 and a constant o. in (0, z,)
such that

1 ft it(r)
(3) -Jo n(r)(1 n(r)/k) 2 dr-- 2o. <-_ --Kt
for all > 0 or else that

1 fo it(r)(4)
n(r)(1- n(r)/]) + 2o dr 20- <__ Kt

for all > O. Then e( is in Lz[O, )and, in fact, e(. )]] _-<. const. x(. )[[.
Therefore system (1) is L.-stable.
Remark 3. Theorem 1 is an immediate consequence of Theorem 2 in 3,

Lemma 3 and Remark 4 in 4, and Corollary 3 in 5.
COrOLLArY 1. Under the assumptions and notation of Theorem 1 a su-

cient condition on n(. for (3) to hold, and hence for L:-stability, is that

it(t) < 2 (1
n(t) \

for all > O. Similarly, the inequality

it(t) > --2n(t)

is a sufftcient condition for (4) to hold and so also to ensure L-stability. (See
R. W. Brockett and L. J. Forys [1] for a multiplier result along these
lines.

Proof of Corollary 1. The proo is immediate.
COROLLARY 2. Let the hypotheses and notation of Theorem 1 hold except

in case (b) redefine , as follows:

* 16 ] max ’
Then with this definition of a, the conclusions of Theorem 1 and also of

Corollary 1 remain valid, i.e., system (1) is L-stable.
Proof of Corollary 2. This choice of z, is less thn or equal to the z, of

the original stutement.

3. A theorem on multipliers. The following theorem is essentially proved
in Zmes and Freedman [4] and the reader is recommended to that paper
for the proof. The existence of a multiplier operator Z satisfying certain
properties with respect to G + 1/ is hypothesized and a stability conclu-
sion is then drawn for all time-wrying gins n(. suitably restricted. Tim
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result in the form presented below is rather similar to a result in Brockett
and Forys [1]; however, it differs i1 one sense in that the form of the multi-
plier Z remains unspecified i this paper. Moreover, the key fact to keep i
mind here is that this theorem represents an httermediate stage in the de-
velopments leading to Theorem 1 stated in the previous section, and
Theorem 1 contains no explicit mention of the multiplier.
For what follows the definition of some special operator spaces (actually

they are Banach algebras) will be of use.
DEFINITION. Let oC be the class of operators H: L2e -- Lo.e satisfying

(Hx)(t) ho z(t) - fo x(r)hl(t- r) dr

(for all x(.) L [0, ) nd all ->_ 0), where h0 is a real constant
and h(. is a real-valued measurable function on [0, stisfying
h(t) exp (z0t) LI[0, ).
For H

_
20 the Laplace transform of H is given by

H(s) ho - fo h(t) exp (-st) dt

(for all complex s with Re s} => 0).
THEOREM 2. Let 1 (or equivalently (2) and the related Assumptions 1-4

hold for a pair (x(. ), e(. )). Let lc > 0 be given and assume that

0 < infn(t) n(t) <_-. sup n(t) < ].

Further, let the following two assumptions be made"
(i) There is a constant 0 and an operator Z 2 satisfying, for all

real
(a) Iz(i => 0,
(b) Re iZ(i)[G(io) + 1//c]} =>

for some positive constant .
(ii) The function n* defined by n* n(t)(1 n(t)/])- for all

.>= O, or the reciprocal of this function, may be factored into a product
n(. ).n:(. of two absolutely continuous functions on [0, ), where
n(t) exp 2at) is monotone nonincreasing while n( is monotone
nondecreasing in t, and 0 < infn(t) <_- supn(t) < (and so
also 0 <infn(t) supn(t) , ).

Then the system (1) is L,-stable, i.e., e(. is in L[0, and
_< co.st. x(.
Proof of Theorem 2. See Zames and Freedman [4, Lemma 1]. The factori-

zation property (imposed oa the time-varying gain) hypothesized i [4] is
slightly different from the one made in this present pper, but the proof
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under the conditions considered here follows the same general arguments
and is, in fact, a bit easier. For that reason the reader is referred to [4].

4. Multipliers with prescribed phase characteristics. In this section three
lemmas will be presented which together settle the question of the existence
of a suitable multiplier for Theorem 2. Such a multiplier will be seen always
to exist and, in fact, an associated range of values (as required for the
hypothesis of Theorem 2) may be obtained directly from data concerning
the phase of G(i) - 1// without recourse to construction of Z in any
given case.
The foundation of the results to follow in this section is Lemma 1 below,

which assures the existence of an operator Z in 2 with any prescribed phase
function 0() arg {Z(i)}, provided only that the function 0() and
its derivative 0t(o) satisfy certain iltegrability conditions.
LEMMA 1 (Operators with prescribed phase). If:
(i) o() is a real-valued continuous a. e. differcntiable odd function of

for (-, (R)),
(ii) 0(o) and o’() are in L.(-- o o ),

then:
(a) ihere is a function k(. in L(- o, o wih k(t) 0 for < 0 and

wih a Laplace transform A(s) satisfying Im {A(iw)} 0(w);
(b) $here is a y(-) in L(- oo oo wih y( 0 for < O, and with a

Laplace ransform Y(s) satisfying 1 - Y(s) exp [A(s)] for Re {s} -> 0;
(c) /f - <: 0() < , here is a y(. L(--o, wih y() 0

for < O, 1 - Y s O in Re s} >= 0 (sol + Y s is minimum phase)
and arg 1 + Y(i)} 0().

Outline of proof. For the complete proof of this lemma the reader is once
again referred to Zames and Freedman [4]. However a brief outline of the
mai ideas is present,ted here.

(i) Let 0() denote the inverse limit-in-the-mean Fourier transform of
i0(w) and define

k(t) {:() for

for tt>=0’<0.
Then it may be deduced from (i) and (ii) of Lemma 1 that k(. is in
L(- oo, oo and that the Laplace transform of k(. denoted h(s) satisfies
Im {A(i)} 0(), and so (a) above holds.

(ii) Next, for each n 1, 2,.-. let

y(t) k(t) + ()’ * k)(t) +
__

2

n

(k ..., k)(t)
n
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where represents convolution; that is,

(x x,)(t) = z(t )x,.() &.

Then, for ech n, y,(. is in LI[0, nd the Lplce transform of y(. ),
Y(s), stisfies

Y(s) h(s) + + +- n
(iii) Finally it may be shown that y, (.) cmverges i L-norm to func-

tion y(. in L[0, ad the Lplace transform of this function y(. ),
denoted Y(s), must satisfy

Y(s) exp[h(s)]-- 1 for Re{s} 0.

From this fct (b) nd (c) of Lemm 1 follow.
In applying Lemm 1 to the problem of constructing multiplier Z which

will meet the hypotheses of Theorem 2, it is clear that the lrger z my be
chosen (with corresponding Z 2, ssured), the less restrictive will be
the conditions oa n(. ). A measure of how large z is possible will be de-
veloped via the followig lemm. This lemma ia its fce concerns the rte
of convergence of the values of the hrmonic function Im [h(s)} defined on
hlf-plne Re{s} 0 s s approaches Re{s} 0 long ordinate lines.
LEMMA 2. Under the same notation and assumptions as in the previous

theorem, it follows that for any > O,

p ]m( + )} 0() < 0’() d

and so ff -- < (o() < for all and ff the principal value of arg {. is
taken, then

/ + ( + ) () < I’() &

ProG G Lemma 2. (The proof presented here follows closely the lies of
the singular i,tegral theory of Titchmarsh [6, 116, pp. 28-29].) For all s
with Re{s} 0 the Laplace transform

(5) A(s) exp (--st)k(t) dt.

Now let, for the moment,
exp --) for 0,

()
for < O.

So, for any wih e {} > 0 he ourier ransform of (- is 1/(i + ).
Applying Parseval’s heorem o () results in
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1 Cj__ 1
A(io)(6) h(s)= i+s

The Parseval theorem applies as (- is also in L. [0, ). However, apply-
ing Cauchy’s theorem to the aualytic functiou A(s) yields

1 1 A(i)d for Re{s} > 0(7) o= i+

since A(z) 0 as z[ -- ia Re{z} 0 implies that

fo 1
A(z dz O as R -

where D is the semicircle {z z R, Re {z} 0}.

Now

o(o) Im {A(io)} (A(io)- A())/2i

as seen in the previous lemma, and so, subtracting (6) from (7) gives

(s) a() __i (R)o()s-d for Re{s} > 0.

Next, for convenience of notation, letting s z iy, iy and
Im {A(s)} V(z, y), one obtains

1[ i f o() + 0() for Re{s} >0Y(’Y) = -; s+i =5z
d so

V(z,y) __1 f o()d for > 0,
+(y+)

or, replacing by -- ad noting that o() -o(-), we have

(9) g(, y) i f= z+ (yZ_)Oo()d for > 0.

Next note that for any y (- , ),

,+( ) +( )=-"
herefore,

eo() d eo()
v + (y ) 2

(0)

lfr 2 -t- (y )
[o() 0(Y)]
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Now for any IT > 0 and auy o and y with y,

IT <1_ and IT < IT

IT2 -P (y- o) IT ITs -t- (y )s (y o)s"

Using these relations to bound (10) results iI

(11)

1_ f* IT [o(o) o(y)] d
T-j ITs + (y__ ).

The first integral on the right-hand side of (11) satisfies the following
chain of inequalities"

T’IT ,,y

@o’(t) d (o3 y)l/2
T’tT .,y

--< @o’(t)Isdt
71"0"

2 %//7 o’ (t) Ut
3T-

The seco.ad integral oa the right-hand side of (11) also satisfies a chain
of inequalities, as follows-_

f @o() 0(y)
d

T- J,+ (- y).
f @o(y + t) @o(y)

dt- J
dt
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Combining (11.

(14)
1r a2 -t- (Y o)

’o(o) &o

), (12) and (13) with (10) one finds that

o()
2

:3 o’()

Now by a completely analogous procedure, one also has

1 f r qo(o) dw
qo(Y)

L
(15)

3 Io’() d

Finally (14) and (15) together with (9) yield

p I(,) eo(s) <! 10’() ’d

This completes the proof.
The following lemma completes the "constructive" process for the Z

hypothesized in Theorem 2 and also gives a range of applicable values.
LMX 3. Let the hypotheses and noai of Theorem 1 covering g(. hold,

i.e., g(. W, () arg {G(i) + 1/1}, rain ( ()1) > 0,
/3 and W inf{W,I !()1 < for I! > W}. Assume

W, > 0 and let

W

Then for any a in [0, a*) there is a y(. in L[0, ), with Laplace transform
Y(s ), and a > O, such that"

(i) Re {1 + Y(i)} > 0,

(ii, Re{[l + Y(i + ,] [G(iw,
Remark 4. If Z 2, is defined by

(z)() x() + y(- )-"-%() d,

then the following conditions are equivalent to (i) and (ii) above"
(i’) Re {Z(i )} e > 0,

Hence condition (i) of Theorem 2 is satisfied for all in (0, .).
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The hypothesis g(. W, assures thgt rg {G(i) + 1/It} lies in the
intervM (-r, r). If conclusions (i) nd (ii) of Lemma 3 re to be fulfilled,
then it is clearly necessary that rg {1 + Y(i,0)} lie in (-r/2, r/2) and
Mso that rg {[1 + Y(io + z)] [G(i) + l/k]} lie in (-r/2, r/2). That
these two conditions re slso sufficient for the wlidity of (i) nd (ii) cn
be seen from the following remark.

Remarlc 5. If F(0) is continuous complex-vMued function oa , ),
F(o) # 0, [arg{F(o)}[ < r/2 and limll_,F(0) exist,s and is a real
eonst.ant greater than zero, then there is a constant ti > 0 with the property
that Re {F(o)} >- .
RecMling that

rg {[1 + Y(io + )] [G(iw) +
rg {1 + Y(io + z)} + .urg {G(io) + l/k},

an initial ttempt t constructing y(. might be to employ Lemm 1 in
order to find a y(. L(0, with.

arg 1 + Y(io)} -- arg G(io) + l/k}.

With such a choice for y(. ), both arg {1 + Y(i)} and arg {1 + Y(io)}
+ arg {G(i0) + l/k} (= -1/2 arg {G(io) + l/k}) would lie in (-7r/2, r/2).
The construction which will be adopted here must differ from the choice of
phase function suggested above for large o in order to meet the conditions
required for application of Lemmas i and 2, namely, that the phase function
chosen and its derivative must both have finite square integrals.

Proof of Lemma 3. For each > 0 choose l(0) a continuous, a.e., dif-
ferentiable real-valued function defined on (W,, and satisfying"

(a) l,(W) _q,(W) _arg [a(io) + 1//c}
2 2

(b)

(d)

I/,()[ forall o . (W, ),

<

(Such functions are easily constructable. In fact, l,(o) may be chosen
to be linear from

o W to oo() 3W + W
e2
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with

1,(o) 0 for

For any e > 0, define

()
2

()

-(-)

By this construction it is assured that

>= 0().)

---1-argfG(ix)2 +} for o in [-- W,, W],

(16) ,(o) <

(17)

Also for future reference the inequality

(18) 1 l
+w’

t e2(-)1 d +I(R) ()I d. =< -,,

holds.
It now follows by application of Lemma 1 that there is a y,(. in LI(0,

with Laplace transform Y(s), 1 q- Y,(io) # 0 for any o and
arg{1 -t- Y,(i)} ,(o). Remark 5 combined with (16) therefore yields

Re{1 -k Y,(i)} >= 5(e) > 0

for some constant ti(e). This proves Lemma 3 (i). In fact (i) holds with
y(. equal to any y,(. chosen by the above procedure. The actual choice
of y,(. which will be made will be one corresponding to sufficiently small
so as to assure that Lemma 3 (ii) also holds.

In order for (ii) to hold for y(. equal to some y,(. ), it is sufficient, by
Remark 5, to show that

(19) larg {1 - Y,( + )1 + (o) < ,
Now (19) may be rewritten as

(20)
arg {1 -t- Y(i + a)} ,,(o) -t- ,(o) -[- (o) < ,
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From Lemma 2 it follows that for all o,

(21)

and so a sufficient condition for (20) to hold is that

Now

while

sup .() q- ()1 sup
o,101w o,lol w 2 _.9

sup (o)1 _-< sup I,b,(o) q- sup

It follows that
=5+v-2 2

sup q,.,(w) (oa) < rr a

--<o< ---Using this relation in conjunction with inequalities (20) and (21), one finds
that a sucient condition for (19) to hold is that

16 [’() [ d + v a

3 2 <
or

3rr
,I,/(0) < .

Therefore if o-, is chosen equal to

(3ra/16)

as hypothesized in this lemma, then for any , 0 < a < z,, the inequality

w. 3r < a

holds.
Bug ghen if e is ehosen suttieiengly small, inequaligy (23) will hold by

virgue of (18). This means, on gracing ghrough he above argumeng, ghag
ghe (. corresponding go such a choice of will be an aeeepgable choice
for he y(. in ghe satemen of ghis lemma, i.e., (i) and (ii) of the sae-
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merit of this lemma hold for Y(s), the Laplace transform of y(. ). This
completes the proof.

5. A factorization lemma. In this section a necessary and sufficient condi-
tion for the factorization property of n(. as described in Theorem 2 will
be derived. For convenience of notation, a class of real-valued flmctions
is introduced.

DEFINITION. Let be the class of absolutely contilmous real-valued
functions k(. defined on [0, with each ]c(. satisfying 0 < inf k()

supk(t) < .
LMM 4. Let (. be given and let be a nonnegative constant. The

following two statements are then equivalent"
(i) There is a constant K > 0 such that

It(r)
2 dr- 2 ---t

jbr all > O.
(ii) There are functions lc+(. and k_(. both in K satisfying the following

properties for all O"
(a) k(t)= k+(t).k_(t),
(b) k+(t) exp (-2zt) is monotone nonincreasing,
c ]_ is monotone nondecreasing.

It is somewhat simpler to write out the proof of the followitg equiwlent
version of Lemm 4 (obtained by considering log k(. )).
LEMM 4’. Let l( be a real-valued absolutely continuous bounded (above and

below) function of for in [0, ). Then the following two statements are
equivalent"

(i) There is a constant K > 0 such that

2at-- K l’(r) 2z{ dr 2at+ K

for all O.
(ii’) There are two real-valued absolutely continuous bounded (above and

below functions l+ (.) and l_(. ), defined on [0, ), with the following
properties"
(’) .) +(.) + _(.),
(b’) dl+(t)/dt 2 a.e. in t,
c’ dl_( )/dt 0 a.e. in t.

Proof of Lemma 4’. Assume at first that (i’) holds"
Define

l’(r) + 2- l’(r) 2z] drl+(t) l(O) + 2

g l(0) + m{ (r) 21 dr
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and

l’ l’__(t) (’,’) 2o" +! (") 2o"

(24) = fo Inax (l’(r) 2, O) dr.

Then with these definigions it is easy go cheek ghag (a’), (b’) and (e’)
hold. Whag is lefg o be shown is hag l+(.) and/_(. are bounded funegions.

Bug

1 l’

while

t_(t) t(t) (0) + (*) 2ld,- t.

Assumption (i’) nd the fact that l(t) is bounded assure that l+(. nd
l_(. are bomded functions rd this completes the proof of (i’) --, (ii’).

In the other direction assume (ii’) holds. Then it follows that

(25) dl_(t) >_ max (l’(t) 2(r, O) (l’(t) 2) + l’(t) 2r
dt 2

for almost all _>- 0.
To see this, note that if (25) did not hold, there would exist a set of

positive measure on which

0 <- dl_(t) < l’(t) 2r.
dt

But

dl(t) dl+(t) dl_(t)
dt dt dt

so that one would have

0 <= dl(t) dl+(t) < dl(t)
dt dt dt

on some set of positive measure. This, of course, would imply that dl+(t)/dt
> 2 on a set of positive measure which would then violate (b). Thus (25)
is verified.
Now integrating both sides of (25) from 0 to yields

_(t) t_(o) _>_ t(t) t(o) ,,t + 1
2

l’(-) 2,
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valid for all _>- 0. Noting that both l_(. and l(. are bounded (above and
below) by assumption (ii’), the estimate

f ]l’(r) 2a dt <= 2at -t- K

follows for some constant K > 0 and all >= 0.
The inequality

Kdt

follows easily from the fact that

max (l’(t) 2a, O) (l’(t) 2a) + l’(t) 2a
2

is nonnegative for almost all ->_ 0. With these remarks, the proof of
(ii’) -- (i’) is complete.
COROLLARY 3. A necessary and sucient condition for assumption (ii) of

Theorem 2 to hold is that either"
a there is a K > 0 such that

f for > O,K all
n(r)(1 n(-)/k)

or else
(b) there is a K > 0 such that

lf0t (r)
+2 dr-2 < forall t>0.- n(r)(1 n(t)/k)

Proof. Apply Lemma 4 to

(n*(t) n(t) 1
n

to get (a) or apply Lemm 4 to

1 A(n*(t)
1

to get (b).

Concluding remarks. The techniques developed here show promise of
eliminating the multiplier dependence from many recent stability results.
In particular, investigations are currently under way on problems involving
monotone nonlinearities (see [2]) with a view towards obtaining geometric
criteria there.
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DIFFERENTIAL GAMES WITH DELAY*

A. HALANAY
1. Introduction. The purpose of this paper is to consider some min-mx

problems for systems with time-lg. The first one is simple linear pursuit-
ewsion problem with prescribed durtio which ws studied by Ho,
Bryson nd Bron [1] in the cse whe there is no retardation. This problem
cn be completely solved nd shows tht even if the systems for the players
re of the simplest form with constant concentrated retardation, the equilib-
rium system will be system with distributed retardation. Only for the
most generM linear systems with time-lg will the equilibrium system be
of the sme form.

This first problem suggests a setting for the questio of necessary con-
ditions for the equilibrium strategies. As always, in such cases, one must
define a suitable class of admissible strategies. The pursuit-evasion problem
considered above shows that there are situations when the equilibrium
strategies are differentiable with respect to the state. Since the experi-
ence of control problems shows that this is unrealistic when the strategies
take values in closed sets, we suppose that these sets are open, although the
min-max conditions could be derived in more general cases.
The method is the one used by Berkovitz [2] and Zelikin and Tynianski

[3] and consists il considering two associated variational problems; from
the above discussion it follows that we are obliged to consider optimal
control problems for the most general delayed systems. This is done by
using the methods of Hestees [4] (see Appendix).

It is seen that this paper is less related to the problems of the theory
of differential games as this theory is surveyed by Berkovitz in [5];
indeed all the difficult game-theoretical points are avoided. The paper
should be considered as a contribution to the general theory of delayed
systems and more precisely to the variationa! aspects of this theory.

2. A linear pursuit-evasion problem. Consider the pursuit-erasioa
problem

2(t) A(t)x(t) + B(t)x(t- -) + G(t)u(t),

t(t) C(t)y(t) + D(t)y(t -) + H(t)v(t),

X,o , yto , xt(s) x(t + s),

u,(s) = y(t + s), s [--, o],
* Received by the editors October 24, 1967, and i revised form April 18, 1968.
f Institutul de Matematica, str. M. Eminescu 47, Bucuresti 9, Romania.

579



580 A. HALANAY

a [x*(T) y*(T)]K*K[x(T) y(T)]J(u, v) - + - (u*Lu v’My) dt, L > 0, M > 0,

where matrices A, B, C, D, G, H, L, M are continuous on [to, T] and K is
constant.
The couple (fi, ) will give equilibrium strategies if J(, v) -<_ J(, )

<= J(u, p) for all piecewise continuous u, v.
Let X(T, t), Y(T, t) be the solution matrices corresponding to the

adjoint systems"

d_ X(T, t) -X(T, t)A(t) X(T, -- r)B(t -- )dt
X(T, T) E, X(T, t) =- O, > T,

_d_ Y(T, t) -Y(T, t)C(t) Y(T, + r)D(t + )
dt

Y(T, T) E, Y(T, t) 0, > T.

Let

z(t) K fX(T, t)x(t) Y(T, t)y(t)

t/r

+ IX(T, a)B(a)x(a r) Y(T, a)D(a)y(a r)] da.

It follows that

z( T) K[x( T) y( T)], i(t) (t)u(t) (t)v(t),
(t) KX( T, t)G(t), I(t) KY( T, t)H(t),

a 12 1 (u*Lu v’My) dr.J(u,v) - [z(T) +
Suppose (L-l(* >=/M-1/* in [to, T]. Then

(1 ftr t}det E+ ((L-’(*- /M-/*)d 0 for t [to, T]

and

{1 fr t1-1P(t) . E + (L-(* -/M-1/*) d

exists in [to, T].
It is easy to see that P is the solution of the Riccnti-type mtrix equ,tion
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dP p((L_, iM_,)p
dt

and P(T) aE.
If we denote V(t, z) 1/2(P(t)z, z), we shall have

V( T, z(T) 1/2 (P( T)z( T), z(T) 1/2 a z( T) ,
J(u, v) V( T, z( T) + (Lu, u) (My, v)} dt

r dV(t, z(t)V(to, z(to)) + t
dt

+ {(Lu, u) (My, v)ldt,

and by direct clculation we get

J(, v) v(o, z(o)) + (c( + c-*), + g-*)
M v + M-R* v - M-R% d,

Pa, R PN.

Ig follows ghag ghe opgimal sragegies are

L-1Q*z, M-R*

since g(, ) V(to, z(to)) and

1
r

M v + M-R*z v + M-1R*z dtJ(, v) V(to, Z(to)

V(to, z(to))

V(to,z(to)) + (L(u + L-Q*z), u + L-Q*z)dt

J(u, ).

The optimal system will be

2(t) [A(t) GL--Q*KX(’, t)]x(t)

+ GL-Q*KY(T, t)y(t) + B(t)x(t- )

-*g x(, + )( +
(, + )( + )()1



582 A. HALANAY,

)(t) -HM-R*KX( T, t)x(t)

--{- [C(t) --5 HM-R*KY(T, t)]y(t) -t- D(t)y(t )

-at. HM-R*K [X(T, a -5 r)B(a + r)x(a)

Y( T, a -t" r)D(a -t- r)y(a)] da.

The results show that although we started with a simple system with re-
garded argument, the synthesized system is a more general one.

If we consider systems of the form

2(t) A(t)x(t) -t- _, B(t)x(t- )
k

--1- f A(t, s)x(t + s) ds -5 G(t)u(t),

?)(t) C(t)y(t) -+-

_
D(t)y(t- r)

k

+ f C(t, s)y(t + s) ds + H(t)v(t),

the matrices X( T, t), Y(T, t) will satisfy

_d.. X(T, t) --X(T, t)A(t)

_
X(T, + r)B(t + r)

dt

f Y(T, t- (r)C(t- , r) &r,

and we shall define z(t) by

z(t) KiX(T, t)x(t) Y(T, t)y(t)

+ E / IX(T, + , + -)/(t + + -)z(t + .)
k vk

Y( T, + a + )D(t + a + r)y(t + a)] da

+ X(T, s)A(s, + s) ds x(t + )

Y(T, s)C(s, + s)ds v(t + )
--I

ZThen we get the sme result as bove, i.e., -L Q’z, M-R*
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and the synthesized system will be of the same type as the initial one;
in fact, we shall have more terms with distributed retardation than in the
initial system.
For the general systems,

2(t) [d.v(t, s)]x(t -F s) -F G(t)u(t),

i#(t) J_ [G(t, s)]y(t + s) -F H(t)v(t),

nd X T, t) and Y( T, t) are defined by

X( T, t) -t- X( T, v)(’, ,) d, E,

X(T,t) -=- 0 for > T, X(T,T) E,

Y(T,) =- 0 for > T, Y(T,T) E,

z(t) K {X( T, t)x(t) Y( T, t)y(t)

We have then

z(t) K[x( V) y( T)]

{KX( T, a)G(a)u(a) KY( T, a)H(a)v(a) da,

and the same as above holds; the synthesized system will now be of exactly
the same type as the initial om. For all the computations concerning
the general system with time-lag, see [6].

3. Necessary conditions for equilibrium strategies. The problem we
solved gives a setting for the general question of necessary conditions of
optimality.

Consider a differential game with delay of the form

2(t) f(t, xt, u, v), xto 4’, x(s) = x(t q- s), s [-r, O],

I(u, v) g(x( T) + L(t, xt u, v) dr,
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where T is fixed, f and L are continuously differentiable with respect to x,
u, v, and continuous with respect to t; g is C1.
We shall consider the admissible strategies u(t, z) piecewise continuous

with respect to in [to, T], differentiable with respect to z, and taking their
values in set U, supposed to be open; the admissible strategies v(t, z)
will be considered of the same type.
To the couple (u, v) of admissible strategies will correspond the solu-

tion defined by the system

2(t) f(t, xt, u(t, x), v(t, xt) ), Xto

T

I(u, v) g(x( T) ) L(t, xt u(t, xt), v(t, xt) ) dt.

For the admissible strategies we shall require that the corresponding solu-
tion be defined for to -<_ -< T. The couple (, ) will be an equilibrium one
if for all admissible strategies (u, v), I(, v) -< I(, V) =< I(u, ).
We are now interested in necessary conditions for (, ) to be equilib-

rium strategies. The method will be essentially the same as in [2], [3].
Suppose that (, V) is optimal and let 2 be the corresponding solution;
let (t) (t, ), (t) (t, t). Consider the control system

(t) f(t, x, u, (t, x) ), Xo ,
J(u) g(x( T) + L(t, xt u, (t, xt) dt.

For this system 2 will be the solution which corresponds to the control
4, and Jl() I(, ), Jl(u) I(u, ); since the piecewise continuous
controls u(t) are particular case of admissible strategies, we deduce that
J() <- J(u) for all piecewise continuous u with vlues in U.

For the control problem considered, the maximum principle is true in
the following form" If is optimal, then for all [to, T] where is con-
tinuous and u U, we hve

H(t, 5ct, u, ) <- H(t, 2t, (t), ),

where

H(t, 2t, u, /) Cf(t, 2t u, (t, t) L(t, 2t, u, (t,

and is defined by

(4(T) ),Og
(t) A- [(r)(o’, r) ’(o’, o’)] do" -0-

b(t) 0 for > T
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(T) _0_g ((T)).
Ox

The functions with bounded variation with respect to the second argumen
vl, 1, correspond, according to the well-known theorem of Riesz, to the
operators

Of (t, ,,) + O/(t, 2 ,’,)

OLOL (t, 2 , ) -t- (t, t , ) (t, 2t)ox
respectively.

Consider now the control system

2(t) f(t, xt, (t, xt), ), Xto 0,

J(v) g(x(T)) + L(t, xt, (t, xt), v) dt.

Then 2 is the solution corresponding to the control "
j() (, ), J() (, );

hence J() J(v) for all piecewise continuous v with values in V.
The maximum principle gives

xf (t, , (),) -L(, , (), v)

x/(t, , (t), (t)) L(t, , (t), (t))

for all v V and It0, T] where is continuous, x being the-solution of
the equation

x(t) + [x(),(, t- ) 5(, - )] 4o-= ---(z(T))

x(t)0 for t>T, x(T)=-0((T)).
Ox

The functions with bounded variation with respect to the second argument
w and : correspond to the operators

of (t, , ) + of (t, , ) o (t, )Ox

OL OL (t, 2t %, )
Ot (t, 5ct).(t,,,0) +



Using the fact that U and V are supposed to be open, we have from the
first maximum condition

OLOf (t) (t)) -u (t, , (t(t), (t)),(1) Z (t, ,
and from the second,

(2) x Of OL- (t, a(t), (t) (t, , a(t), (t) ).

Let va, ,’, =’, ’a be the functions with bounded variation with respect
to the second argument corresponding to the operators

Of (t,. (t) (t)) (t,,)

respectively. Then we hve

of, + (t, , ,
OL

Ot OL

+ (t, ,, , ),,
OL+ u (t, , a,,)n.

The equations for and x can be written

Of (,2 () O(a))nlt(o,t- a) a(a, t- )+ ()

OLov (’ 2 (), () )m’ (, ) d ---oxOg (2(T)),
x(t) + x()n(, )

+ x(z) (, 2, (), (z))m’(z, ) a(z, z)

oL (, () ())’(, )d O (2(T))
OU X

and tking into account (1) and (2),

() + ()n(,
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of (, () ()),,(, ) (, )+ () a7
of (, () ())’(, ) & Tx() (( ))

x(t) + x()n(, )

+ X(z) Of (, , (), ())’(, ) (, )

() Of (, 2 (), ())’(, ) d
Og ((T)).

It follows that the difference x satisfies the equation

() x() + () x()] n(, - )

+ (, , a(), ())’(, )

+ (, , a(), o())n’(, ) & 0,

(t) X() 0 for T,

and hence () x() 0 for all .
The equation for is now

r

() + [()n(,- ) (,- )1

() 0 for > T,

and we obgain ghe following resulg. he opgimal sgragegies g(, z), (, )
and he corresponding optimal solution satisfy he minimax principle"

()j(, , , ()) L(, , ,
()(, , a(), ()) (, , a(), ())

for all U, v F, being defined above.
Recall ha and f are ghe functions corresponding go he operagors

(.Of/Oz,) (t, a(t), () ), (OL/Oz)(, 2, a(), ()), respeegively.
Apply ghis general resul to he ese of linear systems wigh quadraie eos

functional considered in 2.



We have, denoting(X)=Z,y

f(t, zt (t), f(t)
[d, v(t, s)]x(t -t- s) + G(t)g(t)

[d, (t, s)]y(t -V s) -t- H(t)r(t)

[a. ,(t, s)]x(t + )
o_f_ (t, a(t), r,(t) lf [, -(t, )](t +
Ozt

The corresponding function is

s) 0 )o -(t, s)

L(t, zt ’g, O) does not depend on zt tnd hence OL/Ozt =- O.
The equation for will now be

I ((l(t) p,.(t)) nt- (l(r) 2(r))
n(’ t--

0

(t) ----= 0 for > T,

4,( T) -a2 [2* T) .O* T)]K*K, [2* T) .O* T)IK*K
hence

T

h(t) -t- f /l(r)n(rr, t-- rr) drr a[2.*(T) *(T)]K*K,
T

4,(t) nt- f V4(r)f((r, (r) &r a[2*(T) )*(T)]K*K.

0
| da const.,

(, )/

It follows that, with the notations used in 2,

Pl(t) -a[*(T) 9*( T)IK*KX( T, t),

p(t) a[2*(T) f*(T)]K*KY(T, t).

The minimtx conditions (1) t.md (2) now give

IG t*(t)L, ztI -O*(t)M;



DIFFERENTIAL GAMES WITH DELAY 589

hence

u /1GL-1, v -2HM-,
*(t) -a212*(T) )*(T)]K*KX(T, t)G(t)L-l(t),
0*(t) -a[2*(T) *(T)]K*KY(T, t)U(t)M-l(t),

and with the notations of 2,
-* au [4* (T) ) (T)]K*L-,

-a’[2* (T) *(T)]K*M-.
Thus

(t -a2L-IO-*K[2( T) j( T)],

-a’M-*K[2(T) (j(T)].

To see that these formulas agree with the ones obtained in 2, recall that

(t( L--*P2
(t) --M-*P(t),

and since

i Gu Hv,

we have for the system

(L-* M-fl*)pz

and, using the equation for P, we obtain

i --P-Pz.
Hence Pi + Pz 0 and

P(t)(t) P(T)(T) aK[2(T) (T)].

It follows that

-aL--*K[2(T) (T)],

-aM--**K[2(T) (j(T)],

which is the same result that we obtained from the minimax principle.

Appendix. Optimal control systems with time-lag. Consider a control
system with time-lag

2(t) f(t, xt,ut,b), X,o a, Uto v, b B R’, x(T) w(b),
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and the functionals

I. g.(b) -t L(t, xt ut b) dt.

The couple (u, b) is admissible if u is a piecewise continuous function oa
[to, T], u(t) U, where U is a given set, uto v and if, for the correspond-
ing solution of the system with xto a, we have x(T) co(b), I -< 0,
1 p, I 0, < p; the couple is optimal if it is admissible
and minimizes I0 in the class of admissible couples.

Let (, ) be an optimal couple, 2 the corresponding optimal solution.
Let

Of OL t,A(t) (t,,,), c(t) Ox
By the Riesz theorem we can write

Let q(t) be defined by

() + [,()n(, - ) + r,(, - )1 0,

() 0 for > T,

and pi() be detined by

() + P()n(, - ) d eons.,

p() 0 for > T,

i(T) i.

Define

F, (, , , b) (, , , b) c()

+ [f(, ,, ,, b) ()1, 0 p,

Nemark hag by ghe definigions of A and c, we shall have 0F/04 0,
0F+/04 0 along ghe opgimal solution considered. Indeed

g(, , , g) (, , , g) c,(),
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+ c(t)2t + q(t)[f(t, ql, , [) f(t, , ,
A(t)(1 2)]

+ q(t)o( :,

for F+ the proof is the same.
We choose G(b), G+(b) such that

e(u, b) G,(b) + f,(t, x u, b) dt I,(u, b),
to

To do ghis we eompuge

(, b) d (, z, b) d e()z d

We have

[1 ] ]q() d, (, s)x( + s) d + d r(, s)z( + s) dt

4[q()(, s) + r(, s)]:( + s) d.

After some transformations we obtain

[q()A.() + c()]z d

+ d [q(t)v(t, - t) + r,(t, z- t)] dtx(a)

Ia all the calculations we suppose that (t, s) 0 for > T; in fact, is defined
by c only for t0 T.
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and, using the equation for q.,

[dq.(t)]x(t) + [q(t)A(t) + c.(t)]xt dt

d [q(t)n(t, r- t) + r(t, - t)] dt x().

Hence we hve

F(t, zt ut b) dt L(t, xt ut b) dt q(to)x(to)

d

nd we cn choose

a(b) (b) + (to)x(to)

+ d [q,(t)n(t, t) + r(t, t)] dtx().

In the same way,

F+,(t, x, u b) dt p,(t0)x(t0) + x’(T)

d

and

G+(b) -(b) + p(to)X(to) + d p(t)n(t, t) dt x().

In order to obtain the maximum principle in the form we used here we shall
consider that the control u is not delayed and shall use the abstract theorem
of Hestenes [4]. If Xq X+,p, we obtain for the equation

(t) + [()n(, ) X f(, )] d eonst.,

(t) 0 for

The Hamiltonian will be

H=f-X,L,.
In the ease considered for the theory of differential games we had no iso-
perimetrie conditions so that

H=f -L.
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Since we can take here x(T) b, hence o(b) b, the transversality con-
dition gives

Og OG Og To +
hence X (Og/Ox)((T)) and (T) -(Og/Ox)((T)).

Acknowledgment. The author is indebted to the referees for helpful
suggestions. He would also like to express his appreciation to H. T. Banks
for pointing out and correcting some errors in his book [7, Chap. IV, 3]
concerning general systems with time-lag.
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ERRATA: ON THE CLOSURE AND CONVEXITY OF ATTAINABLE
SETS IN FINITE AND INFINITE DIMENSIONS*

H. HERMES

It has been pointed out to me by Takeomo h[itsui, University of Tokyo’
that the argument given as a proof of property V, p. 414, is not valid"
Specifically, the argument, as given, would be valid if we were to show that
{x(., un)} converges, rather than to select a convergent subsequence. This
will now be done.
We had, for every nonnegative integer n, z(s) f(s, x(s, u’), u’+(s)

almost everywhere in [0, t]; hence,

If(8, X(8, un), un(8)) f(s, X(S, u+), u+a(s))[

(*) If(s, x(s, u’*), un(s)) f(s, X(S, U’-’),

K{ x(s, un) x(s, u’-i)] + Ix(s, u") x(s, u+i)}.

As commented in Remark 2, p. 411, the assumptions 1, 2 of p. 410 imply ff
is a bounded subset of [0, T]; let p be the bound. Thea for any k,
(s, u)[ p and (s, u) (s, u)] 2p almost everywhere in [0, t].

Integrating from 0 o implies Ix(t, u) x(t, ui)] 2pt. Using this esti-
mate in (*) for n 1 gives

(8, U1) (8, U2)I /({I X(8, U1) X(8, U2)I + 2p8}.

Integrating this from 0 to gives

This may be used in a similar fashion in (*) for n 2 to obtain

3 Ix (, u1) x(, u) d ds

+ K Jo ]x(s, u) x(s, u)i

* This Journal, 5 (1967), pp. 409-417. Received by the editors June 24, 1968.
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Proceeding inductively, one gets

Ix(t, u) x(t, u’+) <= [_(n -F 1)!

/ X(tn, U) X(tn, u)ldt dt1
-t" K f Ix(s, u’) x(s, u’+)

The standard equality

f(t,,) dt, dh f(T) dr
.0

yields

2K pt+l K
u(t, ) x(t, u+) [+ x(, ) x(, d

K x(, u) x(, u+) .+
Now pply the Gronwll inequality, tke limit s n , and we obtain
x(t, u) x(t, u+)[ 0 uniformly in [0, T]. This shows the sequence
x (., u) converges uniformly nd the remainder of the rgument s given
on p. 414 completes the proof.
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ON THE OPTIMAL CONTROL OF A SYSTEM GOVERNED BY A
LINEAR IARABOLIC EQUATION WITH WHITE NOISE INIUTS*

H. J. KUSHNERf

1. Introduction. Let be a smooth elliptic operator whose coefficients
are defined on f) X [0, T], where/-) E (Euclidean n-space).
We consider the problem of the optimal control of systems with the formal

representation

(*) w w + bu + ,
satisfying W(x, t) -- 0 as x -- OD, >= O, and with control

u(x, t) f x, t)w(v, t) dv

and cost criterion

C’(, t) ---= E W(x, s)W(y, s)S(x, y, s) dx dy ds

-t- E, P(x, s)u:(x, s) dx ds,

where is the formal deriwtive of the Wiener process z(t) and E is the
expectation given the control u, nd initial condition (. ). A precise mean-
ing is given to all terms in the sequel. An equation of the form (*) seems
like useful model of a variety of noise disturbed objects, but it also arises
in the following way. Suppose ttmt n object is governed by Ht H + bu
and the noise corrupted observations having the It5 differential (for each

x f))dye(x, t) dt .f m(v,x, t)H(v, t)dv-- dwi are taken, where the

we re Wiener processes. Then, the conditional expectation W(x, t)
-=-EIH(x, t)l y(v, s), s =< t, v 1)} has a representation in the form (*). In
fact, (26) is the relevant Riccti equation (with a reversed time param-
eter). The results herein concern the first boundary wflue problem for

Received by the editors September 25, 1967, d in revised form Mrch 22, 1968.
Center for Dynamical Systems, Brown University, Providence, Rhode Island

02912. This research was supported in prt by the Air Force Office of Scieatific Re-
search, Office of Aerospace Research, United States Air Force, under AFOSR Grnt
AF-AFOSR-693-67, in prt by the Ntioaal Aeronautics nd Spce Administration
under Grt 40-002-015, nd in prt by the Ntional Science Fouadtion under Grnt
GK-967.

The filtering problem will be treated in subsequent work. This pper is devoted
strictly to the control problem.
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single parabolic equation. However, it is clear that the method is applicable
(and results easily extendible) to the second boundary value problem, or to
a family of parabolic equations. The latter model is quite versatile. For
example, we can use a vector parameter process W(x, t) generated by (*)
as the input to another system (e.g., (O/Ot )Y W - btut). We can
thus generate a distributed system analogue of the linear Gauss-
Markov processes, and treat the corresponding average quadratic cost
control problem.
The results are based on the results of Lemma 1 which provide criteria

which guarantee that there is a version of a vector parameter process which
with probability one (w.p.1) is continuous or differentiable in some particu-
lar parameters. Without these latter results, (1) would lose its intuitive
meaning (as would stochastic differential equations if the paths were not
known to be continuous w.p.1). Previous works dealing with "random"
partial differential equations [2, Chap. 14], [3] were concerned with the
nature of the random solution corresponding to a random, but smooth,
boundary condition. Once the necessary smoothness properties of the
process W(x, t) are established, much of the analysis is similar to the
analysis of the corresponding deterministic problem. However, to our knowl-
edge the few treatments of the deterministic problem (e.g., see the interest-
ing reference [4]) are essentially formal in nature. Most of the proofs are
slightly abbreviated. We have chosen to omit the details of several argu-
ments dealing mainly with the smoothness properties of potentials and re-
lated integrals. The arguments are tedious and standard. Some are based on
existence theorems (Lemma 2.3) and most others use the arguments of [5,
Chap. 1, 3.5].
In 2, some needed results on processes with a vector parameter set are

given. The proofs of the statements of Lemmas 2.1 and 2.2 are found in [1].
Theorems 3.1 and 3.2 define the solution of (*) and its basic properties;
continuity w.p.1, existence of HSlder continuous w.p.1 second derivatives
(with respect to the x), etc. The optimality and approximation in policy
space results appear in 4. Although we deal with a single white noise in-
put, the results are obviously valid for the no more general infinite-
dimensional white noise input of Lemma 2.2.

2. Mathematical preliminaries.
DEFINITION. Following the usual usage, a version of the vector parameter

scalar-valued process f(y) is any scalar-valued process (y) such that
P{(y) f(y)} 1 for all vector parameter values y. Write D, DiDo,
D.D and Dt for the differential operators /(x,
and O/Ot, respectively. D is a bounded open set, its closure and/ denotes

[0, T].



IEMMA 2.1. Let the boundary OD of D have the property that any line inter-
sects it only finitely often. Let the functions

a(x, t, s), IDia(x, t, s)}, {DDa(x, t, s)},
(**)

IDnDa(x, t, s)}, (DDDDa(x, t, s)}

be defined on [0, T] X [0, T] [0, T], continuous in (x, t) for each
s, and bounded (in absolute val’ue) by a square integrable function of s. Let
f be any function in the set (**), and let z(t) be a Wiener process. Then

T

_[ f(x, t, s) ds M < forsonerealnumberM, and

can be defined to be a separable and measurable process with parameter
(x, t). There is a null set N and a separable and mearable versi of

a(x, t, s) dz (x, t) which, for N, is continuous in (x, t) and has

three continuous (in (x, t)) derivatives with respect to the components
of x. These derivatives are equal to continuous (for N), separable

and measurable versions of [ Da(x, t, s)dz, [ DDa(x, t, s)

DDDa(x, t, s) dz,, respectively.

Let in addition, for some real numbers K O,

E f(x, + , s) dz, f(x, t, s) dz

K5,
where f is any member of (**). Let g be any member of the first three sets of

(**). Then the continuous version (for N) of/ g(x, t, s) dz, 0(, t)

is H6Ider continuous on , i.e., there is some K() < w.p.1 and a real
> 0 so that

where . refers to the Euclidean norm.
Lemma 2.2, although not used in the paper, can be used to generalize

slightly its results.
I,nMMA 2.2. Let z(t), i I,..., be a family of independent Wiener"

processes. Let OD satisfy the condition of Lemma 2.1. Let a(x, t., s) beafamily
offunctions, each ofwhich satisfies the conditions on the (x, t, s) ofLemma 2.1,
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except that with M and K replacing the M and K of Lemma 2.1, when f cor-
responds to a we assume that M < K < . Then the func-
tions b(x, t) .l a(x, t, s)dz, and ((x, t)

have the properties of b and of Lemma 2.1. g is either a Dja or DDka
Let us collect the following assumptions here. Note that HSlder con-

tinuity in (x, t) on the compact set R is equivalent to uniform HSlder con-
tinuity in (x, t) on R.

(El) Let R D X [0, T], where D is a bounded and open Borel measur-
able domain. To each point in OD, let there exist
function h(.) so that OD V has the representation xi h(xl,... x_,
xi+, x) for some component x, where h(x) has HSlder continuous
fourth partial derivatives.

(E2) On R, the coefficients of are bounded and HSlder continuous,
together with their first two derivatives with respect to the x.

(E3) There exists a real number K > 0 such that

>= K
ij

for any vector .
(E4) Let a(x, t) and its first four derivatives in the components of

be HSlder continuous in R.
(E5) Let a(x, t) and a(x, t) tend to zero as x -- OD in/.
(E6) Le b(x, t) be HSlder continuous on R and k(y, x, t) be bounded,

measurable and HSlder continuous in x, on R, uniformly in y.
It will be helpful to collect the following results here. They will be used

without reference in the sequel.
LMM 2.3a [5, Chap. 3, Theorem 7 and 5]. Suppose (E1)-(E3) hold.

Let (x, O) have HSlder continuous second derivatives in and satisfy
(x, O) 0 and 2(x, O) 0 as x OD. Let (OD, t) O. Suppose that
f(x, t) is H61der continuous in R and tends to zero as x OD.Then there is a
continuous unique solution to U U f on R which satisfies the boundary
condition (x, t). U(x, t), DU(x, t), DDU(x, t), DiDDU(x, t) and
DDDU(x, t) are H6lder continuous R and U(x, t) 0 as
xOD, O.

Define the Banach space o of functions on which satisfy f(x, t) 0 as
x OD and with the norm

ilf ]1- sup If(x, t) + sup f(x, t) f(y, s)

Let -oC+, be the sub- (Banach) space of ,o of functions which satisfy

(El) implies the condition on of Lemma 2.1.
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2f(x, t) ---+ 0 as x ----> OD, and have the norm

Then, with homogeneous boundary conditions, the equation Ut J2U f
represents a continuous lin.ear map of o into o (This follows from [52+a

Chap. 3, (2.21)] and he fi.rs part of the lemma.)
LA 2.3b [5, Chap. 3, Theorem 16]. Suppose (E1)-(E3) hold. Then

there is a Green’s function G(x, x’; t, t’) for Ut 2U. G(x, x’; t, t’) ---O
as x -+ OD for > t’. DG(x, x’; t, t’), DDG(x, x’; t, t’) and Gt(x, x’ t, t’) are
continuous in (x, t) on D (t’, T]. If z(x, t) is continuous in x for

f Xeach t, then a(x, t, t’) G(x, t, )(r(x t’) dx’ satises (O/Ot )

a(x, t, t’) (r(x, t) onD (t’, T] and tends to zero as x OD for
> t’. If z(x, t) and 2z(x, t) tend to zero as x OD and are HSlder con-

tinuous on , then a(x, t, t’) satisfies the same conditions for (x, t) D

fot t’[t’, T]. If (r(x t) is bounded and measurable, then dt’a(x, t, tends to

zero as x -- OD and is continuous on R. (The last statement follows from the
arguments concerning potentials in [5, Chap. 1, 3-5].)
LnA 2.3c [5. Chap. 3, Theorem 17]. Suppose (E1)-(E3) hold. Then

the Green’s function for the adjoint operator O/Ot + * is

G* x, x’ t, t’) G(x x; t).
Note that G*(x, x’; t, t’) is defined for < t’ and that (O/Ot + 2*)G*

(x, x’; t, t’) 0 onD [0, t’).
3. The stochastic partial differential equation.
THEOREM 3.1. Suppose (E1)-(E5) hold. Let 6(x) have HSlder continuous

second derivatives on and tend to zero as x ---+ OD. Let x -- 0 as x ---+ OD.
Then there is a process W(x, t) with parameter set f satisfying (z’ denotes
z(t’))

W(x, t) [ G( x, x’; t, 0)(x’) dx’
J

(1)

+ f dz’ G(x, x’ t’ t’;t, )r(x, )dx

There is a version of W(x, t) which is continuous on R w.p.1 and satisfies
W(x, O) (x), W(OD, t) O.DW(x, t) andDDjW(x, t) arealsoHSlder
continuous on R w.p.1 and 2W(x, t) 0 as x OD. Also, w.p.1,

W(x, t) G(x, z’; t, s)W(x s) dx’

dz’ G(x, x’; t, t’)z(x’, t’) dx’.
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For each fixed x in D, W(x, t) has the It differential
(3) dW 2W(x, t) dt A- a(x, t) dz.

Remarlc. W(x, t) is not (w.p.1) differentible in t. The smoothness of
a(x, t) determines the smoothness of W(x, t). Lemm 2.1 plays crucial
role here. It is not priori obvious that the lst term in (1) hs version
which is sufficiently smooth as a function of (x, t) w.p.1. The order of
integration in the stochastic integral in (1) mus be preserved. Also, the
theorem implies that the 2W term in (3) hs version which is continuous
w.p.1 on R.

It can be shown that the process W(., t), with parameter t, is con-
tinuous Markov process with values in Banach space of functions which
satisfy the appropriate boundary conditions (W(x, t) 0 and 2W(x, t) 0
as x OD) and hve HSlder continuous second deriwtives (for some fixed
nonrndom HSlder exponent).

Proof. The proof is a consequence of Lemms 2.1 nd 2.3. Let fl(x, t) be
the first term on the right of (1). Then by Lemmu 2.3, fl fl (x, t)
satisfies the boundary conditions and 2(x, t) 0 as x OD for 0.
(x, t) and (x, t) tend to (x) and (x), respectively, s t- 0. Write

a(x, t, t’) f a(x, x’; t, t’ x’,

Then for t’ (t’ fixed), a(x, t, t’), Da(x, t, t’), Da(x, t, t’),
DDa(x, t, t’) and DDDa(x, t, t’) are HSlder continuous on and
each satisfies the conditions on f(x, t, t’) of Lemma 2.1. Hence, by Lemma
2.1, there is version of

Jo dza(x,t,(x, t) t’

which is HSlder continuous w.p.1 on R, and which has HSlder continuous
second deriwtives with respect to the x w.p.1 ou R. D(x, t) nd
DD(x, t) can be identified with the HSlder continuous versions (which
exis w.p.1 in ) of

f(z, )

(, ) dz’DD(, , ’)

fdz’ a(z, ’; , ’)(’, ’) dz’,

respectively. Thus (z, ) has a versiott which is H61der continuous w.p.1,
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and which is clearly a HSlder continuous version of dz’2a(x, t, Using

the continuity of 2(x, t) and the fact that 2h(x, t) -- 0 in probability
(since 2a(x, t, t’) -- 0) as x OD, we have 2(x, t) 0 as x -- OD. Thus
(1) satisfies the required boundary conditions. Equation (3) follows from
the definition of the It5 differential of (1) for each fixed x, and the observa-

tion that d [ dz’a x, t, t’ dza x, t, t) + dt l dz’at x, t, t’ where

a(x, t, t) (x, t) and at(x, t, t’) 2a(x, t, t’).
Equation (2) is obviously true w.p.1 for each fixed x, t, s. To show that it

is true w.p.1 on D [0, T] [0, T], note first that

:.’ {:(x, t, s) -- dz’ G(x, x’; t, s)z(x’, s) dx

can be defined (using previous arguments) to be continuous (as a function
of x, t, s) on/) [0, T] [0, T], except for in some null set N. Define
(x, t) as the (unique) lims0 (x, t, s). The limit exists for o ( N, and is a
version of the continuous (for ( N) function (x, t) defined previously.
Then, for o ( N,

(x, t) (x, s) + (x, t, s).

Now writing (1) in the equivalent form

fW(x t) G(x, x’; t, 0)(x’) dx’

/ f G(x, x’; t, s)C/(x’, s, O) dx’ -t" (x, t, s)

and using the semigroup property

f G(x, x’; t, O)p(x’) dx’ f G(x, x" dx" f ,’t, s) G(x" x s, O)p(x’)

and the continuity w.p.1 of k(x, t, s), we get (2), and the proof is complete.
The concern of this paper is restricted to systems with controls which are

linear in W(x, t) and which appeur linearly in the differential equation.
Thus adding control term to (3) we have, formally,

(3a) dW 2W(x, t).dr -[- z(x, t) dz -[- b(x, t)u(x, t) dt,

where the control is

(4) u(x, t) f W(y, t)k(y, x, t) dy.

Theorem 3.2 gives meaning to (3).



SYSTEM WITII WHITE NOISE INPUTS 603

THEOREM 3.2. Suppose (E6) and all the assumptions of Theorem 3.1 hold,
and let u(x, t) be given by (4). Then there is a HSlder continuous (w.p.1)
version of the following"

W(x, t) f G(x, x’; t, 0)(x’) dx’

+ f a(x,x’; t, t’)

f+ fo dt’ G(x, x’; t, t’)b(x’, t’)u(x’ t’,)dx.

Furthermore (w.p.1) DiW(x, t) and DDW(x, t) are HSlder continuous on
R, and both W(x, t) and JSW(x, t) tend to zero as x -- OD.

XThere is a kernel B x, t, so that

(6) W(x, t) fo dt’ f B(x,x’; t, t’)q(x’, t’) dx’,

where q(x, t) is the sum of the first two terms on the right side of (5).
B(z, x’ -o ot, t’) maps C2+.(R) "into 2+,(/) W(x, t) has the It differential

dW(x, t) 2W(x, t) dt + z(x, t) dz

(7)
+ b(x, t) J k(y, x, t)W(y, t) dy dt.

Proof. Let W(x, t) be HSlder continuous on R (exponent a) and tend to
zero as x -- OD. Let the HSlder exponent in (E6) be / >= a. Then

t(8) f(x’, t’) b(x’, t’) W(y, )]c(y, x, dy

is HSlder continuous on R (exponent a) and tends to zero as x -- OD.
Thus, by Lemma 2.3a, the last term in (5) maps W(x, t) o con-

0tinuously into C+,. Hence (5) Mso is u continuous linear map of -0C2+a
into +.

Write (5) s

(9) W(x, t) q(x, t) + dt M(x,x’; t, t’)W(x dx’,

where

fM(x x’; t, t’) G(x, y; t, t’)b(y, )k( y t) dy.

The kernelM(x, x’; t, t’) must also correspond to a continuous linear mp of

See Lemmu 2.3a for the definition of ,+a
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+ into 0+. By Theorem 3.1 nd Lemm 2.3, q(x, t) is in -0C+ for
some a > 0 w.p.1. Then, the theory of Volterr integrM equations sserts

-0the existence of W(x, t) C+ stisfying (9) (nd, hence, (5)) w.p.1.
It lso yields the representation (6).
The ssertion concerning the It5 differential follows exactly s in the proof

of Theorem 3.1.

4. The solution to the optimum control problem. The solution is divided
into four theorems. Theorem 4.1 establishes some required properties of a
partial differential integral equation (the aalogue of the Ricatti equation).
Theorem 4.2 establishes a formul for the cost corresponding to a fixed
control. Then, in Theorem 4.3 the usual dynamic programming technique of
quasi-linearization (or approximation in policy space) is applied to obtain
a sequence of costs (and improved controls) which, in Theorem 4.4, con-
verges to the minimum cost (and optimal control).
The adjoint of 2, operating on functions of x, is written as

*(x) DD[a(x, t)(x)! Dd&(x, t)(x)] + c(x, t)(x)..
,3

Define the Baaach space 0+ of functions on t D X D X [0, T]
satisfying the condition that f(x, y, t), *f(x, y, l) and *f(x, y, t) 0
tis x OD or y - OD or T, and with norm

,3 *,3

where

f sup [f(, , ) + sup
f(’ ’ ) 5(’ ’

x,y,i R

TEo 4.1. Asme he cditions o Theorem 3.2. Le Q(x, y, ) be sym-
metric and IIlder cinuous on f) [0, T]. Let Q(x, y, ) 0 as
x -- OD or y OD. Write

R(z, y, t) + (2* + 2*)R(x, y, )

(0) + f b(,, )[(x, ,, )R(,, y, ) + (y, ,, )R(x, ,, )] dv

-q(x, y, ).

There is a unique symmetric (in x, y) and continuous solution o (10) which,
in addition, is in o

Proof. By (E3), the doint operator nd its Green’s function re de-
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fined. The proof involves some standard calculations, similar to those of
[5, Chap. 1, 3-5], and most of the details are left to the reader. Consider
firs the adjoint equation (11), defined in/ X / X [0, T],

(11) /(x, y, t) A- (,* + *)k(x, y, t) -Q(x, y, t)

with boundary conditions (x, y, t) 0 as x OD or y OD or T.
The unique solution to (11) can be verified to be he symmetric function4’

T ff(x, y, t) ds dx’ dy’G(x x; s, t)G(y y; s, t)Q(x y, s)
()

Jtr Z d’G* G*ds dx’ y (x,x; t,s) (y,y; t, s)Q(x, y, s).

Write (12) as

R(, , ) ds z’a*(z, z’; , )h(y, z’; , ),

where

h(y, x’; t, s) f G*(y, x’; t, s)Q(x’ y’, s) dy.

h(y, x’ t, s) is uniformly HSlder continuous in y, x, t, s for s ->- t, and
h(y, x’; t, s) 0 as x --> cOD or y cOD. Let to and consider

[(x, y, to) ds dx’G*(x, x’; t, s)h(y, x’; to, s).

(x, y, to) is the solution to the adjoint equation Ut -t- *U h (with
to in h) to which Lemma 2.3a is applicable. Thus, for each fixed y,

(x, y, tit0) and *-2 R(x, y, lto) tend to zero as x -- OD or --* T, by
virtue of the properties of Q(x, y, t); also/(x, y, It0) is symmetric in x, y.
Since [(x, y, to]to) and oct*it(x, y, to lto) tend to zero as x OD or y -- COD,
and to is arbitrary, we conclude that the terms/(x, y, t) =/(x, y, t) and
2 R(x, y, t) and oc*/(x, y, t) are HSlder continuous and tend to zero as
x OD or y OD or -- T. Now, to complete the proof that
(x, y, t) (o+,, we need only show that lit(x, y, t) is HSlder continuous.

Consider the differential equation (*) AP A- PA’ Q, with boundary con-
dition P(T) O. Let (t, s) be the fundamental matrix of 2 Ax. Then (*) has the

solugion (**) P() (, )Q()o’(g, ) d. Noge ghe similarity in form begween

(**) and (12). (Here denoges transpose.)
ReeM1 hag G*(x, x’; , ’) -t- *G(x, x’; , g’) 0 for < ’.
"The boundary conditions are U(x, ) 0 on/) N {T} + 01) [0, T]. If ghe gime

parameger is reversed (changing ghe ermiml manifold D N IT} go an inigial manifold
/) )< {0}) then, since * satisfies (E1)-(E3), Lemma 2.3a is applicable.
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But this is true since it(x, y, t[ to) has HSlder continuous derivatives with
respect to and to in _>-- to _>- 0 (uniformly in x, y in/ X/)).
For the rest of the proof, write (10) as the Volterra integral equation

R(x, y, t) [(x, y, t)
(13)

+ t, s)M(x’ y, s)

where M(x’, y, s) is the integral term in the middle of (10) (with x, y, s
substituted for x, y, t, respectively). Obtain. (14) by changing the order of
integration in (13)"

R(x, y, t) [(x, y, t)

(14) + d R(v, w, )K(z, ; v, w; , ) dv dw

+ ds R(v, w, s)K(y, x; w, v; , s) dv dw,

where K is defined by"

K(x, y; v, w; t, s)
(14a)

b(v, s)G*(y, w; t, s)J G*(x, x’; t, s)k(x’, v, s) dx’.

If there is solution of the desired form to (14), then there is a solution of
the desired form to (13). It can be verified that under the imposed con-
ditions, the kernel K represents a continuous linear map of 0+, into

Finally, it can be verified, viu the theory of Volterra equations, that (14)
does hve a unique solution of the desired form. The proof is complete.
Let the control u be given by

u(x, s) f ](v, x, s)W(v, s) dr.

Then the cost becomes

C(, t) E dx dy dsW(x, s)W(y, s)Q(x, y, s),

where

Q’(x, y, s) S(x, y, s) + J k?(x, v, s)k’(y, v, s)P(v, s) dr.

Recull that the system that we are concerned with is defined by Theorem
3.2 and has the It5 differential

dW(x, t) 2W(x, t) dt + a(x, t) dz + b(x, t)u(x, t) dt

The map is given by the sum of the two integrals of (14).



SYSTEM WITH WHITE NOISE INPUTS 607

and boundary conditions W(x, t) --. 0 as x -- OD.
THEOREM 4.2. Assume the conditions of Theorem 4.1. Let W(x, t) satisfy

(5), with the control u (x, t) given by (4), and let the initial condition (given at
time [0, T]) W(x, t) (x) satisfy the conditions on (x) of Theoren 3.1.
Suppose that S x, y, P v, t" x, v, t) and b v, t) are HSlder continuous

in their arguments and S(x, y, t) and ]c"(x, v, t) tend to zero as x OD or
y OD. Let P(x, t) > 0 on D X [0, T] and let S(x, y, t) be symmetric and
nonnegative definite on X for each in [0, T]. Then

C(, t) E," dx dy dsQ(x, y, s)W(x, s)W(y, s)
(5)

p(t) W ] dyR"(x, y, t)(x)(y),
J

where

lff
r

p(t) - dx dy dsRU(x, y, s)a(x, s)a(y, s),

and R(x, y, s) is the function introduced in Theorem 4.1 corresponding to
Q(x, y, s) Q(x, y, s).

Proof. The assumptions on S(x, y, t), P(v, t), lU(x, v, t) and b(v, t)
guarantee that Q(x, y, t) satisfies the conditions on Q(x, y, t) in Theorem
4.1. For fixed x, y, the function

R(x, y, r)W(x, r)W(y, r) F(x, y, r)

has the It5 differential (Theorem 3.2) in [0, T] (we use a version of W(x, t)
for which W(x, t) is continuous w.p.l--see Theorem 3.2)"

dF(x, y, r) R,U(x, y, r)W(x, r)W(y, r) d’" + R(x, y, r)[dW(x, r)W(y, r)

+ W(x, r) dW(y, r) + dW(x, r) dW(y, r)]

RU(x, y, r)W(x, r)W(y, r) dr

+ R"(x, y, r)W(y, r)W(z, r) dr + a(x, dz

+ J R(x, y, r)a(x, r)g(y, r) dr.
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This, together with R(x, y, T) 0, implies (w.p.1 for each x, y, t) that

t) Jt dF(x, y, r).Y,

Furthermore,

-EF(x, y, t)

-ERU(x, y, t)W(x, t)W(y, t)

E. RU(x, y, r)W(x, r)W(y, r)

-I- R(x, y, r)W(y, r)(a3W(x, r) dr q- b(x, r)f W(v, r)k(v, x, r)(16)

f," R"(x, y, r)a(x, r),(y, r) dr.

Each of the integrnds on the right side of (16) cart be defined o be
measurable function of , x, y, r and absolutely integrable over

/3 X [t, T]. Thus (16), together with Fubini’s theorem, implies that

-E f dx dyF(x, y, t)

-f RU(x, y, t)(x)(y) a gy

(17)
E" dx dy dr R’*(x, y, r)W(x, r)W(y, r)

q- R(x, y, r)W(y, r)(W(x,r)q--b(x, r)f W(v, r)lc(v,x, r)dr)
q- RU(x, y, r)W(x, r)(W(y, r)--k b(y, r)f W(v, r)k)v, y, r)

q- p(t).

Now W(x, t) (w.p.1) nd R(x, y, t) (for each fixed y /3) re con-
tinuous nd hve uniformly continuous first and second derivatives, with
respect to the x, in the domain R. Also W(x, t) (w.p.1) and R"(x, y, t)
tend to zero s x ---+ OD. Thus, upon partially integrating and using Green’s
identity to eliminate the boundary integrals which re obtained (which
re zero, owing to the first two sentences of this paragraph), we get (for



SYSTEM WITH WHITE NOISE INPUTS 609

not in some null set)

fr
dx dy drR(x, y, r)W(y, r)2.W(x, r)

dx dy arx n (x, y, r)W(y, r)W(x, r).

Substituting this in (17), and using the symmetry of R(x, y, r), yields,
after another change in the order of integration,

f RU(x, y, t)(x)(y) dx dy

E, dx dy drW(x, r)W(y, r)

(18) [R,(x, y, r) - (2* + 2*)R’(x, y, r)

+ f b(x’, r)k(x, x’, r)R(x’, y, r) dx’

-t- b(x r)k(g, x, r)R"(x, x, r) dx’ -t- ().

Finally, using the relation (10) in (18) yields (15), and the proof is com-
plete.

Write Cu(W(x, t), t) for the function CU(, t) with W(x, t) substituted
for (t). Write dC’(W(x, t), t) for the It5 differential of the cost (cor-
responding to control u) but where, in the expression for dW(x, t), a
control v(x, t) replaces the control u(x, t).
THEOREM 4.3. Let u(x, t) be a given control (then kU(x, y, t) is given)

and assume the other conditions of Theorem 4.2. Let (x, t) be the function
v(x, t) which minimizes

E, d’C’(W(x, s), s)

(].9) % E, dx dy dsS(x, y, s)W(x, s)W(y, s)

/ E:i f dxdsP(x,s)v’(x,s)

or, equivalently, which minimizes

E" f dx dyR(x, y, z)[W(y, s)b(x, s)v(x, s) A- W(x, s)b(y, s)v(y, s)]
(2o)

+ E J dxP(x, s)v(x, s).
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Then

(21) C(4,, t) =< CU(4), t).
t(x, s) is given by

(22) t(x, s) --b(x, s) -j RU(x’ y’ s) W(y, s) dy
I(x, s)

and

(23) tc (g, x, s) -b(x, s)R(x, g, s)/P(x, s),
and the corresponding R (x, y, t) satisfies the conditions on the R (x, y, t)
of Theorem 4.2. Also

() f n:(x, , t)(x)() x a <= f u(x, , t)o(x)o(,v)

for any bounded and measurable function O(x).
Proof. By Theorem 4.2, (19) is nonnegtive and equals zero when

v(x, t) u(x, t). Then any minimizing v(x, t) (provided that the corre-
sponding integrals of (19) exist) must leave (19) nonpositive. This, to-
gether with the facts that C’(, t) is the sum of the last two integrals in
(19) and that the first integral o] (19) equals -C(, t), implies (21).
The v(x, t) minimizing (19) is the v(x, t) which minimizes

E, dx dy ds[R’(x, y, s)W(x, s)W(y, s)

+ R(x, y, s)W(y, s)(2W(x, s) + b(x, s)v(x, s))
"t- RU(x, y, s)W(x, s)(2W(y, s) + b(y, s)v(y, s))]

+ E dx dy dsS(x, y, s)W(x, s)W(y, s)

/ E:1 f dxdsP(x,s)v(x,s)

or, equivalently, which minimizes (20). The v(x, t) minimizing (20) is
given by (22). The statement below (23) is easily established (via Theorem
4.2) since the lc(y, x, t) of (23) satisfies the conditions on/’(y, x, t) in
the hypothesis of Theorem 4.2. Equation (24) is valid for all doubly dif-
ferential functions (x) which are zero on 0D since

t) f dx dyR(x, y, t)(x)(y)

+-
_<__ f dx dyRU(z, y, t)(x)(y)

+-

dx dy drR(x, y, s)(r(x, s)tr(y, s)

dx dy dsR*(x, y, s)z(x, s)(r(y, s)
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for all such (x). Hence (24) is valid for all functions wtiich are (almost
everywhere) pointwise limits of a bounded sequence of such (x).
Theorem 4.4 is the optimality theorem. Let lcn, Qn and R correspond to

]c,, QU and RTM, respectively.
THEOnEM 4.4. Let uo(x, t) be given and let the corresponding ]c(y, x, t)

satisfy the conditions on kU(y, x, t) in Theorem 4.2. Suppose the other condi-
tions of Theorem 4.2 hold. Define u,,(x, t) from Un--I(X, t), n 1, .", via
the procedure of Theorem 4.3. Then R’(x, y, t) converges pointwise (almost
everywhere) to an R(x, y, t) which satisfies the conditions of Theorem 4.1.
The control u(x, t) corresponding to R(x, y, t) via (25) (see (22)),

u(x, ) -b(, ) f R(x, Y, s)W(y, 8)
P(x, s)

dy

(25) - ] ](y, z, )W(y, s) gy,

is optimal in that CU(, t) <= C (, t) for any other control

(25a) (x, s) f/c(y, x, s)W(y, s) dy,

where k,V(y, x, t) satisfies the condition on the lcU(y, x, t) in Theorem 4.2.
R (x, y, t) also satisfies the boundary conditions on the R (x, y, t) of Theorem
4.2, and the Ricatti equation

R,(x, y, t) + (2* + 2,*)R(x, y, t)- J b(v, t)[/c(x, v, t)R(v, y, t) - k(y, v, t)R(x, v, t)] dv -Q(x, y, t),

where k(y, x, t) is given by (25), /c(x, v, t) -b(v, t)R(v, x, t)/P(v, t)
and also

(27) Q(x, y, t) S(x, y, t) + f /c(x, v, t)k(y, v, t)P(v, s) dv.

Proof. The proof is divided into three steps. First, we show that R (x, y, t)
converges (almost everywhere) to some function R(x, y, t); second that
R(x, y, t) is smooth and satisfies (26), and third, that R(x, y, t) corresponds
to the optimal control. By (24) (where u and are replaced by u, and u+l)
and the nonnegative definiteness of the R(x, y, t),

(28) f dx dy[R(x, y, t) R"+(x, y, t)](x)(y) >= 0

for any bounded measurable (x). Also the R(x, y, t) are cotbmous i
f) X f) X [0, T]. Hence, the diagomd values R(x, x, t) are nounega-
rive and nonincreasing as n increases, and R(x, x, t) J. R(x, x, t) (al-
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most everywhere) for some function R(x, x, t). This, together with
max, R (x, y, t) _<- max Rn(x, x, t) I, implies that the R (x, y, t) are
uniformly bounded. In fact, the pointwise convergence implies that the
diagonal values converge "almost uniformly" in the sense that for any
fixed e > 0, there is a function a(N, ) tending to zero as N -- and a
set S, c D with Lebesgue measure a(N, ) so that, for any m, n > N,
(29) 0 -</(x, x, t) -/(x, x, t) <
on D S.. Next, suppose that, for some m > n > N,

(29a) R’(x’, x", t) Rn(x’, x", t) > 2e

on some (x’, x") (f) S,) X (f) S,). Then, by continuity and sym-
" respectively (A’merry, there are neighborhoods A’, A" of x, x

re assumed to be in/) S.) so that (29a) and (29) hold on A
(J A" X A’. Let I(A (x) be the characteristic function of the set A. Set

I(A’ U A") (x). Then using this and he diagonal (29) bound
(28) gives

f [R’(x, y, t) R’(x, y, A")(y) dx dyt)]I(A U A")(x)

<= (2e- 4e)(A’)(A") < 0

(u(-) is Lebesgue measure on f)), contradiction. Since a can be made
arbitrarily small by increasing N, we conclude that R(x, y, t) converges
almost everywhere to a function R(x, y, t). Furthermore, it is clear that
R(x, y, t) is symmetric, measurab’le and bounded almost everywhere by
r(x, y, t), where r(x, y, t) is some function which tends to ero as x -- ODor y -- OD.
To continue, we use the representation (see Theorems 4.1 and 4.3 for

terminology)

R’+(x, y, t) [’+(x, y, t)

(30) + ds dv dwKn+ (x, y; v, w; t, s)R+(v, w, s)

+ ds dv dwlC+(y, x; w, v; t, s)R+(v, w, s),

(31)

(32)

[’+(x, y, t) ds dx’ dy’G* (x, x’; t, s) G*
(y, y;t, s) (x, y, s),

q’+(x y, s) S(x y, s)

_nl n-{-.1-t- ,x v, s) (y v, s)P(v, s) dr,
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(33)

(34)

k’+(x’, v, s) -b(v, s)R’(v, x’, s)/P(v, s),

-b(v, s) G*IC+l(x, y; v, w; t, s)
P(v, s)

(y, w; t, s)

f G*(x, x’; t, )R(v, x, S) dx.

The left side of (30) tends (almost everywhere) to R (x, y, t). Similarly
(and we omit the uninteresting details), the limit of each sequence of
integrals can be replaced by the integral of the (almost everywhere) limit
of the integrands.

Thus, almost everywhere,

f ’fR(x, y, t) [(x, y, t) - ds dv dwK(x, y; v, w; t, s)R(v, w, s)
(35)

-.- ds dv dwK(y, x; w, v; t, s)R(v, w, s),

where the kernel K is given by (34) with R(v, x’, s) replacing R’(v, x’, s).
Consider the (x, y, t) term in (35). Since Q(x, y, t) is symmetric,

bounded, measurable and tends to zero (almost everywhere) as x -- OD
or y -- OD, [(x, y, t) is HSlder continuous and tends to zero as x --+ OD
or y -- OD or -- T. If member of this latter class is substituted for the
Q(x, y, t), then [t(x, y, t) o+,. Similarly, the map K (the sum of the
integrals in (35)) takes R(x, y, s) into a HSlder continuous function which
tends to zero as x -- OD, y - OD or - T. If member of this class is
substituted for the R (x, y, s) in the kernel K, then the sum of the integrals
in (35) is in 02+,. (Recall the identical assertion in the proof of Theorem
4.1.) These considerations imply that R(x, y, t) is indeed in ]+,.
Upon differentiating (35) and using Gt(x, x’; t, s) -2*G(x, x’; t, s),

we obtain (26).
Now, note that the u(x, t) in (25) is the v(x, t) which minimizes (19)

and (20). Thus, letting O(x, t) be a control of the form (25a), we see that
(19) yields

’ dC"(W(x, s), s) + E" ds dx dyS(x, y, s)W(x, s)W(y, s)

(36) -- E, ds clxP(x, s)u2(x, s)

<__ E, ,fdC(W(x’ s), s)/ E f ds d. dyS(x, y,s)W(x, s)W(y, s)

+ Ej ds &P(x, s)O(x, s).
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Since the first terms on the left and right of (36) are equal, (36) implies
t) -< t).
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ALGEBRAIC STRUCTURE OF GENERALIZED POSITIVE
REAL MATRICES*

B. D. O. ANDERSON AND J. B. MOORE
Abstract. Square matrices Z(.) of real rational functions of a complex variable

are considered with two properties: (1) Z() has finite elements; (2) Z(j) + Z’(-j)
is nonnegative definite Hermitian for all real , other than those for which j is a
pole of an element of Z (.). Necessary and sufficient conditions for the nonnegativity
property are derived which involve the existence of constant matrices satisfying
several algebraic equations. The work thereby extends earlier results .on the struc-
ture of rational positive real matrices.

1. Introduction. This paper investigates the structure of a class of
matrices occurring in various systems theory problems. We shall work with
n X n matrices Z(. of real rational functions of a complex variable s; the
matrices of particular interest are those for which Z < (that is, no
element of Z(.) has a pole at infinity) and for which Z(jo) -f- Z’ (-ri0) is a
nonnegative definite Hermitian matrix for all real with j not a pole of
any element of Z(.).
The so-called positive real matrices [1] possess the aforementioned

properties, but also possess additional properties restricting the nature of
poles of the matrix elements. The structure of such matrices has been
investigated from the systems theory point of view [2], [3], and applications
of the structure properties have been discussed [4]. There are, however,
system theoretic problems involving matrices Z(-) with the finite-at-
infinity constraint and .the j-axis nonnegativity constraint, but without
the additional constraints imposed by Z(-) being positive real.
We shall term such matrices generalized positive real. Examples of

problems involving generalized positive real matrices as distinct from
positive real matrices may be found in [5], which discusses system in.-
stability, and in [6] and [7], which discuss inverse optimal control problems.
In [5], a single-input, single-output, time-invariant, finite-dimensional

system is considered, with a time-varying feedback gain coupling the output
to the input. The Nyquist plot of the open-loop system is supposed not to
intersect a certain disk in the complex plane; as a consequence of this, a
certain scalar function z(. of a complex variable s is generalized positive
real. The number of encirclements of the disk by the Nyquist plot de-
termines whether z(. is or is not positive retd. When it is not positive real,
an instability criterion is deduced.
To deal more effectively with systems theory problems involving rational

* Received by the editors October 31, 1967, and in revised form April 19, 1968.
f Department of Electrical Engineering, University of Newcastle, New South

Wales 2308, Australia.
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generalized positive real matrices, we shall give a structural description
parallel to that which is known for positive real matrices [3].

Section 2 presents the main result of the paper (see Theorem 1) while
3 discusses several implications of the results.

2. lYlain results. In this section we consider square matrices Z(..) of
real rational functions of a complex variable s subject to the constraint
that Z . A nonnegativity constraint will also be used extensively"

(1) Z(j) - Zp(-j) >= 0 for almost al! real

(the notation A >_- B [A > B] for Hermitian A and B means A B is
nonnegative [positive] definite).

Before stating results for matrices Z(.) satisfying the above constraints,
two results on rational positive real matrices will be reviewed.
LEMMA 1. Suppose Z(.) is an n X n matrix of real rational functions of a

complex variable s, with Z ) . Suppose it is decomposed in the form
[3]

(2) Z(s) J - H’(sI- F)-G,

where F, G, H, J are real constant matrices. Then Z(. is positive real if
(1) holds and all eigenvalues of F have negative real parts.

Proof. This 1emma is but a restatement ot the definition of a positive
real property.
LEMMA 2. Let Z(. be an n X n matrix of real rational functions of a

complex variable s such that Z( . Let F, G, H, Jl be a realization

for Z(.), that is, a quadruple for which (2) holds. Suppose further that [F, G]
is completely controllable [8] and IF, HI completely observable; then a necessary
and sucient condition for Z(. to be positive real is that there exist real
matrices P P’ > O, L, Wo such that

(3a) PF + F’P -LL,
(3b) PG H LWo,

(3c) WoWo J - J’.

This lemmu is proved in [3].
The following extended form of Lemma 2, relaxing simultaneously the

complete observability requirement and the nonsingularity of P require-
ment, will be required in the sequel.
LEM 3. With the same hypothesis as in Lemma 2, save for requiring the

complete observability of [F, HI, Z(.) is positive real if and only if there exist
real matrices P PP >= O, L, Wo such that 3a, b, c) hold.

We exclude those for whichj is a pole of some element of Z (.).
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Proof. Necessity follows as in [3]. Sufficiency only will be established here.
Select a coordinate transformation T (see [8]) such that

0 1(4a) TFT-1

_F21 F.2
(4b) H’T-1 [Hi’ 0],

(4c) TG
G2

with [Fn, Hi] completely observable. Let/, L, W0 be such that

5 PF + FP LL’,
(Sb) PG H LWo
(5c) Wo’Wo J + J’,
with/ =/’ > 0. Existence of/, L, W0 is guaranteed by Lemma 2 and the
fact that {Fn, G, H, J} is a completely controllable, completely ob-
servable realization of Z (.). Then it is straightforward to check that

and W0 satisfy (3a, b, c), where the zero blocks in (6a) augment/ to be
of the same dimension as F, and the zero block in (6b) augments the number
of rows of L to equal the dimension of F.
The extension of Lemmas 2 and 3 to generalized positive real matrices,

covered in Theorem 1 below, relies on associating with a generalized positive
real Z (s) a positive real Y(s), applying Lemmas 2 and 3 to Y(s) to con-
clude the existence of certain matrices, and then defining a set of matrices
to be associated with Z(s) using those associated with Y(s).
TEOREM 1. Let Z(. be an n X n matrix of real rational functions of a

complex variable s such that Z < . Let {F, G, H, J} be a realization of
Z(s) with IF, G] completely controllable and [F, HI completely observable. Then
a necessary and sucient condition for
(1) Z(j) 4- Z’(-j) >-- 0

to hold for all real o for which jo is not a pole of any element of Z (.) is that
there exist real matrices P P’, det P O, L and Wo such that

(3a) PF A- F’P -LL’,
(3b) PG H- LWo
(3c) Wo’Wo J -t" J’.
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Moreover, P is not positive definite if Z (.) is not positive rea.
The proof of sufficiency is rel,tively simple; the proof of necessity harder.

We turn to the former first.
Proof of sulficiency. Explicit calculation yields

Z(jo .- Z’ -jo

J -- J’ + H’(joI F)-IG + G’(-joI F’)-IH
,! -- J’ -- G’[P(jI- F)- -- (-joI- F’)--1P]G- Wo’L’(jI F)-IG -- G’(-jooI F’)-ILWo (using (3b))

J - J’ + G’(-joI- F)-l[--gF F’P](jI- F)-IG
(7) - Wo’L’(joI F)-IG + G’(-joI- F’)-LWo

Wo’Wo - G’(-jI F’)-JLL’(joI F)-G- Wo’L’ (joI F)-G zc G’(-joI F’)-LWo
(using (3a), (3c)

[W0’ -t- G’(-jI F’)-L][Wo + L’(jI F)-IG].
Because of the form of the right-hand side, (1) is established.

Proof of necessity. We begin by defining the matrix

(s) (s) [z(s) I][z(s) + ]-.
It is not hard to verify that if

(9) S(s)

the matrices F, G, H, J and F, Gs, Hs, Js are related through the in-
vcrtible equations

(10a) F F + Gs(I Js)-1H’,
(10b) G 2Gs(I gs)-,
(10c) H’ (I J,)-Hs’,
(1.0d) J -I + 2(1- Js)-1.

Note. Because (1) holds and because Z() < , the matrix I + J
or I -t- Z( is nonsingular. This means that Js is well-defined as
I 211 -t- j]-l, and precisely because of the way Js is defined, I Js

211 -t- j]-i is nonsingular. These two facts guarantee that all quantities
in (9) are well-defined or, equivalently, that (10a, b, c, d) are invertible.
The following sequence of implications should be noted"

[F, G] is completely controllable implies [F, 1/2G(I Js)] or [F, GS] is com-
pletely controllable.
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implies [F GsK,s G] is completely con-
trollble for ny Ks of pproprite
dimension.

implies [Fs, Gs] is completely controllable,
taking Ks’ (I Js)-lHs’.

It is also not hard to verify the following formula"

(11) Z(s) -t-" Z’(-s) 1/2[I + Z’(-s)][I- S’(-s)S(s)][I + Z(s)].

Equations (1) and (11) together imply that

(12) I S’ (-jw)S(jw) >=_ 0

for ll real o.

Now let a matrix K be chosen so that the cigenvalues of the mtrix
Fs GsK’ all possess negative real part. Such a K alwa,ys exists when
[Fs, Gs] is completely controllable (see [9]). (Note that it may be possible
to choose K 0.)

Define

(13) Q(s) S(s)R(s),

where

(14) R(s) I K’(sI F,s --[- GI(’)-"G.
Then simple manipulti(m yield

(15) Q(s) Js + (It,s’-- JsK")(sI- t,’ + GK’)--G.
Equations (12) and (13) also imply

(16) R’(-jo)R (jw) Q’ (--j)Q(j0) 0 for all real w,

which, in full, is

(I J’J) [K’-- J’(Hs’ JsK’)](jwI .F -t- GK’)--1G
G’(-jooI- Fs’ -- KG’)-[K -- (Its KJs’)J]

(17)
-t- Gz’(-jI- Fs’ -+- KG’)-[KI(’- (H- KJs’)(H’- JK’)]

(jwI F -t-- GsK’)-Gs >= 0 for all real .
Define now the matrix P a,s the unique symmetric solution of

P(Fs GsK’) + (Fs’ KGs’)Pe
(18)

KK’ (I-Ix K,ls’) (IIs’ ,LK’).

The eigenvalue restriction o 1’ GsK’ guarantees the existence of a
unique and symmetric Pe satisfying (18) (see [10]). Then (17) becomes,
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using manipulations like those used in deducing (7),

(19) Y(jo) -t- Y’ (-jo) -> 0 for all real

where, if Y(s) Jr -t: Hr’(sI Fr)-lGr,
(20a) a
(20b) F, Fs- GsK’,
(20c) H -K HsJ q- KJs’Js .PGs,

(20d) Jr 1/2(I- Js’Js).

Because Fs GsK Fr has all eigenvalues with negative real parts, (19)
implies by Lemma 1 that Y(. is positive real. Lemma 3 may therefore be
applied to yield the existence of matrices Pr Pr’ >- O, Lr and Wor for
which

(21a) PrFr q- Fr’Pr -LrLr,
(21b) PrGr Hr LrWor,

(21c) WrWor Jr q- Jr.

For convenience, these may be rewritten, using (20a, b, c, d), as

(22a) PrFs q- FsPr -Lr.Lr’ q- PrGK’ q- KGs’Pr,

(22b) PrG,s -K HsJs-t- KJsJs PeGs- LrWov,

(22c) WrW0r I Js’Js.
Recapitulating, we have passed from Z(s) to S(s), thence to R(s) and
Q(s), and finally to Y(s). The quantities of further interest are, in order
of their definition, F, G, H and J, then Fs, Gs, Ha, Js (related to F, G, H
and J via (10a, b, c, d), K and Pe (here (18) is relevant), and finally
Pr, Lr and Wor (see (22a, b, c) ).
We now claim that matrices P, L and Wo satisfying (3a, b, c) are given

by

(23a) P 1/2(P q- Pr),

(23b) L (1//)[Lr q- KWr, q- Hs(I Js Wor],

(23c) W0 "V/-Wo,(I- j)-l.

Equation (3c) is easy to prove using (10d), (22c) and (23c) to prove (3a)
and (3b) requires some manipulation, an outline of which will now be
given.



GENERALIZED POSITIVE REAL MATRICES 62]

Using (10a, b, c, d) and (23a, b, c), we have

PG- H + LWo (P, -t-- Pr)Gs(I js)-i Hs(I Js’)
(24) + LrWor(I js)-i T KWrWor(I js)-I

Js) WorWor(I- J)+H(I -1’

Now if (22b) and (22c) are used to substitute for PrGs and WrW0r, and
all possible cancellations made, the right-hand side of (24) becomes zero.
This proves (3b). At the same time, (10a, b, c, d) and (23a, b, c) give

PF + F’P + LL’ 1/2(P + P)[F + G(I Jz)-lH’]
+ -[Fs + tls(I Jst-iG,.g ](I-)Q +
+ 1/2[Lr .+- KWr + Hs(I Js’)-lWor][Lr’ + WorK’

+ Wr(I- J) 1Hs’].
The first and second terms on the right side of (25) may be mmfipulated
to yield

2(PF -t- F’P + LL’)
GsK + (F’ P + GsK + KGs’PK(;,

(26)

Equation (18) eliminates Pe from the first two terms. Equations (22a) and
(22b) eliminate P e and Pr from the next eight terms. What is left is then
an expression involving K, Hs, J, Gz, Lr and W0r. Using (22c) causes the
right-hand side then to equal zero.

Next, the nonsingularity of P will be demonstrated. The symmetry of P
follows from (23a) and the symmetry of P and Pr. Suppose P is singular,
so that there exists a nonsingular T for which

o o 1(27) P T’PT= -I, 0
0 0

where I is the r X r unit mutrix and 0t a zero X matrix (t 0). Set
1 T-aFT, ( T-1G, H’T, L’ L’T. Then (3a) and (3b) become

(28b) P LWo
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F.. F,
Fts Ft

( 9o) H /H./,
LH,J

(d) = ..
Then it is easily checked that (27) and (28a) force F,., F,, l,’, I’, and

go equal ero. Nquagion (28b) ghen forces H go equal ero, which is in-
compatible wigh he eotnplee observabiliy of ghe pair

o
0 0 F, LHJ

Finally, ote th if P is positive detinite, this fct, together with
(3, b, c), implies the positive re] ture of (.) (see [3]). Thus if Z(.
is not positive rel, P i not positive definite.

Just Lemm 3 extends te result of Lemm ’, o the following ex-
tension of Theorem 1 is possible.
ConoLLhnV. Wih he same hypothesis as Theorem 1, save for herequire-

men ha [F, It] be completely obzewable, a necessary and suciencondition
for
() Z(j) + Z’(-j) 0

for all real , where . is not a pole of any element of Z (.), is ha here exisl
real matrices P P’, L, Wo such ha (3, b, c) hold. Moreover, Z (.) is posi-
tive real if and only if P is nonnegaie o positive definite.

3. Concluding emarks. It is possible to give simple frequency domain
interpretation of the basic equations (3, b, c). Defining

we hwe, uing rguments pperi.ng in he proof of suciency for Theorem
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1, that

(31 Z(jo - Z’ (--jo) W’(-rio)W(jo

The determination for a prescribed Z(. of a W(. satisfying (31) is
termed spectral factorization. As is discussed in, for example, [11], for
prescribed Z (.), there are many possible W(. satisfying (31) here we
have elected to find a spectral factor W(. which not only has the same
poles as Z(. ), bug which can have two matrices of a realizing quadruple
identical with those of Z(-).

It is of interest to observe how P, L and W0 in (3a, b, c) may be calcu-
lated, given F, G, H and J. Section 2 shows how the determination of P
for a generalized positive real Z (.) can be made to depend on the determi-
nation of P for a positive real Z (.), which is discussed in [12] and [13]; the
fo{mer reference shows how to determine P by solving a quadratic matrix
equation, while the latter determines P as the limiting solution of a matrix
Riccati differential equation.
When P in (3a, b, c) has been found, the determination of L and W0

proves straightforward.
For stability and instability studies, the positive definiteness or lack of

positive definiteness of the P matrix becomes important, since Lyapunov
functions for systems with which a generalized positive real matrix is
associated may well have a term x’Px appearing in them. For examples,
[5] and [14] can be consulted.
In inverse optimal control problems (see [6] and [7] typically an equation

such as (31) has to be solved, with the constraint, that with Z(s) of
the form J + H’(sI F)-IG, then W(s) should have the form
Wo + Lr(sI F)-IG; usually L has to be found, and the preceding two
sections exhibit procedures for this.
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STABILITY ANALYSIS OF NONLINEAR AND TIME-VARYING
DISCRETE SYSTEMS*

KUMPATI S. NARENDRA AND YO-SUNG CHO:[:

1. Introduction. Ever since Popov [1] derived frequency domain condi-
tions for the stability of contiuous feedback systems, considerable work
has been done to derive similar criteria for the determination of the stability
of nonlinear sampled-data systems. The class of systems generally treated
contains a linear time-invariant discrete system and a single no-memory
nonlinear or time-varying function. Starting with the work of Tsypkin
[2a], [2b], one can derive many interesting and practically applicable fre-
quency domain stability criteria for both autonomous and nonautono-
mous discrete feedback systems. Significant contributions were made by
SzegS, Jury, Lee, Pearson and Gibson [3]-[6] who derived less conservative
conditions on the linear part of the system than did Tsypkin [2] by placing
constraints o.n the slope of the nonlinearity. The most general stability
conditions known to date as a consequence of the work of these authors
can be expressed in terms of the linear part G(z) and the nonlinear function
F(.) in Fig. 1. as follows" If

(1.i) (0) 0, 0 < ’(---Y-) < K
Y

then

and
dF(y) <: K.,
dy

1 K+ Re [1 + q(z 1)](/(z) -iql [(z 1)G(z)I ->_ 0

for all [z 1 is a sufficient conditioi for the stability of the feedback
system. In 1963, Tsypkin [6], after pointing out the difficulty involved in
determining whether or not the inequality 1.1 can be satisfied, suggested
a simpler condition (later extended by Jury and Lee [4b], [4c] for the case
of slope restricted monotonic functions ia the feedback path. For this case
if 0 < F(y)/y < K. and 0 < dF(y)/dy < , Tsypkil:’s condition may
be stated as

(1.2) ReG(z)[l+q(Z-1)l+ 1
>Oz= forll ,z, 1.

In this paper several new results are presented for the stability of discrete

* Received by the editors September 22, 1967, and in revised form March 11, 1968.
] Department of Engineering and Applied Science, Dunham Laboratory, Yale

University, New Haven, Connecticut 06520.
: Honeywell Incorporated, Waltham, Massachusetts 02154.
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G(,z): LINEAR TIME-INVARIANT DISCRETE OPERATOR
IS A z-TRANSFORM VARIABLE)

F(.) OR K(n): NONLINEAR FUNCTION OR TIME-
VARYING GAIN FUNCTION

I,h. 1. Nonlinear time-varying discrete feedbacl system

feedback systems with monotonic, odd monotonic or time-varying gain
functions in the feedback path. In all cases a "passive operator" technique
is used to generate classes of multipliers M(z) such that the frequency
domain stability criteria derived have, in general, the form

I 1] 1 1>0 forM1 [zl=l,(1.3) Re G(z) -t- M(z) -F K b
where

0 < < K= 0 < < b.
y Yl ys

Since, in general, the frequency domain criteria re difficult to verify,
equivalent geometrical criteria which by-pass the need for determining the
multiplier M(z) are derived. Examples are also provided to demonstrate the
applicability of the results.
The scope of the paper may be divided into three parts:
(i) The determination of frequency domain conditions for the stability

of discrete feedback systems with monotonic and odd monotonic nonlinear
functions. (For the monotonic case, Tsypkin’s result in [6] is found to be a
special case of the results derived here.

(ii) The determination of frequency domain conditions for the stability
of linear discrete feedback systems with time-varying gains. (The bound
on the slope of the time-varying gain is found to depend on the location
of the singularities of M(z) which makes Re G(z)M(z) -4- l/Ks >= 0 for
al]lzl 1.)

(iii) The derivation of geometrical criteria to simplify the application of
criteria (i) and (ii) so that stability of the feedback system can be assured
from either a plot of G(z) for all z 1, or the root locus plot of G(z) for
constant gains K in the feedback path in the range 0 < K < K.
The criteria derived in the paper are also applied to examples treated by

other authors for eomparison purposes.
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2. Definitions and mathematical preliminaries. In this section, the defini-
tions required to prove the stability crieria in 3 and 4 are stated briefly.

2.1. Function spaces. The input and output functions in this paper are
assumed to belong to one of the two spaces (a) and (b) of real-valued se-
quences defined for all nonnegative integers"

(a) /2-space" Let X be the set of sequences x of real numbers x(n) de-
fim for allnonnegativeiategersn Theft/ {x x Z,n=oX(n < },
and the norm is defined as x :=o x(n)}.

(b) /-space" Let x denote the truncated sequence which assumes the
values x(n) x(n) (n ad N, where N is the subiterval of non-
negative integers [0, )) and x(n) 0 elsewhere. The l {x Ix X,
x l, where N}, ad x :=o x(n)}.
Hence it should be noted that

if x l.

l may be considered to be an extension of l which consists of sequermes
with bomded and unbounded norms.

2.2. Passive operators. The main tool used in this paper for determining
the stability of nonlinear or time-varying discrete systems is the concept
of a passive operator.

(a) Inner product" We define an inner product i l by

(x, E
Since every truncated sequence x, y l if x, y 12e, we Ca define

=0 =0

where v N.
(b) Passive operator" Let a discrete operator W map l into itself. If

(x, W(x)) 0 for all v N and for ll x l, thet the operator W is
said to be passive.

(c) -passive operator" If y W(x) and there exists a positive real
number such that (x, y) (x, x), the the operator W is -passive.

(d) -M-passive operator" If there exists a positive real number
such that (x, y) (y, y), then the operator is -M-passive.

2.3. Classes of nonlinear and time-vag functions. The nonlinear func-
tions F(.) considered here are limited only to monotonic and odd mono-
tonic real-valued functions with known slope bounds.
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(a) If a real-valued function F satisfies:
(i) F(y) 0 if aad only if y 0,
(ii) K1 < F(y)/y < K., where 0 -<_ K1 <: K2 < ,
(iii) a < IF(y1) F(y2)]/(yl y2) < b (bounded slope), where

O<=a<b< ,
then it is denoted by F F, F,[(K, K.), (a, b)]. By inspection for all
F Fro, F-1 exists and F-1 Fro. It is sometimes useful to consider the
special case F F* F[(0, K), (0, K:)].

(b) If F F is odd, i.e., F(-y) -F(y), then F Fo Fom[(K,
K2), (a, b)]. Obviously F Fore implies F-1 Fore exists. Again a special
case is F

_
F, & Fo[(0, K.), (0, K)].

(c) The linear time-varying gain function K(n) satisfies the condition
0 < K(n) < .

2.4. Class of linear time-invariant discrete operators G. G is assumed to
satisfy the condition

y(n) G(x) g(n m)x(m),
mO

where a input sequence x of G is ia l: and g is an impulse response func-
tion of G satisfying_-’:--0 g(n) < and :=o g(n) < .

2.5. Lemmas.
LEMMh 2.1. If F Fo, then for all real numbers y and y

(2.3) (y + y)F(yl) (y y2)F(y) >__ 0

(see [14] ).
LEMMA 2.2. If an operator W maps l into itself and the z-transform of W

is W(z), then W is passive if the Fourier transform of W exists and

Re W(e) >= O,

where 5 oT.
Proof. Assuming T 1, let x l: and y W(x).

(x, y) x(n)y(n) x(n) , x(m)w(n m) for all N,
=0 =0 m=O

where w is the impulse response of W. Hence,

, }, Re X,(e)X,(e) W(e) >= 0

by he Lyapunov-Parseval heorem [2el, where X(e _-0 z(n)e-.
I-Ienee W is a passive operator.
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LEMMA 2.3. If F F and u 12e then

F[u(n q- 1)]lu(n q- 1) u(n)} -> 0
n=0

for all N, O <- 1 and u(O O.
Proof. It will be shown by induction that

’ (+)

(2.4) F[u(n + 1)]{u(n + 1) -vu(n)} F(z) d 0
0

for ll , N.
If the inequality (2.4) is stisfied for, r, i.e.,

then for + I,

Jo F(z) d + Flu(r+ 2)]{u(r + 2) 1)}

]0 F() d.

For , 1, the result follows trivially; hence by induction, Lemm 2.3 is
proved.
LEMMA 2.4. () U F F and M(z) (z- )/z, 0 1, then

M[F(. )] is a passive operator.
(b) U 0 < 1, M[F(. )] is -passie.
Proof. ()Let u, v 6 le such that v M[F(u)]. Let w(n) be defined by

the relationship v(n) w(n + 1) vw(n); then u(n) F-l[w(n + 1)].
By Lemm 2.3,

(2.5) (, u) {w(n + ) w(n)}{t’-w(,,, + 1)} 0
n=0

forll Nad0 1.
(b) If0 n < 1,

<v, u), n 1 w(n + 1)F-[w(n + 1)]

+ , {w(n + 1) w(n)}’-tn + )]

for ll N.
Hence M[F(. )] is -pssive.
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LEMMA 2.5. Yf F F and M(z) (z 1)/ (z vi ), 0 <= vi <= 1, then
M[F(. )] is a passive operator.

Proof. Let v M[F(u)] and v(n) w(n A- 1) -w(n). Then

(2.6) (u,M[F(u)]} {F-[w(n -t- 1) w(n)]}{w(n + 1) w(n)}.
n0

Subtracting

(2.7) {[(1 )w(n + 1)]} w(n + 1) w(n)}
n0

from (2.6), we hve, by inequality (2.2),

{w(n + w(n) ( )w(n + .)}
0

[f-’[w(n + 1) vw(n)]- [(1 )w(n + 1)]} 0.

However, (2.7) is nonnegtive by Lemma 2.3, ad hence (2.6) is lso non-
negative.
],EMMA 2.6. If F F and

(e.s) M(z) II
where a O, 1 > v > + O, then M[F(. )] is passive.

Proof. It is known that M(z) can be expnded as

Z-- 1 aM(z) o + o z 1 + M()(z) + M()(z) + M,(z),

where ll coefficients a0, 0, a re noaaegtive.
Hence,

M[F(. )] M()[F(. )] + M()[F(. )] + M[F(. )]

is pssive by Lemms 2.4 and 2.5.
LEMMA 2.7. If F Fo and

(2.9) M(z) M()(z) + M()(z) + M()(z) + M()(z),
where

Z 7iM()(z) a ,, ai >= O,= z vii

M(2)(z) b "Y, b => O,
j=l Z VIi

,Cv >0
p=l Z + Pp!

M<)(z) d z + t d => O,
r--=l Z "3

I- Pr

1 >=’y > vii >-_ 0 for alli,

1 >-_ > 7 >- O, 7 > 2

1 >= , > => O,

l>g>v>0,=

then M[F(. )] is a passive operator.
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Proof. Since

(2.10) M[F(. )] M(1)[F(-)] + M(2)[F(. )] + M(3)[F(. )] + M(4)[F(. )],

M[F(. )] is passive if each term of the right-hand side of (2.10)] is passive.
By Lemma 2.6, M(1)[F( )] is passive. The passivity of M(2)[F(. )] is proved
by showing that

(2.11) A (M[F(u)],u},>= 0 for all jad N,
where M()(z) M(z). Defining w(n) by the relatio

F[u(n)] w(n + 1)/v w(n),

we see that (2.11) becomes

If the hypotheses concerning the coefficients are satisfied, the following
is a nonnegative quantity by Lemma 2.3"

(2.13)

{(2._1)( + 1) ()}
Subtracting ts noaegatNe quantity (2.13) from (2.12), om sees that

(2.14) A {(y + y)F-(y) (y y)F-(y)} for all N,
0

where

y(n) =w(n+l)-w(n) nd y(n)=(1 l)w(n+l)"
However, sin.ce W1 F0, (2.14) is nonnegativc by Lemma 2.1, nd hence
(2.12) is also nonnegative. Next consider

q

(M()[F(u)], u) (M[F(u)], u),

where M(z) c(z ,’)/(z ’). Deflating w(n) by the relatio
Flu(n)] w(n + 1) + ’w(n), we have

(M[F(u)],
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The first term on the right-hand side of (2.15) is greater than zero by in-
spection. The second term is greater than or equal to zero if tpf/ < 1
and p =< 1; hence M(3)[F(. )] is a passive operator.
The passivity of M(4)[F( )] can be proved in a similar manner.
Conments on the multipliers M z in Lemmas 2.5 and 2.6. M(z) in Lemma

2.5 has Mternatiag poles and zeros on the real axis of the z-plane ia the in-
terval [0, 1] with the sitgularity nearest to the point (1, 0) being a zero.
Hence arg M(z) (where z eTM, 5 oT and T is the sampling period)
lies ia the interval 0 =<_ -1/2& + -r, where 0 <= & -< r (see [8, p. 4Zt0] ).
The multiplier M(z) in Lemma 2.6 is more general thart that of Lemma

2.5. M()(z) also has alternating poles and zeros, but the singularity near-
est to the poit (1, 0) is a pole, so M()(z) M()(z) may have complex
zeros.
M()(z) has alteruating real poles and reM zeros in the interval [-1, 0]

with the zero nearest to the origin. FiuMly, M()(z) has the form of the
verse of M()(z). Hence M()(z) and M(3)(z) together can have complex
zeros. If one uses techniques similar to those used in Lemms 2.4 and 2.5 of
[7a], it is possible to derive multipliers having complex zeros and complex
poles but with relatively complicated relationships between the coefficients
of the multiplier.

Since the phase characteristic of M()(z) hs the same form as M(z) in
Lemma 2.5, only M()(z), M(3)(z) and M()(z) will be considered. Simple
calculations show that the phase angle 2 of M(:)(e’) should lie in the
interval

r sin 5

-t- tan-
cos 5

< < O,
cos

2 cos 5

where 0 -< 5 __<. r.

Similarly 3 arg M(3) (e) and 4 arg M(4) (e lie in the intervals
0 <- 3 =< 1/2 and -1/2 =< _-<_ 0, respectively, for all 0 -<_ 5 <= r.

The phase curves of M(), i 1, 4, lie in the regions indicated in
Fig. 2.
LEMMA 2.8. IfM z is a linear time-invariant discrete operator and K nT

is a time-varying function, and there exists a positive real constant fl such that"
(i) M(z) M(z/fl) is passive,
(ii)

K(nT - T) < ,(2.16) 0 < K(nT) < , K(nT)

then KM is also a passive operator.
Proof. Without any loss of generality, the proof will be given for T 1.
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PHASE

LIES IN THE TRIANGLE OAB

LIES IN THE REGION OABDC

LIES IN THE TRIANGLE OEB

LIES IN THE TRIANGLE OFB

Fie. 2. Phase angles of multipEers

Since Ml(z) is a passive operator, its input and output sequences xl, yl

satisfy the inequality

xl(n)yl(n)=>0 for all ,EN.

If x(n) x(n)e and e", a > 0, then x 12e if x 12,. If the input
to M(z) is x(n), the output of M(z) is y(n)e (see [8, p. 162]). Then

x, Ky} xl(n )e-"ny(n )K(n )e
.-.0

(2.17)
fl-nK(n)x(n)y(n).

0

Since ,-_ox(n)y(n) >- O, passivity of (2.17) is established if
K(n + 1)/K(n) < e"= . Note that when T tends to zero iu (2.16),
corresponding to the continuous case, the condition (2.16) becomes
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I/K < 2o (see [7c]), where I dK(t)/dt. In this case the equivalent
condition of (i)of Lemma 2.8 is that the multiplier M(s- a) is positive
real (s is the Laplace transform variable).

2.6. Stability theorems. If a feedback system has the form shown in Fig. 1
and the subsystems G and F are assumed to be operators mapping 12 into
itself, the operator equation may be formulated as

Fa(e) + e(n)

G(e) y(n).

The objective is to find sufficient conditions under which x 12 and
e, y l:, imply e, y 12. In such a case the system is defined to be l-
stable. Moreover, if x(n) 0 as n -- implies e(n), y(n) ----> 0 as n --. ,
the system is said to be asymptotically stable. The/.-stability condition is
stated without proof in Theorem 2.1. The proof can be found in [7b] and is
established by restricting both F and G to be passive operators. Similar
results may also be found in [11], [12]. If F and G do not satisfy the condi-
tions stated in Theorem 2.1, stability can still be established by finding a
multiplierM such that FM-1 andMG are passive operators. The asymptotic
stability condition is derived in Theorem 2.2.
THEOREM 2.1. In the feedbac system in Fig. 1, if the operator F is -M-

passive or -passive, and G is (e-passive) or (e-M-passive) respectively,
where and e are positive real numbers and > e O, then the system is
l-stable. The converse statement resulting from interchanging operators F and
G is also true.
THEOREM 2.2. If the system is l-stable, and F and G belong to the classes

stated in 2.3 and 2.4 respectively, then y(n < for all positive integers
n and x(n ---> -- 0 implies e(n -- -- 0 and y(n -. --. O.

Proof. (i) y(n)[ < for all n:

(2.18) e(n) x(n) Fly(n)] and y(n) g(n m)e(m).

By Schwarz’s inequality,

lu(n) _-< 5: <

Hence, Y(n) < for all n.
(ii) e(n 0 and y(n ) ---. 0 as x(n -- ) 0: Let

G(s) g(n)e and E(s) e(n).
n nO

Then since g, e l,
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Since G(i)E(i) is an absolutely integrable function in the range- <__ r, y(n) 0 as n--. (see [10, p. 174, Corollary]). Hence
e(n ---. ) 0 as x(n -- ) -- 0 by (2.18).

3. Nonlinear time-invariant systems.
3.1. Main theorems. The theorems stated in this section represent the

main results for nonlinear time-invariant systems.
THEOREM 3.1.1 In the given discrete system of Fig. 1, if F( ) F[(0, K),

(0, b )] and a multiplier M(z) (defined in (2.8) ) exists such that

(3.1) Re G(z) + M(z) - o I2

_
0 for all z] 1,

where ao M(z 1), then the system is asymptotically stable.
Proof. Transforming the feedback system in Fig. 1, one obtains an

equivalent system containing new operators Gl(z) G(z) - lib and
F1 F/(b- F), where FI(. F[(0, bg2/(b- g2)), (0, )]. But
M-l(z) followed by F1(.) is -M-passive since

(3.2) ) <FI[M-I(Yl)]’

as shown below.
Hence by Theorems 2.1 and 2.2, if G(z)M(z) -a0(1/K2- I/b) is a

passive operator, the system is asymptotically stable.
Proof of inequality (3.2). Let w(n) be defined by the relationship

w(n) M-l[y(n)]. Then the left-hand side of inequality (3.2) may be ex-
pressed as (see Lemma 2.6)

<Fl(w), M(w)>, <F(w), M(1)(w) - M()(w) - M,(w)>,
i=1

(3.3) >= (F(w), M(1)(w)), (by Lemma 2.6)

>= (Fl(w), a0w), for all N.

Since Fl(w) < bKw/(b- K)orw > (1/K2- 1/b)F(w), (3.3)becomes

which completes the proof.

After the completion of this work, it was brought to the authors’ attention that ia
a recent report [15] other conditions have been derived for monotonic and odd mono-
tonic nonlinearities by employing a frequency-time domain method. The multiplier
for the case of monotonic nonlinearities derived in that report appears more general
than those derived here. However, it is noted that the multiplier used in Example 3.2
of their report to prove the stability of the system containing an odd monotonic
function is a special case of the multiplier derived in this paper.
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THEOREM 3.2. Under the same conditions as in Theorem 3.1,
F(. F0[(0, K2), (0, b)], then the system is asymptotically stable if

[ ] (1(3.4) Re G(z) + M(z) +
where M(z) is defined in (2.9) and a M(1) 1 ) + M() (0).

Proof. Transforming the system as before,
G1(z) G(z) + 1/b and an odd monotonic function

one obtains

Since it will be shown that

(1(3.5) (FI[M-(y)], y), >= a I ) (FI[M-I(Y)], F[M-I(y)]),

the system is asymptotically stable by Theorems 2.1 and 2.2 if condition
(3.4) is satisfied.
Proof of inequality (3.5). If w(n) is defined by the relationship

w(n) M-[y(n)], the left-hand side of (3.5) may be rewritten as (see
Lemma 2.7)

(F (w),M(w)) (Fl(w), M()(w) + M(.)(w) - M()(w) W M()(w)),
>- (F(w), M()(w)), - (Fl(w), M(a)(w))

>= w ), + w).

(where ao M(1)(1) and a M(3)(0))

=>
Comments on Theorems 3.1 and 3.2. (i) Since the form of the multipliers

M(z) in (3.1) and (3.4) are known, the frequeacy domain conditions de-
rived may be used to determine the stability of discrete feedback systems
with monotonic and odd monotonic nonlinearities. It should be noted that
Tsypkin’s stability criterion (1.2) for systems with a monotonic nonlinear
fuction is only a special case of (3.1) and may be obtained by setting
M(z) (z y)/z, where 0 _-< v --< i and b -- .(ii) If the monotonic functions F in either Theorems 3.1 or 3.2 have the
same sector ad slope bounds (b K:), the stability conditions have the
form

Re G(z) -- M(z) >- 0 for all [zl 1.

(iii) Using a specific form of the multipliers derived, we can derive sim-
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(b)
Fro. 3. Proof of Theorem 3.3

pie geometrical criteria for determining the stability of systems with mono-
tonic and odd monotonic nonlinearities directly from a frequency response
plot of G(z) as shown in the next section.

3.2. Geometrical stability criteria. Tsypkin’s circle criterion [2b] for non-
linear time-varying discrete systems is well known and has considerable
practical value since the criterion only requires the frequency response of
the linear time-invariant part of the system and by-passes the need to
determine a multiplier M(z) which usually requires a large amount of
computation.

In this section, similar geometrical stability criteria are obtained for the
class of discrete systems, in Fig. 1, containing a linear time-invariart plant
G(z), satisfying the conditions stated in 2.4, and a monotonic function
whose sector and slope bounds are equal. It appears at the present time
that the criteria derived in this section can be easily generalized since the
forms chosen here for M(z) are only special cases of those allowed by Theo-
rems 3.1 and 3.2. Similar geometrical criteria for continuous systems are
given in [Tb].
Two examples are disqussed at the end of the section to show the ap-

plicability of the criteria developed in this section.
THEOREM 3.3. Let the Nyquist plot of G(e for all 0 <- Co <- r lie entirely

to the right of a straight line, whose slope "r is nonnegative passing through
(-l/K2, 0). Let oo be such that Re G(e) -1/K2 (see Fig. 3a) and
Re G(e _>- l/K2 for (o >= oo and Im G(e <= 0 for oo >= (o >= O. Then
the system is asymptotically stable for all monotonic functions F(. Fro[(0,
Ks), (0, K)] in the feedback path if

1 -(3.6) 0 _<- -- oo + ,
where 0 is the angle made by the straight line and the imaginary axis, i.e.,
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Fro. 4. Theorem 3.4

0 cot-. If Im G(e’) >= 0 for oo >= 0, the same argument can be
used to prove the asymptotic stability of the system with nonpositive "r and

>-_

(see Fig. 3b ).
Proof. Case 1. -> O. If the hypotheses oa G(z) are satisfied, then

(; -t- 0) =< arg(G(e’) -)_0 for 0-<__<00,

--< arg (e)-t- 1
<--0 for o < 5 < r.

Hence choosing M(z) (z 1)/(z ), where 0 _<- v =< 1, we can always
satisfy the following condition by the proper choice of

( 1)M(z)_>-0 forall Jzl 1.(3.7) ne e(z) +
Hence the system is asymptotically stable by Lemma 2.2 and Theorem 3.1.

Case 2. , =< 0. With M(z) (z )/(z 1), the inequality (3.7) can
be satisfied if the hypotheses of the theorem are satisfied.

If for a specified range (0, K.), the condition 0 -_< -1/2o0 - 1/2v is not
satisfied, the results of Theorem 3.3 may still be applied by either reducing
the range (0, K.* < Ks) or by increasing the sampling rate. In both cases,
the value of o0 is reduced (see Examples 3.1 and 3.2).
By restricting the range of the nonlinear function, F(.

(K1, Ks)], 0 < K1 < Ks < , we may obtain a circle criterion from
Theorem 3.3.
THEOREM 3.4. Let the Nyquist plot of G(e) for all 0 lie entirely

outside a circle with center in the upper half-plane and passing through
(- lIKe, O) and (- 1/K 0)..Let the frequency o correspd to one of the



TABILITI" ANAII8 OF NONLIN]&R 8TM

points at which G(e’ intersects the circle having (- lIKe., 0), (- 1/K1, O)
as its diameter (see Fig. 4). If G(e for & > o lies outside the two circles
and Im G(e <= 0 for o >- >= O, the system is asymptotically stable for all
monotonic functions F(. ) Fm[(KI, K.), (K, K.)] in the feedbacIz path
if 0 =< --1/2o -I- -r ,0 =< =< 1/2r, where is the angle subtended by the centers
of the two circles at (- lIKe, 0).

If Im G(e) >= 0 for 0 _>- _>- 0, a similar theorem can be stated in
terms of a circle with its center in the lower half-plane.

Proof. Case 1.1/2r >__ >- 0. Since the Nyquist plot G(e’) in 0 5 <- r
lies entirely outside a circle passing through the points (-lIKe, 0),
( 1/K, 0 (see Fig. 4) on the negative real axis, the following transforma-
tions may be carried out"

(a) Shifting the origin of coordinates to (-lIKe, 0) yields
G(e’ 3r lIKe. lying entirely outside a circle through the origin.

(b) Inverting with respect to the origin, K/( 1 + KG(e) lies entirely
to the right of a straight line through (-KK/(K K), 0).

Hence, proposing a multiplier M(z) (z )/(z 1), we can show
that K,./( 1 - KG) is asymptotically stable for all monotonic functions in
the sector 0 < (F(y) F(y.))/(yl- y) < (K.- K)/KK by using a
method similar to that used in the proof of Theorem 3.3, or G is asymptot-
ically stable for all monotonic functions satisfying K < (F(y) F(y))/
(y y) < K..
Case 2. -1/2r _<_ 0 =< 0. A similar procedure can be used in this case but the

proof is omitted here.
It should be noted that by restricting the monotonic nonlinearity ia

Theorems 3.3 and 3.4 to be aa odd function, conditions on , and t can be
relaxed since M(z) can also have the form (z -[- /)/(z - 1 ), where
0 _-< y -<_ 1 (see Theorem 3.2).
Example 3.1. If a second order sampled-data control system with a zero

order hold circuit is given such that G(s) (1 e-’r)/(s(s -t- 1)), the
corresponding z-transform with sampling period T 1 is given by
G(z) (e-(z - e 2))/((z e-)(z 1)). This example has been con-
sidered by Jury and Lee [4], Szeg5 and Pearson [5] and Pearson and Gibson
[6]. Drawing a Nyquist plot of G(e for 0 _-< -_< r, we obtain the Nyquist
gain K 2.39. Hence the system with constant gain K in the feedback
path is asymptotically stable if 0 K ,( K [8], [9]. If a straight line is
draw tangential to G(e’") at (1/Kn, 0), 0 1.063 tad and 0 1.324
tad are obtained which do not satisfy the inequality (3.6). However, choos-
ing K 2.34, one can find 0 0.916 tad and 0 1.305 rad on the
Nyquist plot of G, which satisfy the inequality (3.6) and belong to Case
1 of Theorem 3.3. Hence the system is asymptotically stable with the
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TABLE 3.1
Gain K obtained by various authors

Example 3.1

Tsypkin’s criterion [2a] (any nonlinear time-varying function) 0.666
Stability theorem by Jury-Lee [4a], SzegS-Pearson [5] (non- 2.0

linear function with slope bounds)
Lyapunov function Pearson-Gibson [6] (monotonic nonlinear

function)
Experimental value Pearson-Gibson [6] (monotonic nonlinear

function)
Geometrical criterion Narendra-Cho
Nyquist gain [2a], [8], [9]

1.9

_2.3

2.342
2.39

Example 3.2

0.924
2.0

functions in the feedback path satisfying

0 < F(yl)- F(y2) < 2.34.

Table 3.1 is given to compare the result obtained here with those ob-
tained by previous authors.
Example 3.2. Consider next a second order system without a hold circuit,

whose linear part is specified by G(s)= 1/(s(s 1)). Taking the z-
transform, we get G(z) (1 e-)z/((z e-1)(z 1)). From the
Nyquist plot G(e), where 0 < & __< r, the Nyquist gain KN 4.32 is ob-
tained (see [8, p. 243]). Choosing K2 KN, we find that t 0.716 rad
and 0 r rad which do not satisfy inequality (3.6).
However, K2 3.39 yields 0.55 rad and 0 2.04 rad. Hence, by

Theorem 3.3, the system is asymptotically stable for all monotonic functions
satisfying 0 < (F(y) E(y2))/(yl y.) <: 3.39.
Values of K obtained by other authors are also given in Table 3.1.

4. Linear time-varying discrete systems. The results presented in this
section are extensions to the discrete case of similar results obtained re-
cently for continouus systems [7c]. The stability of a feedback system with a
linear time-invariaIt operator G(z) and single time-varying gain K(nT)
belonging to the class defined ia 2.3 is discussed ia terms of the location of
the singularities of a multiplier M(z) which makes G(z)M(z) passive.

In a private correspondence it was brought to the attention of the authors that
this gain for Example 3.1 was also obtained by Jury and Lee in a paper presented at
the 1966 IFAC [4c]. However an algebraic criterion was used by those authors. Ap-
plication of the same criterion to Example 3.2 also yields similar results. The geo-
metrical criterion is, however, much simpler to apply and yields considerable insight
into the nature of the stability of the discrete systems, in that it is readily apparent
how to change the range of F(. or the sampling rate to achieve stability.



STABILITY ANALYSIS OF NONLINEAR SYSTEMS 641

ImG

OJ T/" ReG

F(. 5. Example 3.1,frequency response plot of G(z) e-l(z - e 2)/((z e-)(z 1))

Sufficient conditions for the stability of the time-wrying system re lso
derived in terms of the root locus plot of corresponding time-invrint
feedback system.

4.1. General theorems.
THEOREM 4.1. In the feedbacl system of Fig. 1, let G(z) be a linear time-

invariant discrete operator and K(nT) a time-varying function in the interval
0 < K(nT) < o. If a discrete operator M(z) and positive real constants
and exist such that:

(i) M(z/fl) is paso’ire,
(ii)

(4.1) Re G(z)M-(z) >= > 0

(iii)

(4.2) K(nT - T)
K(nT) < fie,

for all zl =1,

then the feedbac system is asymptotically stable.
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0 ReG

FIG. 6. Example 3.2, Irequency response plot of G(z) (1 e-1)z/((z e-)(z 1))

Proof. Since M(z) followed by K(nT) is a passive operator by Lemma
2.8, the condition (4.1) is sufficient for asymptotic stability of the system
by Lemma 2.2 and Theorems 2.1 and 2.2.
THEOREM 4.2. Under the same assumptions as in Theorem 4.1 and with

the time-varying feedback gain K(nT in the range K1 < K(nT) < K2 for all
nonnegaEve integers n, if a multiplier M z exists such that M z/fl is
passive and

(4.3) Rel + Ks G(z) M z)- > > 0 for all z 1
1 + Ki G(z)

then the system is asymptotically stable for all K(nT) satisfying the inequality

(4.4) K(nT
K(nT) K K(nT + T) K

Proof. The finite sector problem of Theorem 4.2 can be transformed to
the infinite sector problem by defiling

G(z) G(z) + i i i + KG(z)
l + K G(z) K: K K. K i + KG(z)
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nd

K*(nT) (K.- K1)(K(nT)
K2- K(nT)

By Theorem 4.1, for all O<K*(nT) and [K*(nT+ T)/
K*(nT)] 2, the feedback system is asymptotically stable if hypothesis
(4.3) is satisfied. However, the conditions on K*(nT) can be expressed in
terms of K(nT) to yield inequality (4.4) if K1 K(nT) K2.
The stability analysis of time-varying systems by the passive operator

method consequently reduces to the determination of M(z) for the given
G(z). Once M(z) is known the value of my be determined. If a multiplier
is given as in (2.8), the rain [1/, 1/v].
Example 4.1. In a time-varying sampled-data feedback control system

(see Fig. 1 without a hold circuit, G(s) 1/(s(1 q- T,s)) (where T is
positive real constant), and a sampler is located in the forward path. The
time-vrying feedback gain lies in the interval 0 K(nT) K..
Taking z-transforms, we get

and

(4.5)

a(z)
(z 1)(z e-/’)

e,--T]Tm e--T]Tm --T]T

1+ K=G(z) z + (1 )K- (1 -t- )z+ e
(z 1)(z e-)

If K is chosen s the Nyquist gin K, (4.5) becomes

(4.6) 1 q- KrG(z) (z "-k 1)(z q- e-r/r)
(z 1)(z e-fir’s)

where K 2(1 + e-’/r)/(l. e-/) (see [8, p. 2431).
Hence, if M(z) (z e-r/’)/(z + e--"), [1 + KvG(z)]M(z) is a

passive operator. From M(z), it is easily determined that er/= a.nd
hence the system is symptotically stable by Theoren 4.2 if

(4.7) K(nT--[- T) K(nT) K < e2r/r.
K(nT) K(nT -t- T) K

Note that if K K 2(1 e-’/r)2/(1 e-2rr), then 1 -t- KG(z)
is passive, so ia this case M(z) I, and hence can hve infinite value.
Therefore, by Theorem 4.2, the system is asymptotically stable for any
time-varying gain K(nT) ia the range 0 < K(nT) K, and this is a
special case of Tsypkiu’s circle criterion for time-varying smpled-duta
systems [2a], [2b].
The example demonstrates that K(nT can be made to lie in an increased

sector for stability by sacrificing the rate of variatioa of the time-varying
function.



644 KUMPATI S. NARENDRA AND YO-SUNG CHO

4.2. Root locus stability criteria. The root locus method is well known in
the analysis and design of linear time-invariant continuous nd discrete
systems [8], [9]. In this section stability criteria for linear time-vrying
sampled-data systems are derived from a root locus plot of the correspond-
ing time-invarint system to predict the rate of wriation of K(nT) which
assures the asymptotic stability of the system.
THEOREM 4.3. If the root locus of the system shown in F(q. 1 for all values of

constant gain K in the interval 0 K lies inside a circle with center at
the origin and radius 1/fl( _<_ 1 in the z-plane, then the system with a time-
varying feedback gain K(nT) in the interval 0 < K(nT) < is asymp-
totically sable if K(nT + T)/K(nT) < .
To prove this theorem, the following two lemmas are needed.
]EMMA 4.1. There exists a discrete passive operator M(z) whose phasv

alternates between -1/2r and -1/2- as increases on the unit circle in the z-plane,
OF

M.( erg

i= 0,1,2,
where o 0 and 0 -<- <= r.

Proof. If we choose multiplier

z-- 1 z- 2zcoso -t- 1
4.8 M Z

z - 1 l.__ z 2z cos u--t- 1’

then arg M(e will stisfy the condition,s stated i the lemm.
LMM 4.2. If a linear time-invariant discrete system with G(z) in the

forward path and a constant K in the $eedbacl path is stable for all K in the
interval 0 K , then it is possible to split the open loop of the system
into two passive operators one of which is -passive or -M-passive. (A similar
result for the continuous cse my be fomd ia Theorem 2 of [13].

Proof. By the Nyquist criterion, (- - e) =< rg G(e <__ (r ) for
11 0 < & =<- v, where is a arbitrarily small positive rel number. Hence
there lways exists passive operator M,(z) or M((z) i Lemma 4.1 so
that

1/2 + _<_ rg a(e )Ml(e _<_ 1/2
or

--1/2v -<_ arg G(e) M+(ae) <= 1/2’,
where a < 1 is a positive real constant arbitrarily close to unity. Hence the
open loop consists of a pssive operator G(z) M:(az) (by Lemma 2.2)
followed by a - (or t-M- passive operator KM=(az).

Proof of Theorem 4.3. Since G(z/) is asymptotically stable operator
with a constant feedback gain K ia the interval (0, ), there exists a
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multiplier M(z) so that G(z/). M,(az) is a passive operator (where
a < 1 is a positive real constant; see Lemma 4.2). Hence G(z) M,(oz)
is also a passive operator if t ->- 1. Defining Mr(az) M(z) in inequalities
(4.1) and (4.2), we see that the stability condition reduces to K(nT -4- T)/
K(nT) < : by Theorem 4.1.
THEOREM 4.4. If the root locus of the system (see Fig. 1 for all values of

constant gain K in the interval K1 < K < K2 lies inside a circle with center
at the origin and radius lift( <= 1 in the z-plane, then the system with a time-
varying feedback gain K(nT) satisfying K1 < K(nT) < K2 is asymptot-
ically stable if

K (nT "4- T)- KI K(nT) K2 < 2.K(nT) K K(nT "4- T) K.

Proof. The finite sector problem can be transformed to the equivalent
infinite sector problem by defining

G(z) G(z) +1 "1- Kt O(z) K2- K1

K*(nT) (K2- K).(K(nT) K1)
K2 K(nT)

In this case, G(z/[) is a asymptotically stable operator for all constant
feedback gains in the interval 0 < K* < m. Herce employing the same
arguments used in the proofs of Theorems 4.2 and 4.3, we may prove the
theorem.
Comments on Theorems 4.3 and 4.4. The stability criteria derived using

the root locus plot yield sufficient but by no means necessary conditions.
Since/ is determined by the marginally passive operator Mr(z), the value
of fl is usually a very conservative estimate in most cases.
Example 4.2. If a linear time-iavariant discrete system (Fig. 1 is given

such that G(z) (z q- 0.6)=/[(z 1)(z 0.36)], then the root locus of
the system for the constant gain 2/300 _<_ K =< m lies inside the circle
whose radius and center are 0.6 and (0, 0) (see [9, p. 187]). Hence by the
root locus stability criterion developed in Theorem 4.4, the system is
asymptotically stable for the linear time-varying gain function satisfying

2 < K(nT)< K(nT q-" T)- 2/300 (h___d)300 K(nT)- 2/300 <
\_._

But by Theorem 4.1, defining M(z) (z- 0.36)/(z q- 0.6), the time-
varying gain K(nT) satisfying 0 < K(nT) < m and K(nT -k T)/K(nT)
< (1/0.6) also guarantees the stability of the system.
Ia general situations the determination of the multiplier M(z) is usually

a difficult problem. If, however, the root locus plot of the corresponding
linear time-invariant feedback system is available and a conservative esti-
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mute of K(nT - T)/K(nT) is adequate, the problem can be by-passed
completely using Theorem 4.3.
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ERRATUM: LAGRANGIAN SADDLE POINTS AND
OPTIMAL CONTROL*

D. O. NORRIS

It has been pointed out by K. Tsujioka that the proof of Theorem 1 iu
this paper is not correct. He has given a simple counerexample (viz.,
K {x Rl"x >= 0}, J(x) x and G(x) 1 -.-x)which shows that the
statement following (7) is incorrect.
The application made in the paper is still valid provided one works the

problem in Lr[0, T], since in this case the positive cone has nonvoid
interior and Hurwicz’s results apply (see [1, Theorem V.3.1]). This is no
restriction on the problem because we tre looking for a bounded controller.
The application also follows from a result by Tsujioka [2, Lemma 7].

REFERENCES

[1] L. Hunwcz, Programming in linear spaces, Studies i Liner atd Non-Linear
Programming, K. J. Arrow, L. IIurwicz, II. Uzawa, eds., Stanford Uni-
versity Press, Stanford, 1958, pp. 38-102.

[2] K. TSUJIOKA AND N. MIYAMOTO, A theorem on mulliplicalion operator in certain
function spaces, Sci. Papers College Gen. Ed. Univ. Tokyo, 17 (1967), pp.
141-154.

* This Journal, 5 (1967), pp. 594-599. Received by 1,he editors Mrch 26, 1968.

047



SIAM J. CONTROL
Vol. 6, No. 4, 1968
Printed in U.S.A.

MULTIPLIER FUNCTIONS IN OPTIMAL CONTROL*

J. PONSTEIN
Summary. By means of functional analytical tools, necessary optimality con-

ditions are obtained for optimal control problems involving time dependent in-
equality constraints. Such problems require Lagrangian multiplier functions rather
than numbers. The results are based on a lemma similar to Farkas’ lemma in mathe-
matical programning.

1. Introduction. The aim of this paper is to establish necessary optimality
conditions for optimal control problems whose constraints contain in-
equalities which must hold for each individual time in a certain time in-
terval, and which therefore are not necessarily integrated over time. A
typical example is the following. Let R be the field of real numbers, and let
E be the/c-dimensional Euclidean space.

(1) Minimize f(x(t), ) d g(z(g), ) <= 0,

where f(x(), ) R, x() - E’, g(x(), ) . E, and [10, hi c R.
The vector x(t) is the control vector, so that it may seem that no sate
variables occur. These have been eliminated, however, by solving the
ordinary or partial differential equations for them. As is illustrated in one
of the examples below, this elimination need not be carried out explicitly.
For this kind of problem we shall use Lagrangian multiplier functions

rather than the usual Lagrangian multipliers which are numbers. The
latter are used, for instance, in papers by Halkin and Neustadt [2], [5],
and they also occur in a paper by RiOter [6], who considers constraints such

as g(x(t), ) d <- 0. Very general kinds of multipliers, it is true, are

considered in a fundamental paper by Hurwiez [3], but the kind of problem
we have in mind is not worked out by him. Also it seems that the generaliza-
tion of Farkas’ lemma that we shall need is somewhat different from his,
because we do not consider conjugate spaces as far as the multipliers are
concerned. Our subieet is also considered in a paper by Russell [7], but
approached from another point of view. The most important difference
seems to be that the assumptions which have to be verified are quite dif-
ferent" in his case the set of "feasible solutions" must be "linearly
approximable"; in our ease a certain set, namely S, must be closed and a
constraint condition must hold. We agree with this author that in many

* Received by the editors February 1, 1968, and in revised form April 18, 1968.
t Computer Science Department, University of Kentucky, Lexington, Kentucky

40506.
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problems it will be difficult indeed to verify the assumptions. This is true,
in particular, in time optimal control problems, or when partial differential
equations are involved. Another difference is that in the present paper the
(nonnegative) multipliers are introduced right at the beginning, whereas in
Russell’s paper they appear at the end.

2. Reformulation as a functional optimization problem. Since we want to
apply functional analytical tools let us rewrite (1) as a functional optimiza-
tion problem. This will also enable us to generalize.

Let X and Y be some function spaces, to be specified in more detail
later on. Let an element x of X map onto x(t) E’, and let an element y
of Y map onto y(t) E", [to, tl]. Define the following functionals on
X and X Y:

tl

(2) Fx- f(x(t), t) dr,

(3)
tl

G(x, y) yr(t)g(x(t), t) dr.

Here and elsewhere T denotes transposition. Further, let y >= 0 mean that
the components of y(t) are nonnegative for all t, [to, tl]. Then problem
(1) can be written in the following form"

(4) Minimize FxlG(x, y) <= 0 for all y ->_ 0, x X, y Y.

Clearly the multipliers y are functions. Another approach [5] would be to
introduce the functional max g(x(t), t), where the maximum is taken over
[to, tl]. Then numbers would again appear as multipliers, which seem easier
to handle than functions. The disadvantage of using functions, however, is
more than balanced by the advantages one obtains by considering the
functional (3) instead of max g(x(t), t).
Problem (4) also suggests the following generalization. Let X be any

reflexive Banach space and let Y be any normed linear space, both over R.
Let F:x Fx be a functional o X and let G: (x, y) -- G(x, y) be a func-
tional on X X Y, which is linear in y. Both F and G must have (bounded)
Frt!chet differentials with respect to x. Finally, we assume that Y is partially
ordered by means of the relation >-, which must satisfy the following rela-
tions"

(5a) 0 ->_ 0;

(5b) if y >= 0 and y2_>- 0, then y-y2->- 0, y,y2 . Y;

(5c) if y >_- 0 and a >_- 0, then ay >= O, a R, y Y.



650 5. PONSTEIN

Now problem (4) covers a much wider class of problems, e.g., problems
where tl is allowed to vary but still is subject to inequality constraints, or
where time-independent constraints are involved, or the general problem
of nonlinear mathematical programming.

3. A generalization of Farkas’ lemma. Let X, Y, etc. be as defined in
the previous section. Let a:x ax be a bounded, real-linear functional.
on X, and let B: (x, y) -- B(x, y) be a real-bilinear functional on X X Y,
such that the functionals on X which are induced by taking y fixed are
bounded for each y. Let x be a solution of (4) and consider the following
sets"

(6a)

(6b)

S {s,]syh B(h, y) for some y Y for which y >= 0 and

G(x, y) 0, and all h, h

_
X},

H {hlB(h,y) 0forally

_
Yforwhichy _>_- OandG(x,y) O,

h Z}.

IEMMA. If for all h H we have that ah >=. O, and if S is closed in the
conjugate space X* of X, then a S. In other words, there exists a yO y
for which yO 0 and G(x, yO) O, and such that ah B(h, yO) for all
hX.

Proof. It is easily shown that S is convex and that the elements of S
are bounded, linear functionMs on X, so that S is a subset of X*. Suppose
a . S. Since S is closed and convex, it follows from one of the separation
theorems [1, V2.7, Theorem 10] that there exists a p** -(: X** such that

(7) p**a < inf p**s.

Since X is reflexive there exists a p (-_ X such that p**x* x*p for all
x X Therefore,

(8) ap < inf {sp ls S}.

Taking y 0 we find that inf =< 0. If inf < 0 there would exist a ? >= 0,
such that G(x, ) 0 and such that sp < 0, and hence, for a >= 0,
s,p asp would tend to if a would tend to -[- . This contradicts
ap < inf, so that we must have inf 0. From this, however, it would follow
that B(p, y) >= 0 for all y Y for which y >__ 0 and G(x, y) 0, so that
p H, and, according to one of our assumptions, ap >-_ O. But this contra-
dicts ap < inf 0. Hence our assumption concerning a is false and a S.

4. Necessary optimality conditions. In order to be able to derive necessary
optimality conditions we have to assume that some sort of constraint
condition holds. We shall take a form which is a straightforward generaliza.
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tion of one of the forms of constraint qualification in mathematical pro-
gramming, although, just as there, weaker forms are probably sufficient.

Let F and G(y) be the Frchet differentials of F and G, respectively,
with respect to x. Let x be a solution of the minimization problem (4).
Then the constraint condition reads as follows"

Foh >- 0 for all h X which satisfy G0(y)h -< 0 for all
(9)

y Y for which y >- 0 ad G(x,y) O.

In adding the requirement that y must satisfy G(x, y) O, we do i essence
the same as is done in mathematical programming when distinguishing
between active and nonactive constrai1_ts.

T,Since recne differentials rc bounded, li.mr fui.mtionls, we c pply
the lemma by putting

(10) B(h, y) -Go(y)h

aIld

(11) ah Foh,

so that

(12)

tnd we find the following result.
THEOREM. U X, Y, ec. are as defined aboe, if x is a solut.io of (4),

if the constraint condition (9) 5olds, and if S defined by (12) is closed in X*,
then there exists a yO y such that

(13a) o + Go(y) O,

(13b) y0 0,

(13c) (x0, y0) 0.

Two crucial requirements for this theorem are, of course, that X must
be reflexive and that S must be a closed subset of X*.

In the applications of the next section, and in general i many cases, X
will be a Hilbert space, so that X is reflexive. Furthermore, B(x, y) will
take the form of an inner product i X"

(14) B(x, y) (x, Sy),

where ’y y X.
In order to show that S is closed, let s S, i 1, 2, ..-, converge

to s. Then we have to show that s ( S. Since s S there exist y Y,
such that y
(15) sx (x, yi) forall x X.



652 . PONSTEIN

Further we have, since s is a bounded, linear functional on Hilbert space,
that there exists p X such that

(16) sx (x,p) for all x X.

Hence s s II/Y P converges to zero, so that/y converges to
p. For each of the applications we shall show that from this it follows that
there exists a y Y such that y >= O, G(x, y) 0 and p /y. From this
and (14) nd (16) it then follows that sx B(x, y); hence s S.

5. Two applications.
5.1. Let us first pply the results of the previous sectioa to simple

example. Suppose x solves the following problem:
P

(17) Minimize x(t) dt gl(x(t)) <= O,g.(x(t)) O,
Jo

where x(t) (- R, gl(x(t)) c(t) x(t), g2(x(t)) c.(t) x(t), and
c(t) 1 ift [0, 1],c(t) 0ift [1,3], c(t) 0ift [0,2],
c,(t) 2ift [2, 3].
Then

(18) Fx fo x(t) dt

(19) G(x, y) fo ly(t)g(x(t) -- y(t)gs(x(t) dt,

so that

(20) Foh fo h(t) dt Fh

(21) Go(y)h fo (y(t) -t-- y(t))h(t) dt.

We assume that x, y and y, belong to L2[O, 3] and that y -> 0 means that
y(t) >= 0 and y(t) .>= 0 almost everywhere in [0, 3]. Clearly, the require-
ment that G(x, y) 0 is equivalent to

(22) y(t)g(x(t)) y(t)g(x(t)) O, [0, 3],
if y >= 0, so that S becomes

s Ih (() + ())h() , __> o,
(23)

yl(t)gl(x(t)) y.(t)g(x(t)) O, [0, 3].
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Here and elsewhere we have dropped .the clause "almost everywhe’e
In order to show that S is closed we follow the procedure as outlined at

the end of the previous section. Hence we are given a sequence y, such that
yi

____
0 and G(x, y) 0, and a p’t -- p(t) R such that

(24) f {yl(t) + y2(t) p(t) }2 dt
’0

converges to zero. We have to show that we can find yl(t), y2(t) >= 0 such
that (22) holds and such that p /y yl A- y2, or that p (t) yl(t)
y:(t).
From (24) it follows theft p(t) >= 0 for all t, and from (24) and

G(x, y) 0, that p (t) 0 if g (x (t)) < 0 and g2 (X (t)) < 0 in a subset
of [0, 3]. In the latter case we must have that y(t) y(t) 0. If g,(x(t)

g(x(t)) 0, then there are no restrictions on y(t) and y(t), as far
as (22) is concerned, so that we can always determine them in such a way
thatp(t) y(t) -5 y(t).Ifg(x(t)) < 0and.q:(x(t)) 0, theny(t) 0,
but there are no restrictions on y(t), so theft we can put y(t) p(t).
Similarly, if g(x (t)) 0 and g: (x (t)) < 0 we have that y2 (t) 0 and
we can put yl (t) p (t). In all cases we clearly have that p (t) y(t)
-t- y.(t). Hence S is closed.
Let us now show that the constraint condition (9) is satisfied. Let h

be such that Go (y)h _-< 0 for all y for which y _>- 0 and G(x, y) 0. Since
x is an optimum of the minimization problem (17), it is easily checked
that for all at least one of g(x(t) and g(x(t) is zero, because otherwise
the solution could be improved. Hence the sum y(t) + y(t) may be taken
positive, so that h(t) >= 0 for all t. Therefore, x - h is feasible, so that
F(x -5 h) >= Fx, or in view of (20), Foh >__ O.
We can now apply the theorem and it follows that there must exist

y0 such that

(25a)
(Sb)

(25c)

1 y(t) y(t) O,
y(t) >- O, y(t) >- O,

y (t)(c(t) (t)) y.(t)(c2(t) x(t)) O.

If <: 1, then g,(x(t)) < 0 so that y.(t) O, y(t) 1 and x(t) c(t).
XIf > 2, then g (x (t)) < 0 so that y0 (t) 0, y2 (t) 1 and (t) c (t).

Finally, if i _<_ <= 2, then c(t) c,(t) 0, so that (y(t) + y(t))x(t) 0
and x (t) 0. In this interval we can take y(t) =2-tandy(t) =t-1.
Obviously the x found is indeed the optimum of problem (17).

5.2. As our second application we take a problem considered by Manga-
srian [4] involving a partial differential equation. The treatment of this
example is not wholly stisfctory, because there are several assumptions
concerning the solvability of the differetial equations involved for which
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we do not specify sufficient conditions. Some of these assumptions are not
even stated explicitly.

Let us consider the following problem:
Minimize

]o’ (s, T) ds ..(s, t) Ct(s, t) O, (s, O) a(s),

(1, t) 0, 0(0, t) x(t), Ix(t) <= 1, [0, T].

Here T is a fixed terminal time, a(s) is a prescribed function of s, which, for
instance, is the distance along a rod, and x: t-- x(t) is the control. itself,
for instance, is the gradient of the temperature of the rod, so that we want
to minimize the heat dissipation at time 7’.
We assume that (s, t) can be solved from the equality constraints in

terms of s, and x, so that we can put

(27) 4(s, t) f(s, t, x).

Then

f01 f(28) 1;’x (s, x) ds

(29) G(x,y) Jo iy(t)(x(t) 1) y(t)(x(t) -- 1)} dt.

:Now let x be a solution of (26) and let 4)(s, t) f(s, t, x). Then
from (28) we find that

(30) Fo h Jo 24’(s’ T)O(s, T) ds,

where O(s, t) f(s, t, x q- h) f(s, t, x) so that

t) t) o,
(31)

O(s, 0) 0, 0(1, t) 0, 0(0, t) h(t).

From (29) we find that
T

(32) Go(y)h Jo (yl(t) y2(t) )h(t) dt,

from which we see that Gxo(y) is bounded. As before we let x, yl and y2

This interpretation of problem (26) ws given by H. L. Beckers of Koninklijke/
Shell-Laboratorium, Amsterdam.
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belong to L2[0, T] and mean by y _>_ 0 that yl(t) >= 0 and y2(t) >= 0 for
(almost) all t [0, T].
In order to show that F0 is bounded we assume that b(s, t) can be

solved from

(33)
ss(s, t) + t(s, t) O,

/(s, T) 2(s, T), o(., t) 0, (0, t) 0

and that 8o(0, t) ff L2[0, T]. Then it follows, if we may apply the divergence
theorem to the differential form -O(s, t)(s, t)ds -t-- {O(s, t)b(s, t)

O,(s, t)(s, t)} dt, that

(34) ]01Fo h 2(s, T)O(s, T) ds /8(0, t)h(t) dt.

From this we see that Fo is bounded too.
Since G(x, y) 0 for y >= 0 is equivalent to

(35) y(t) (x(t) 1) y(t)(x(t) + 1) O,

it follows that

,5 sy sy x (yl(t) y(t))x(t) dt, y >= O,
(36)

y(t)(x(t) 1) y:(t)(x(t) + 1) 0t.
As before, in order to show that S is closed, let a sequence y be given

such that yi >= 0 and G(x, yi) 0, and let p’t ---) p(t) R be given such
that

(37) fo {y(t) y(t) -{- p(t)} dt

converges to zero. Then we have to show that we can find y(t), y (t) >= 0
satisfying (35) and such that p (t) yl (t) - y(t). If x(t) < 1 in u
subset of [0, 3], then y(t) y(t) 0, and frown (37) it follows that
p(t) O. It also follows that y(t) y.(t) O. Ifx(t) 1, then y(t) O,
nd from (37) it follows that p(t) <= O. Since in this case y:(t) 0, but there
are no restrictions on y.(t) as fr as (35) is concerned, we can put y(t)

-p(t). Similarly, if x(t) -1, we have that p(t) O, that y(t)
0 nd that we ct put y,(t) p(t). Hece in all cuses we have that p(t)
y (t) y(t), so tlmt S is closed.

In order to show that the constraint coudition (9) is satisfied, let us first
suppose that a function h aud an e0 :> 0 exis such that

(38) x(t) + h(t) <= 1
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for all [0, so) and E [0, T]. This means that x - eh is feasible, so that

f. r) + :> f0
where O(s, t) still satisfies (31). Letting e tend to zero, we have from this
inequality that

Seeondly, le h be bounded; hence leg ghere be a sueh ghag h() ,
[0, T], and leg G,()h N 0for allg 0, a(z, ) 0. romghis

gogeher wih (a2) and (gS) ig follows hag if zo() 1 in a subse of
[0, T],heng() 0andh() N 0, andifz() _l,henh() 0.
Henee if we define

U {t[[x(t)[ 1, [0, T]},

then (38) holds for all e such that 0 e e0 2/, and U. Now let

V t lx(t) 5 l/n, [O, T]}, n=1,2,...,

and lete 1/(nil) < e0.Then(38) holdsif0 e< e ndt UOV,
n 1, 2, -.-. Further define

h(t) if E UUh(t) if t UUV, n 1,2, ....
From this we see that

[x(t) + a,(t)

if 0 e e and [0, T], and as before it follows that Foh, O, n 1, 2,... Since h(t) tends to h(t) if n tends to , [0, T]; and since
T

[h(t)] fland.[ Bdt < ,itfollowsththtendsto hinL[0, T]

(see [8, p. 234]). From this we see that Foh tends to Foh, because F0 is a
bounded, linear functional on L[0, T]. Hence Foh O. Finally, let h be
unbounded. Then we define

f(t) (ho(t) if h(t) n,
if Ih(t) > , 1,2, ....

T0h 0, n 1,2,From the foregoing it then follows that Since
f(t) tends to h(t) if n tends to , [0, T]; and since f(t) h(t)[
and ]hi L[0, T], it follows that f tends to h in L[0, T] (see [8]). Hence
F0. tends to Foh, so that again Foh O. Therefore, if h is such that
Go(y)h 0 for all y O, G(x, y) O, then F0h 0; hence the constraint
condition is stisfied.
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From the theorem it now follows that there must exist a y0 such that

(39a) .(0, t) - yl(t) y2(t) O,

(39b) yl(t) >= 0, y2(t) >_- 0,

(39c) yl(t)(x(t) 1) y(t)(x(t) - 1) 0.

Here .O(s, t) has to be found from

(33)
,.(s, t) -t-- ’,(s, t) 0,

(s, T) 2,(s, T), (1, t) 0, (0, t) 0;

and 4, (s, t) from

(40)
t) 4)(s,t) O,

h(s, O) a(s), (t,(1, t) O, 4)(0, t) x(t),
and x must of course stisfy [x(t) -<_ 1.

It was shown by Mangasarian [4] that these conditions are sufficient for
x to be a solution of problem (26). In the case when a(s) is given such that
problem (26) has an optimal solution x and the assumptions mentioned
at the beginning are satisfied, and thus in particular (33) and (40) can be
solved such that b,(0, t) L.[0, T], then these conditions are also necessary.
Hence we may expect that a class of functions a(s) exists such that the
conditions are both necessary and sufficient.
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ON THE STRUCTURE THEORY OF LINEAR
DIFFERENTIAL SYSTEMS*

LEONARD WEISS

1. Introduction. Consider linear system described by the equations

d__x F(t)x(t) - G(t)u(t),
(1) dt

y(t) H(t)x(t),

where x(t) R’, u(t) Rp, y(t) Rr, and F(. ), G(. ),H (.)are matrices
which, for convenience, are assumed to be continuous functions of time.
(Notation’ We shall occasionally denote such a system by "the system
{F(-), G(.), H(.)}.")
A few years ago, Kalman [1], [2] proved a structure theorem for linear

time-invariant systems of the form (1) which was motivated by some work
of Gilbert [3]. An extension, to the time-varying case was stated (without
proof) by Kalman in [2] and, based on that, a further extension was subse-
quently stated (also without proof) by the writer [4], [5] using the concepts
of "anticusal" controllability and observability.
The crux of he original statemet of the theorem nd of the subsequen

extensions was the assertion that given a fixed instant of time, there exists
a coordinte trausformtio which c).vers the coeificiet matrices of (1)
into a special, form valid at the fixed i’cstant t.

It is generally recognized hat a more sisfyiug resul than. the one
described bove would consist of the ability to assert existence of "co--
tinuously varying" coordinate ransformation which effects a structural
decomposition of (1) valid for all (or, a least, for all _>_ t’ for some fixed
) into interconnected component subsystems whose mathematical repre-
sentation and system-theoretic properties are similar to those indicated in
the early theorems on structure. Some progress has been made in this
direction (see, for instunce, [6]), based essentially on a procedure suggested
by the writer (see proof of Theorem 9 in [5]) for obtaining globally reduced
weighting patterns (:tnd therefore minimal realizations) of linear systems
from given nonreduced weighting patterns. However, the suggested pro-
cedure involves performing an initial coordinate transformation, so as to

* Received by the editors June 8, 1967, and in revised form April 5, 1968.
Electrical Engineering Department, University of Maryland, College Prk,Mary-

land 20740. This research was supported in prt by the Air Force Office of Sci-
entifi Research, Ofiice of Aerospace Research, United States Air Force, under
AFOSR Grant 68-1346, and in part by the Alfred P. Sloan Foundation i the form
of a research fellowship to the author.

See 5 for definitions.
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put the matrix F(t) into a special initial form, which almost inevitably
leads to a time-varying structural decomposition for (1) even when (1) is
time-invariant.

In the sequel, we present a set of general structure theorems for (1) which
yields the result mentioned in the first sentence of the preceding paragraph,
while avoiding certain difficulties inherent in past contributions to the sub-
ject. The proofs, which follow a logical pattern similar to that given by Kal-
man for the time-invarbnt case, can be algorithmized and show that the
structural decomposition obtained for (1) will be time-invariant if (1) is
time-invariant.
A precise system-theoretic interpretation of the results is given which

clarifies a number of issues which have arisen from past contributions.
Some special applications and corolbxries of the main results are discussed.

2. Controllability, observability, reachability, determinability. Define
the adjoint system to (1) as the system

dz F’(t)z(t) -t- H’(t)t(t),
(2) dt

9(t) G’(t)z(t),

where the prime indicates transpose. It is easily shown that if (t, r) is the
transition matrix for (1), i.e., if (t, r) satisfies

dq,(t, r) F(t)q,(I, r),
(3) dt

(t, t) ,
her ’ (r, t) is he rnsiion matrix for (2).
Dmm 1. A sa Xo of he system (1) is controllable from time r if

here exists > r, finite, nd a onrol segmen u.., such ha h phase
(r, x0) is ransferred o he phase (t, 0). Oherwis he sae is uncontrol-
lable from r. If every (no) sae is controllable from ime r, the sstem is
controllable (nontrollable)from r. Conrollability (uneontrollabiliy) of he
system from all r is denoted by complete ontrollabilit (neontrollabilit).
If r in the preeeding definition can be made arbitrarily small, we speak
of differential ontrollabili [7].
Do2. A state x0 of he system (1) is reachable at time r (ler-

nae erminology:antieasal controllable) if here exist .( r, finite, and
a control segmen It., such hat he phase (t, 0) is rnsferred o he phase
(r, xo). Oherwise he sae is unreachable a r. If every (no) sae is
reachable a ime r, the stem i reachable (nreaehable) at r. Reahbiliy
(unreaehability) of the sysem all r is denoted by complete teachability
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(unreachability). If It r can be made urbitrrily small, we spek of
differential teachability.
DEFINITION 3. h state x0 of the system (1) is observable from time r if,

with respect to the a,djoint system, that state is controllable from time r.

Otherwise the state is unobservble from r. Remaining definitions of system
observability, unobservability, nd complete observability follow dually
from Definition 1.
DEFINITION 4. A state x0 is determinable at time - if, with respect to the

adjoint system, that state is reachable at time r. Otherwise the state is
undeterminable ,t r. Remaining definitions of system determinability, un-
determibility, a,d complete determinubility follow dually from Definition
2.
Remarl 1. The terminology used in the above definitions follows, with

the exception of "determinability," that adopted in [8]. The above defined
concepts of teachability nd observbility re precisely those described in
[5] under the hetdings of "anticausal" controllability and "anticausal" ob-
servability, while determintbility corresponds to the older dcfinition of
observability.

Remar]c 2. It will be aI)pret later on that the four cotmepts deflated
above can be used to state four equally valid structure theorems for linear
systems. For convenience we restrict attention to the concepts of control-
lability and determinability.

Define the "controllbility" and "determiuability" matrices, respec-
tively"

D(, ) ’(, t)H’()H()(, t) d.

Then the following statements arc easily proven. (See [9] for the proofs
of Theorems 1 and 2. Theorems 3 and 4 then follow by the definitions of ob-
servability and determinability.)

THEOREM 1. A state Xo of (1) is controllable from (reachable at) time r if
and only if there exists tl > r (tl < r), t finite, such that Xo 61[C(r, t)],
where [. denotes Range [. ].
COROLLARY 1.1. A system (1) is controllable from (reachable at) time r if

and only if there exists t > r (t < r), tl finite, such that rank [C(r, t)] n.
THEOREM 2. Let 6)(t) (6)(t) denote the set of states controllable from

(reachable at) time t. If x 6)c(t) ((p(t)) and r <= (r .>= t), then
(, t)x . ()(()).
THEOaEM 3. Consider the system (1) with u (t) O. Then a state xo of (1)
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is determinable at (observable from) time if and only if there exists some
( < - ( > -) such that Xo [.D(, )].
COROLnY 3.1. A system (1) is determinable at (observable from) time

if and only if there exists < ( > -) such that rank [D (, z)] n.
THEOnE 4. Let (t) (.0(t)) denote the set of states which are deternin-

able at (observable from) time t. If x (t) (x o(t) and - >= ( <-_ t),
then ’(t, r)x (r) (0(r)).
A result which plys an important role in our development is given by

the following theorem.
THEOREM 5. The range of C( t, z), a >= t, is monotone nondecreasing with

increasing z.

Proof. C(t, z) is Grmian mutrix and hs the property that, for any
x R 0 <-_ x’C(t, (r)x <= x’C(t, (r)x tor z =< z. Hence,

x K [C(t, )] implies x K[C(t, )],

where K [. denotes Kernel [. ]. This implies K [C (t, 1)

_
K [C(t, z2) and

therefore, by orthogonal complementation, ( [C (t, 1) 6, [C (t, a2) ].
COROLLARY 5.1. There exists a positive function (t) such that

U.>t ( [C(t, )] [C(t, -- #(t))].
COOLLhnV 5.2. The range of C(t, ), <= t, is monotone nondecreasing

with decreasing .
Obviously, Theorem 5 nd Corollaries 5.1, 5.2 hold with C(t, z) replaced

by D(t, ). We can therefore vrite that there exist functions t(t), (t),
o(t), p(t) such that

,(t) ([c(t, + ,(t))],

o(t) [D(t, -- p(t))],

.,(t) [D(t, o(t) )].

3. The main structure theorems. One of the primary tools in our deriva-
tion of the structure of 1 is the following theorem, which is due to Doleal
[10]. (See [11] for an alternate proof plus other pplications.)
THEOREM 6. Let A (t) be an n X n matrix of Ck functions defined for all

and suppose there is a nonnegative integer r n such that rnk A r for
all t. Then there exists an n X n matrix of C functions, M(t), nonsingular for
all t, such that A M [B 0], where B is n X r and
rank B t) r for all t.
The principal applications of Theorem 6 in this paper occur by way of the

ollowing corollary.
(OROLLARY (.1. Let A (t) be as Cn Theorem 6 with the additional property

that it is symmetric. Then there exists an n X n matrix of C functions, T (t),
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nonsingular for all t, such that

T(t)A(t)T’(t) I(t)O O01 for all t,

where is r X r and rank r for all t.
Proof. Apply Theorem 6 to A (t) with _/]4(t) T’ (t). The result then

follows from the observation that T(t)A (t)T’ (t) is symmetric.
We now begin development of our main results on the structure of linear

systems. The results consist of a series of four theorems, namely, Theorems
7, 8, 9 and 10 in the sequel.
THEOREM 7. Consider the system (1) with controllability matrix

C (t, - t (t)) and suppose rank C (t, -- t (t)) r < n for all t. Then
there exists a diffeomorphic coordinate transformation of the state space of (1)
with respect to which (1) takes on the form

2(t) Fn(t)x(t) + Fl(t)x.(t) + G(t)u(t),

(4) 2(t) F:(t)x.(t),

y(t) H(t)x(t) + H(t)x:(t),

valid for all time, where x(t) is an r-vector. Moreover, the system

1Fn(.), G(.), H(.)}

is completely controllable.
Proof. Application of Corollary 6.1 to C(t, + (t) shows existence of a

continuously differentiable n X n mtrix, T(t), which is nonsingular for all
t, such th,nt

(5) T(t)C(t’t - (t))T’(t) It) 1’
where C(t) is r X r and is symmetric, nd rtmk C(t) r for ll t. The
right side of (5) represents the controllability matrix for (1) after the trans-
formation 2(t) T(t)x(t) is made. Hence, by Theorem 1, a controllable

 imo whoso

is an r-veetor. From Theorem 2 we have gha the transformed transi-
tion magrix has ghe form (independent of arguments)

(0) () [1 (I’)121
where is re X r. It then follows by (3) thut regardless of t, has the
form

F:_]"
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The above transformed quantities are related to the original by the
equations

(t, ) T(t)(t, )T-I(),
(t) T(t)F(t)T-a(t) + (t)T-a(t).

Also, (5) implies that

T(t)(t’ )G()G’()’(t’ )T’(t) IK(t’ )K’(t’ 007
for all and 11 [t, -- t(t)], where K(t, ) is r p. Choosing t,
it is clear that the above equation implies

T(t)G(t) [K(o’t)1 for all.

Using the notation

(t) T(t)G(t) Lab.(t)
where G(t) is r p, we see that K(t, t) G(t) nd G. (t) 0 for 11 t,
which proves the main part of the theorem. The remainder follows by
trivial observation.
TEOnE 8. Consider (1) with determinability matrix D(t, o(t) and

let rank D (t, (t)) r n for all t. Then there exists a diffeomorphic
coordinate transformation of (1) such that under this transformation,

2(t) F(t)x(t) + Gl(t)u(t),

(7) 2(t) F(t)x(t) - F(t)x(t) + G(t)u(t),

y(t) H(t)x(t),

valid for all t, where x(t) is an r-vector. Furthermore, the system

Fl1(. ), GI(- ), H,(.)

is completely determinable.
Proof. Using u completely analogous rgument to that in the proof of

Theorem 7, but applied to the adjoint system (2), we see that there exists
transformation which takes the transition mtrix of (2) into the form

By transposition, the transformed transition mtrix of (1) then has the
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form

=F(R) 1(8)
L(R) (R)

and by following the remainder of the proof of Theorem 7, we obtain
the desired result.
THEOREM 9. Consider (1) and let the hypotheses of Theoren 7 hold so that

(1) can be transformed into (4) with the transformed transition matrix given
by (6). Define the determinability matrices D1 and D, by

(9) D(t, r) n(, t)H/()H()II(, t) d,

(10) D2(t, z) 2(u, t)H (u)tI2().(n, t) du,

and let i(t), i 1, 2, be continuously differentiable functions such that

di [Di(t, o(t))] U ol IDa(t, o-)], i 1, 2,
at

and let

rankD(t,t- t(t)) rd < rc for all t,

rankD(t,t- 2(t)) r& < n rc for all t.

Then there exists a diffeomorphic coordinate transformation, 2 t) T t)x t)
defined for all t, which converts (1) into a form in which the coecient matrices
have the form

(11)

F(t) --+

a( t) --,

H(t)--- [H(t)

-Faa(t) 0

F(t) F(t)
0 0

0 0

ca()1
a"(t)|

o H()

Fac(t) FaZ(t

t() o
F(t) F(t)J

Proof. Let T(t) be the diffeomorphism which transforms (1) into (4).
With the resulting transition matrix given by (6), the determinability
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matrix for the transformed system is (with arguments omitted)

D(t, o) i(I)12 1 Hi (I)11 ’1 HH’ -F 1. HH

D DJ"
From (9) and (10) we have Dll D1, and the last term in D,22 is D2.
Clearly, D1 is the determinability matrix for the system {FI(. ), GI(. ),
H(.)} in (4). By hypothesis, rank D(t, oct(t)) re1 < rc for all t.
Hence, by Corollary 6.1 there exists a continuously differentiable rc X rc
nonsingular matrix %(t) such that

T’(t)D(t,t-- o(t))T.(t) It)
where D(t) is re1 X ral and rank D(t) ra for all t.

Hence, by Theorem 8, the transformation

for all t,

T.(t)-ax(t)
(t

transforms (4) into a form in which

F11(i)
kF"(t) F(t)

ai(t)

H(t) [U"(t) 0].

Thus, (4) becomes

xa(t)l_x(t) F(t) F(t) (t)

(12)

(t) F(t)x.(t),

+ T(t)-Fr2(t)x,2(t)

Ga(
+ L(

y(t) Ha(t)xa(t) nt- H(t)xg.(t),

where we have dim x(t) r, and dim x(t) ro r.

t)]u(t)t)
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Now consider the system F2.(’), 0, H2(. in (12). The determinability
matrix for this system is D2. By hypothesis, rank D.(t, o2(t)) rd2
< n rc for all t. Then there exists an (n re) X (n re) continuously
differentiable nonsingular matrix T3(t) such that

T3’(t)D2(t, co2(t) )T(t) I2t) 001 forallt,

where D.(t) is . X rd and rmk])2(t) rz, for all t. The coordinate trans-
formation

IXC(t) I --1

x(t
V( x.(t)

transforms (12) into the desired canonical form in which

VFac(t) Fd(t)Fad(t)T(t) F2(t)T(t) F(t

’,()-T:() + T,()-%:(t) T,(t) lF,
()

H(t) i:,(t) [H(t) 0],

i.e., the system now becomes"

(13)

5ca(t) ,-Faa(t)xa(t q_. Fa(t)x(t) qt_ F,(t)x(t q_ Ga(t)u(t),

2(t) Fa(t)xa(t) -1- Fb(t)xb(t) -Jr- FC(t)x(t) -+- FZ’a(t)xe(t)
+G(t)u(t),

c(t) FC(t)x(t),
d Fdc Xx (t) (t) (t) q- F(t)x(t),
y(t) Ha(t)xa(t) -t- H(t)x(t),

T(t)--[Te(t)-I 0 11o V(t)- T(t).

Our final theorem in this section, when taken together with Theorems
7, 8 and 9, yields the most general form of the structural decomposition of
a given system (1). It is motivated by the possibility that certain state
variables in xe may be determinable as a result of the connection Fae, i.e.,

system associated with || may contain a determinable subsystem.the
Ix..!

valid for all t, where dim x(t) re. and dim xe(t) n r r d2.
This completes the proof of Theorem 9 in which the overall coordinate
transformation T(t) is given by
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THEOREM 10. Consider the system (1) and let the hypotheses of Theorem
9 hold so that (1) can be transformed into (13). Consider the system

F(") ")] [Ha((14)

and call the corresponding deterninability matrix Da( t, (r).
Let ooa be a continuously differentiable function such that

6[Da(t, ooa(t) )] [J<t 6{[.Da(t, r)], and let rank D(t, -- (t)) rd3
< n rc rd,. + rlfor all t.
Then there exists a diffeomorphic coordinate transformation which converts

(13) into the form
fa(t aa(t)xa(t 2F Fa(t)x(t qt_ a(t)u(t),

Rb(t) Fba(t)xa(t) q- F(t)x(t) + F(t)x(t) + F(t)x(t)

x(t)

(t)
y(t) Ha(t)x(t) + H*(t)x*(t),

+ G(t)u(t),
F(t)x(t),

V’(t)x(t) + "’(t)x(t),

valid for all time, where dim x (t) rdl, dim x (t) r rdl dim. x"(t)
r,. + rd3 rl, dimx(t) n r r r + r,,.
Note. The general form differs from (13) in that, by means of a further

diffeomorphic transformation of coordinates plus a regrouping of state
variables (dim x (t) > dim x (t) and dim x (t) < x (t)), the feedback
coecient from the system associated with x to that associated with
x becomes identically zero.

Proof of Theorem 10. Let the transition matrix for the system (14) be
given by

where aa corresponds to F and has dimension r r. Then, omitting
rguments in the integrand below, we have

aafgatgacaa aafgafgacad
D( t, z) ,,Ha,TIa a,Ha,Sj d,

or

(16) D(t,z) [DT(t’ r) R(t, (r)j’k R (t, (r) Q(t, z)

where Da(t, r) is the determinability matrix for {Faa(. ), G(. ), Ha(. },
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so that rank Daa(t, ol(t)) rl for all t. Let 4(t) be a continu-
ously differentiable function such that

(R[Q(t, o4(t) )] U (R[Q(t, )]
<t

and let (t) be likewise continuously differentiable such that

w(t) > mx (w(t)), i 1, 2, 3, 4,

for all t. It is easy to show that

([Da(t, (t) )] [R(t, (t) )]

(e.g., by showing that the above holds under orthogonal complementtion).
Hence there exists a matrix K(t) such that

Daa(t, (t) )K(t) R(t, (t) ).

By Theorem 6 it follows that K(.) C.
Now define the (n r + r) X (n r r, + r) mtrix

T(t) by the formultt

(17) T(t) I__
where I denotes the r X r identity mtrix. Clearly, T(t) hns the
sme smoothness properties as K(t). From (16) nd (17) we obtain
(omitting rguments on the right-hand side)

(is) ’()(, ())()

where R’K is nonnegagive definige, and ig follows by hypoghesis
ha rank Q(, ()) r,

Applying Corollary 6.1, leg T(g) be an
eoninuously differentiable nonsingular matrix such

(19) T’(t)Q(t, (t))T(t) t);t) 00
where P(t) is (r r) X ( rd) nd rank Q(t,t- (t)) rankP(t)
for all t. Then the coordinate transformation

Ix"(t)] ’(t)(20)

with

-xa(t)
_x (t) J

0 T(t)-1 T4(t) T-
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has the effect of transforming the determinability matrix D3 for the system
(14) into the form

FDaai 00011|
O

for all t. It is easy to check that ’(t) -1 has the same form as ’(t) in fact,

(23) ’(t)-I TsJ
for all t, where the dimensions of the "0" are n r r X r.

Therefore, the transformed state coefficient matrix of (14) is given by

l?, (t) ’(t) [Fa(t) Fad(t)
F(t) (t) + (t)’(t)-

nd has the orm

and he corresponding gransRion magrix ,,e(, r) also has ghis form, i.e.,

(24) a,d(t, r) aa(t’ dd(t,ad(t’ )r)
for all t, r.

Now prtition nd as follows"

[ a],
where is r,, X n r r r r, and

dd dd

where 12 is (n r r ra A- rd) X (rda rd) and the remaining
matrices are conformable with this.

This prtition corresponds to prtition of the vector x

where dim x r r. Then the transpose of (24) becomes

’ 0 0

(25) a,
2 12 22
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By (22), states which are determinable at any fixed time must, under the
new coordinate system, have the form

where dim 21(t) rd. From Theorem 4 and (25) it follows that

(t) ’(t)] 0

for all t. Transposing, and using (3), we find that

Faa d..,dd O1la. 0 F 0
dd dd0 F2 1 22

for all t.
Before giving the final regrouping of terms, it remains to find the "out-

put" coefficient matrix of (14) under the new coordimte system. This is
given by

/(t) [H(t) 0](t)-
and so, from (23) (with arguments omitted),

/ [H H KTs],

and from Theorem 8 it is clear that takes on the form

[H H1d 0],

where Ha is r X raa ra.
We now define the following quantities:

X xa X Xb
X X

d d

Xl
d X2

y [F HFill, [H Ha],
F IF FF ],

F [FaF1],a Faa =F F =_,
and if we write

F x [F1 Fd]



672 LEONARD WEISS

Ye

FIG. 1. Flow chart for structural decomposition

then we define

FC= [Fbc Fled], Fbd= [F2M].
Finally, F F,H H, ___.a Ga, :.b Gb. The theorem is thus proved.
The procedure we hve given for obtaining the structural decomposition

of (1) cn be lgorithmized s indicated by the flow diagram in Fig. 1.
It should be emphasized that our procedure for structural decomposi-

tion is "symmetric" from number of points of view. For example, just
as Theorem 8 is a dual result to Theorem 7, we could have given com-
pletely dul procedure for obtaining form consonant with (15). That is,
one can esily write the dul to Theorems 9 nd 10 which would begin
with the ppliction of Theorem 8 nd would replace the mtrices D1,
D2, D3 with mtrices C, C, C3, etc.

If, from the point of view of procedural logic, the order of steps in the
proof of the dul theorem is the sme s in the original, then the coefficient
mtrices in this cse would take on the form

F Fab 0 0 10 F 0 0

LFa F F FJ0 F 0 Fd
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H [H H o 0].

In addition to all this "dual" sytnmetry, Theorems 1--5 indicate that the
same type of structural decomposition is obtained if "controllability" is
replaced by "reachability" and/or "determinability" is replaced by "ob-
servability." Hence, Theorems 9 and 10 as well as their duals are each
representatives for a set of four structural decomposition theorems.
To avoid confusion in the sequel, our discussion and interpretation of

the results of this section are given only with reference to the actual
procedure adopted in Theorems 9 and 10 to obtain (15). On the basis of
our comments above, the reader can easily supply the interpretations for
all the remaining approaches.
Remark 3. The overall coordinate transformation which produces the

general structural decomposition of an arbitrary system (1) is represented
by the matrix

T(t)=

Remarlc 4. For the special case when (1) is time-invariant, all applica-
tions of Corollary 6.1 will involve time-invariant transformations so that
the procedure given in the proofs of Theorems 9 and 10 clearly leads to a
time-invariant structural decomposition.
Remark 5. If X(t) is any fundamental matrix solution of 2(t) F(t)x(t),

then the coordinate transformation 2 (t) [X (t) ]-ix (t), followed by our
(now vastly simplified) decomposition procedure, leads to a structure in which
F(. 0. However, since X(t) is constant with time only when F(- -= 0,
the transformed system obtained this way will almost always be time-varying
even when the original system (1) is not.
Remark 6. Since our structural decomposition holds for all time, the

original statement in [2] on structural decomposition of time-varying
systems at each fixed instant of time, with an appropriate modification, is
an immediate consequence of our results.
Remark 7. With respect to the question of alternative approaches to

structural decomposition, one can easily show that the method detailed in
[6] can be adapted to obtain the structure theorems in this paper. A prime
advantage of the present method which emphasizes Doleal’s theorem,
apart from its merits based on algorithmic.considerations alone, stems from
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H

F.dC

FIG. 2. Block diagran of structural components

the fact that Doleal’s theorem is also applicable to the problem of ob-
taining structural decomposition independent of knowledge of the transi-
tion matrix. Hence, our approach points the way to and is part of a unified
theory of structural decomposition under diverse hypotheses.

4. System-theoretic interpretation of structural decomposition. Pic-
torially, the decomposition (15) can be viewed as in Fig. 2, which shows
four interconnected systems Sa, Sb, Sc, Sd enclosed in "boxes" labeled with
associated state vectors. If, as is natural, we view the interconnecting lines
inside the large "box" as input and output lines for the structural components,
then the following result is readily discernible from individual examination
of each structural component in (15) plus reference to the proofs of Theorems
9 and 10.
COROLLARY 10.1.
(i) S is completely controllable and conpletely determinable,
(ii) S is completely controllable and completely undeterminable,
(iii) S is completely uncontrollable and completely determinable,
(iv) S is completely uncontrollable and completely undeterminable.
Remarlc 8. If the matrices F(. ), G(. ), H(. in (1) are analytic functions

of time, the ranks of C(t, + (t)), D(t, 0(t)), i 1, 2, 3, will be
constant everywhere in the t-domain. Hence, the system-theoretic inter-
pretation of the structural decomposition of a system with analytic co-
efficients is given by Corollary 10.1. This provides the proof for assertions
concerning analytic systems which were made in [2] and [5].
Remark 9. It is readily apparent that the series of coordinate transforma-

tions leading to (15) can be associated with projections onto the ranges or
null spaces of the matrices C and D, i 1, 2, 3. We cn therefore view the
decomposition (15) as being associated with a direct sum decomposition
of the state space

x(t) x(t) @ x(t) @ x(t) @ x(t)

in which, under the overall coordinate transformation, the various com-
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portents have the form

0 x(t) 1x(t) o x(t)- o
0 0

0

x(t) - x (t) x(t)

0

0
0
0

x(t)
5. Minimal realizations, weighting patterns, impulse responses and

causality. Our results on structure form a basis for clarification of a num-
ber of results on realization of systems for input/output quantities, as dis-
cussed in [5].
We begin with the solution of (1), written in the form

(26) y(t) H(t)(t, to)Xo + W(t, r)u(r) cl-,

where x0 is the state of the system at time to, and

(27) W(t, r) H(t)(t, r)G(r) for all t, r

and is called the weighting pattern [4] for (1). We shall consider some
aspects of the problem of realizing a given function W(t, r) by a system
(1) and relating W(t, r) to the structure of that system. We shall also
discuss, later on, similar problems with respect to the "causal impulse
response" function [5] W(t, r) defined by

JW(t,T) lor >= r,(28) W(t, T) \o for r.

(The distinction between W and W from system-theoretic point of view
is important and was first recognized, apparently, by the writer (see
[4], [5]).)

Consider the following definitions (introduced, with the exception of
Definition 7, in [4], [5]).
DEFINITION 5. A weighting pattern W(t, r) is in reduced form on an

,;nterval (a, a) if the rows of (t0, )G(- and the columns of H(- )(., to)
are linearly independent functions on the interval (a, a) independent
of to.
DEFINITION 6. A weighting pttern is globally reduced if it is in reduced

form on the entire interwl (in this case (- o, )) of definition of the
system (1).
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DEFINITION 7. A weighting pattern has the property DCDO on an interval
(al, a2) if it is in reduced form on every subinterval of (al, a2) of positive
length.

DEFINITION 8. The order of a globally reduced weighting pattern (27) is
the number of columns of H(. )q(., to) = number of rows of (t0, )G(-).

DEFINITION 9. A realization of a globally reduced weighting pattern
W(t, r) is a dynamical system (1) whose weighting pattern can be reduced
to W(t, ,).
DEFINITION 10. If the dimension of the state space of the realization

equals the order of W(t, r), the realization is globally reduced or is minimal.
The following three lemmas were proved in [4], [5] (Lemma 1 was first

proved in [2] for the case of causal impulse responses).
LEMMA 1. An r ( p matrix function of two variables, W t, r), is a weight-

ing pattern for an n-dimensional system ( 1 if and anly if W can be factored as

W(t, ’) eb(t)O(r) for all t, .
LEMMA 2. Eery weighting pattern has a globally reduced form.
LEMMA 3. A minimal realization of a globally reduced weighting pattern

W(t, r) has the lowest dimension of all globally reduced realizations of W(t,
In order to discuss the significance of minimal realizations from the point

of view of the concepts of controllability, determinability, etc., the fol-
lowing definition is given (see [2]).
DEFINITION 11. Two n-dimensional linear systems S, S of the form

(1) are algebraically equivalent if there exists an n X n nonsingular, con-
tinuously differentiable matrix T(t) such that

F, (t) T( -t) Fs(t)T(t) T(t)- (t),

Gs,(t) T(t)-Gs(t),
Hs(t) H(t)T(t)

for all t.
Algebraic equivalence implies that the two systems are related by a

coordinate transformation x(t) T(t)x(t) and is of interest because
of the following results.
LEMA 4. Weighting patterns are invariant under algebraic equivalence.
Proof. The proof follows from (27) and Definition 11.
LEMM 5. Points of time from which a system is controllable (or observable)

or at which a system is reachable (or determinable) are invariant under
algebraic equivalence.

Proof (for controllability only; the remainder follows analogously).
Under algebraic equivalence, we have the correspondence

C(t, + u(t)) ’(t)C(t, t+ u(t))T’(t) (t, + u(t))

and so, rank C(t, -t- # (t)) n implies rank (? (t, -t- u (t)) n.
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The above result coupled with the well-known theorem below (see [5]
for statement of theorem and [6] for published proof) shows that all milimal
realizations of a given globally reduced weighting pattern have essentially
the same behavior from the point of view of controllability, determinability,
etc.
THEOREM 11. Any two minimal realizations of a given globally reduced

weighting pattern are algebraically equivalent.
We are now in a position to relate the results above to the earlier ones

on structural decomposition. The first fact of significance is given by the
following lemma.
LEMMA 6. Consider a system (1) with structu’al decomposition (15).

Then the weighting pattern (27) of (1) is given by

(29) W(t, ’) I’Ia(t)oaa(t,

where is the transition matrix corresponding to aa i (15).
Proof. The proof follows from (27) and (15) plus the fct that the

transition matrix (I) for (15) must have the same patter of zeros as does F.
LEMMh 7. The subsystem S in Fig. 2 is a minimal realization of the

weighting pattern for the overall system.
Proof. The right side of (29) is the weighting pattern for S and is

globally reduced. It is easy to check that the order of this weighting pattern
is the dimension of x".
From Theorem 11 nd Lemm 5 we obtain the two theorems below.
TEOUn 12. All minimal realizations of a given globally reduced weight-

ing pattern are controllable (or observable) from all for some suciently
small and are reachable (or determinable) at all > t" for some suciently
large ’.
TnounM 13. All minimal realizations of a weightSg pattern with the

property DCDO are differentially controllable, reachable, determinable, ob-
servable.
Our objective now is to discuss the concept of impulse response and its

relationship to the preceding materil in this section. The psychological
causes for past confusion between the impulse response concept (which
arises from the incorporation of the principle of cusality into system’s
input/output relation constructed from postulating the superposition
principle) and the weighting pattern (which is generated from the solution
of a differential equation and is therefore further removed from the process
of model building) are not pertinent to the present discussion. We simply
note that if one insists upon using differential equations as the basic mathe-
matical model of a system, then the weighting pattern is fundamental
object for study, and that the impulse response is of interes primarily
because the only prt of W(t, ’) that can be experimentally determined
(or approximated) is that for the case >__ .
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The causal impulse response was defined earlier. It will be useful to
h-ve also the following concepts.

DEFINITION 12, The anticausal impulse response of a system (1) with
weighting pattern W(t, r) is a function Wa(t, r) such that

T) \o for > r.

DEFINITION 1.3. A realization of a causal (anticausal) impulse response
W(t, r) (W (t, r) is a system (1) whose causal (anticausal) impulse
response is W(t, r) (We(t, r) ).
By the definition of impulse response, it is clear from Lemma 1 that any

W(t, -) can be factored as

(30) W(t, r) f(t)O(t) for T
for r,

and a similar result (with reversed ordering for and r on the right side of
(30)) holds for Wa(t, r). We then have the following definitions.
DEFINITION 14. A causal impulse response (30) is globally reduced if,

for some t > , the rows of O (.) are linearly independent over (- , t]
while the columns of T (.) are linearly independent over Its, ).
DEFINITION 15. An anticausal impulse response is globally reduced if,

for some t < , the rows of O(. are linearly independent over Its, )
while the columns of T(.) are linearly independent over (- , t].
DEFINITION 16. The function W(t, r) (t)O(r), defined for all

t, r, is the naturally induced weighting pattern associated with the globally
reduced impulse response W(t, r) (or W(t, -) given by (30).
DEFINITION 17. A realization of a globally reduced impulse response is

minimal if its dimension equals the order of the weighting pattern naturally
induced by that impulse response.
Remar 10. It should be emphasized that many different weighting pat-

terns may be ssociated with given (causal or anticausal) impulse re-
sponse. (For example, let O(r) 0 for all r =< 0 in. (30). Then (t) can
be arbitrarily chosen for -_< 0 without affecting W(t, r).) It is therefore ob-
vious that two minimal realizations of a given globally reduced impulse re-
sponse my not be algebraically equivalent.
The condition under which algebraic equivalence is preserved is given

by the result below, which follows from Theorem 11.
THEOnEM 14. Two minimal realizations of a globally reduced causal

(anticausal) impulse response are algebraically equivalent if and only if they
have the same anticausal (causal) inpulse response.
As far as system-theoretic properties of minimal realizations of impulse

responses are concerned, we have the following from. Definitions 14-17
and Theorem 12.
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THEOREM 15. (i) A minimal realization of a globally reduced causal
impulse response is reachable at all > tl and is observable from all < tl
where h is as given in Definition 14.

(ii) A minimal realization of a globally reduced anticausal impulse re-
sponse is controllable from all t and is determinable at all > t where
is as given in Definition 15.

Finally, we briefly discuss the subject of realizations of weighting pt-
erns on a finite time interwl.

DEFINITION 18. If a globally reduced weighting pattern W of a system
defined on an interva,1 (al, a) is not in reduced form on some subinterval
(, ) (al, a), the reduced form of W on (Oh, ) is called a local
reduction of W on (Oh,
DEFINITION 19. A minimal realization of a local reduction of weighting

pattern W on (/,/) is a local minimal realization of W on (Oh, ).
LEMMA 8. The order of a local reduction of W is .<= that of a global reduction

of W. (Hence, a local minimal realization of W has a state space whose dimen-
sion is <= that of a global minimal realization.)

Proof. The proof follows from (27) plus the ftct that functions which
linearly independent on an interwtl I my be lincrly dependeat on sub-
interwl J I.
THEOnEM 16. Let S., i 1, 2, be respective minimal realizations of the

same globally reduced weighting pattern. Let SI [, ] be the system S re-
stricted to a fixed time interval [., ]. Let n(t, % ) be the dimension of
SI [’, ]. Then n(t, , ) n:(t, ", ) for all t, , .

Proof. Suppose there exist , ti, h such that n(h, ,
n(h, "n, ). Then, by continuity, there exists (, ,) b’l, i] with

h (t, ) such that n(t, , 1) n(t, , 1) for all (t, ). But this
implies that the globally reduced weighting pattern associated with S,
S has two local reductions on (, ,) of dfferent order, nd it follows from
Theorem 11 that this is impossible.

Further discussion about impulse responses and their realizations my be
found in [5] and also in [12].

Acknowledgment. The author wishes to thank Professor P. L. Falb
and W. M. Wonham for a number of valuable discussions on an earlier
version of this paper.
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ON A MATRIX RICCATI EQUATION OF STOCHASTIC CONTROL*

W. M. WONHAMf. Introduction. The object of this paper is to discuss a generalized
version of the matrix liccati and matrix quadratic equations, which arise
in problems of stochastic control and filtering. The properties obtained
include existence, uniqueness and asymptotic behavior, and contain as
special cases some (but not all) of the results reported in [1], [2]. We refer
in particular to [2] for a detailed review and bibliography of the "standard"
equation for the linear regulator problem.
The present generalization consists in the addition of a linear positive

operator to the linear terms of the standard Riccati equation and, in certain
instances, weakening of the usual hypothesis of complete obserwbility
to obserwbility of unstable modes (detectability).
The proofs given here re simple applications of Bellman’s principle of

quasi-linearization ("approximation in policy space") [5] and of a known
monotone convergence property of symmetric matrices. In this way the
discussion becomes unified and straightforward. Applications to control
and filtering are indicated in 6.

2. Notation and summary. In the following, all vectors and matrices
have real elements except where otherwise stated. A, B, C, K are matrices
of dimension respectively n X n, n X m, p X n, and m X n; N, P, Q denote
symmetric matrices of dimension respectively m X m, n X n, and n X n;
it will always be assumed that N is positive definite. A’ denotes the trans-
pose of A, and I is the identity matrix. Matrix unctions of time which are
assumed as data are Lebesgue measurable and bounded in norm on every
finite subinterval of their domain of definition. In particular N(t)-1 is so
bounded.

If P is positive (semi-)definite, we write P :> 0 (P >= 0);P > Q means
P Q > 0, etc. If P is symmetric, the Euclidean norm P is the absolute
value of the numerically largest eigenvalue of P; thus -[ P I -<_ P -<_ P I.
H will denote a (possibly t-dependent) positive linear map of the class of

symmetric n n matrices into itself" that is, II H (t, P) is measurable in
(t, P), linear in P, and P >_- 0 implies H (t, P) 0. In the case where A, B, K
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Cambridge, Massachusetts 02139. This research was supported in part by the Air
Force Office of Scientific Research, Office of Aerospace Research, United States Air
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Foundation, Engineering, under Grant GK-967.

681



682 w.M. WONHAM

and II are independent of t, the condition

(2.1) infK f0 et(X--BK)’H(I)et(a--Bg)dt <1

will be important later. It expresses the fact that II is not too large.
Let A, B be constant. The controllability matrix of (A, B) is the n X mn

matrix

r(A, B) [B, AB, A’-B].
The pair (A, B) is controllable if the rank of I’ is n. If (A, B) is controllable,
so is (A BK, B) for every matrix K.
The pair of constant mtrices (A, B) is stabilizable if there exists a con-

tant matrix K such that A BK is stable (i.e., all its eigenvalues have
negative real parts). Let the minimum polynomial (},) of A be factored as
b(X) 6+()-(), where all zeros of +() lie in the closed right-half
complex plane and all zeros of -() lie in the open left-half plane. It is well
known that n-space E can be written as a direct sum E EA+ @ Ea-,
where

+ "+(A)x 0} E{z -= {’-(A)x 0}

E+ thus represents the "unstable modes" of A. It is known [3] that (A, B)
+is stabi]izable if nd only if the range of 1 (A, B) contains Ea

Dual to the concept of controllability is that of observbility" the pair of
constant matrices (C, A) is obsermble if (A’, C’) is controllable. A weaker
but useful property is that (t least) the unstable modes of A be observable.
Precisely, (C, A is delectable if (A’, C’) is stabilizable.

Controllability and observbility re well-known concepts (cf. [7]); stabi-
lizbility is discussed in [3]; detectability in its present meaning originates
here.

Of primary iterest will be the Riccati equation

dP(t)
dt k- A(t)’P(t) q- P(t)A(t) q- H [t,P(t)]

P(t)B(t)N(t)-lB(t)’P(t) - C(t)’C(t) =0,

to<-_t<= T,
subject to the terminal condition

(2.25) P(T) Pr ->- 0.

In the constant ptrameter case we fiso consider the quadratic equation

(2.3) A’P q- PA -k II(P) PBN-B’PZr C’C O.
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The main result is the following theorem.
THEOREM 2.1. There exists a matrix P(t) with the following properties:

P is defined and absolutely continuous on [to, T] and satisfies (2.2a)
ahnost everywhere) and (2.2b).

(ii) P(t) >- O, to <- <= T, and P(t) is the unique solution of (2.2, b).
(iii) (Minimum property). Let t) be an arbitrary (bounded measurable)

m X n matrix defined on [to, T] and let P(t) be the solution of the linear
equation

dP(t)
(2.4a) dt

-[A(t) B(t)(t)]’_P(t) -t- P(t)[A(t) B(t)(t)]

+ II[t, P(t)] / C(t)’C(t) + (t)’N(t)(t) O,

(2.4b) P(T) P,.

If P(t) is the solution of (2.2a, b), then P(t) <= )(t), to <= -<_- T.
(iv) Let A, B, C, N and H be independent of and consider (2.2) with

to , T O. If (A, B) is stabilizable and H satisfies (2.1), then P (t)
is bounded on 0]. If in addition C, A is observable, then

P limP(t), -exists and is positive definite. In that case P is the unique positive semidefinite
solution of (2.3), and the matrix

A BN-B’P
is stable.
A proof is given in 3-5. Results for the quadratic equation (2.3) arc

summarized in Theorem 4.l.

3. Existence, uniqueness and minimality.
LEMMA 3.1 (Monotone convergence). Let P 1, 2, be a sequence

of n X n symmetric matrices such that P <= P-<= and P <= P,
1, 2, for some P. Then P lim P, --> , exists and P <= P.

The lemma is a special case of a result for positive operators in HilberC
space [4, p. 189]; the result holds also for a monotone decreasing sequence
which is bounded below.
We turn to a proof of assertions (i) and (ii) of Theorem 2.1. Let

b(P, K) (A BK)’P -+- P(A BK) + II(t, P)

tild

(3.1) K(t) N(t)-lB(t)’P(t).
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Then (2.2a, b) become

dP(t)
(3.1b) dt

-{- [P(t), K(t)]-[- C(t)’C(t) -- K(t)’N(t)K(t) O,

t0<t<= T,
(3.1c) P(T) Ft.
The key to solving (3.1a, b, c) is the observation that (3.1b) is linear in

P and that the expression (3.1a) minimizes the left side of (3.1b), regarded
as a function of K (cf. [5]). The latter statement results from the identity

(A BKo)’P -[- P(A BKo) -t- Ko’NKo
(3.2) (A BK)’P -t- P(A BK)

+ K’NK- (K- Ko)’N(K- Ko),
where K0 N-B’P.
Now let K(t) be arbitrary and let (t, s) be the fundamental matrix

associated with the matrix A (t) B (t)K(t), that is, is determined by
the equations

O((t, s) [A(t) B(t)K(t)],(t, s), to <= s, <= T,
(3.3) Ot

t)

Recall that (I) (s, t) (t, s)-, whencc

(3.4) O(s, t) -,(s, t)[A(t) B(t)K(t)].
Ot

It is then easily checked that (3.1b) and (3.1c) are equiwlent to the
equation

P(t) a(T, t)’Pr((T, t) -t- (s, t)’{n[s, P(s)]
(3.5) - C(s)’C(s) -t- K(s)’N(s)K(s)},(s, t)ds, to <= <= T.

The Volterr equation (3.5) hs unique integrble solution P (t) which
can be found by successive approximation. Consider the approximation
sequence [P" , 1, 2, with P(t) =-- O. Recalling the positivity of
II we see that P(t) => P(t) for all t; hence P (t) lira P(t) _-> 0.
We solve the simultaneous equations (3.1a) and (3.5) as follows"

Denote the right side of (3.5) by 5(K, P, t). Choosing K1 arbitrarily, define
P1 to be the unique solution of

P:(t) 5(K, P, t), to <= T.
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Having defined K1, K, let P be the solution of

(3.6) P(t) 3(K, P,, t), to -_< -< T,

and define

(3.7) K+(t) N(t)-IB(t)’P(t).

From what was said previously, the matrices K, and P are well-defined,
measurable and bounded on [to, T]. Next we exploit the minimum property
(3.2). For brevity let us write (3.1b) as

where

dP(t)
dt

-]- ,P{P(t), K(t)} O,

(P, K) (P, K) + C’C -[- K’NK.
Then (3.2), (3.6) and (3.7) yield

dP(t) dP,(t)
dt -- I,[P(t), K+(t)} =< dt -- {P(t), g(t)}

=0

dg+ (t) + I,{P+(t) K+(t)}
dt

to<=t_<= T.

Setting Q (t) P(t) P+(t), we hve

dQ(t)
dt + [Q(t),Kv+l(t)]-t- R(t) 0

for a suitable matrix R(t) >= 0; and from this we obtain, as before, Q(t) >= O.
It follows that for each [to, T] the sequence of nonnegative matrices
{P,,(t)} is monotone nonincrcasing and hence, by Lemma 3.1,

exists. Since

P(t) lira P(t)

IP(t)[ sup {[P(s)]- to _-<. s T}, , 1,2, .-.,

it follows by (3.7) that the sequence {[ K(t)[} is uniformly bounded.
Let .(t, s) be the fundamental matrix (cf. (3.3)) determined by A.
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Then (3.6) is equivalent to

P(t) q.(T, t)’Pr .(T, t) -- b.(s, t)’ {II[s, P(s)]

(3.8) K(s)’B(s)’P(s) P(s)B(s)K(s) -4- C(s)’C(s)-- K(s)’N(s)K,(s) }(s, t) ds.

Applying the dominated convergence theorem to the integral in (3.8),
we conclude that (3.8) holds with P,, K, replaced by P, K, where

K(t) lim K,(t)
(3.9) *

N(t)-B(t)’P(t).
Equations (3.8) (with P P, K K) and (3.9) are equivalent to
(3.1 a, b, c); hence existence of an absolutely continuous solution of
(2.2 a, b) is established.
Uniqueness of the solution results from the fact that the function

2(P, K) ,(P, N-B’P)
satisfies a uniform Lipschitz condition in P in every domain to -<_ =< T,
[PI< const.

Assertions (i) and (ii) of Theorem 2.1 have now been proved.
The minimum property (iii) is proved by using (3.2) in the same manner

as before. Thus from the inequality

,I,[P(t), K(t)] _-<_ [P(t), K(t)]

together with (2.4 a., b) and (3.2), there follows

0 ---dP(t) + ,[P(t) R(t)] < dR(t) -4-,I,[P(t) R(t)]
dt dt

If Q(t) P(t) P(t), then

(3.10) dQ(t)
4t + ,I,[P(t), R(t)] ,[P(t),/(t)] =< 0;

hence for a suitable matrix R (t) ->_ 0,

(3.11u) dQ(t)
dt

-t- [Q(t),/(t)] + R(t) O,

(3.11b) Q(T) 0.

If (3.11 u, b) are written ,ts n integral equation (cf. (3.5)) and solved,
as before, by successive pproximtion, we obtain sequence Q(t) such
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that Q(t) -4 Q(t), , -- . Since we can choose Qo(t) =- 0 it is easily seen
that Q(t) >= 0 for all t, . This completes the proof of Theorem 2.1 (iii).

4. Solution of the quadratic equation (2.3). In this section we assume
that the prmeter matrices A, B, C, N and the operator H are independent
of t, and consider exclusively the quadratic equation (2.3).
TIEOREM 4.1. If (A, B) is stabilizable and (C, A) is detectable, and if

H satisfies condition (2.1), then (2.3) has at least one solution P in the class
of positive semidefinite matrices. The matrix A BN-1B’P is stable. If in
addition C, A) is observable, then D is unique and P > O.
For the proof we need three auxiliary results.
LEMMA 4.1. Let

C’C + D’D F’F
and let G be an arbitrary matrix of suitable dimension.

(i) If C, A) is observable, then (F, A + GD is observable.
(ii) If (C, A is detectable, then (F, A + GD) is detectable.
Proof. Let l" denote the range of a matrix and 9(. the null space. It

is easily seen that (F(A’ + ’, E’)l IF(A’, F’)} whenever l/’} IF/.
Also, if x’FFx 0, then x’C’Cx x’D’Dx’ 0, so that (F) 9(C)
1 9(D); taking orthogonal complements, we have

{C’} + {D’} c {F’}.
Thus {D’G’} c {F’}, so that

{F(A +,,.,,F’)} {I(A,F’)} D {F(A,C’)},
proving (i). For (ii), write D’ D’G’ and let A’ + C’R’ be stable. Since
{C’R’ D’I {F’I, a matrix S’ can be chosen such that

A’ + D’ + F’S’= A’ + C’R’.
The proof is complete.
The following remark will be useful" if (C, A is detectable, then either A

is stable or the matrix

Wt(A, C) e’C’Cea ds

is unbounded on 0 5 < . For if A is not stable, let h be an eigenvalue of
A with Re ->= 0 and eigenvector . If * is the conjugate transpose of ,

, e2sReXWt(A, C) C, d8.

Suppose the integral is bounded. Then C 0, i.e., CA- h-C O,



688 w: M. WONHAM

1, n, so that

Re, Im u(r(A’, C’)’).
If (C, A) is detectable, {r(A’, C’)} = E+, and taking orthogonal comple-
ments, we have

{r(A’, C’)’} (E+,)" E-.
Thus, Re , Im E+ E-, namely 0, contradiction.
LEMMA 4.2. Let C, A) be detectable and suppose the equation

(4.1) A’P + PA + H(P) + C’C 0

has a solution P O. Then A is stable. Let 5(R) be defined by

Jo e’H(R)e dr,

and purSe(R) 5 5- R 5 R R 1,2, ....If C, A is ob-
servable, then the series

(4.2) 5(R) ( 5)-(R)
y0

converges for every symmetric n X n matrix R. In that case, the solution P of
(4.1) is unique and is given by

)P ( )- e*a’C’Ce dt

Here denotes the identity operator.
Proof. From (4.1) there results the identity

(4.3) P e*a’Pe + e’a’[H(P) + C’C]e" ds, O.

Since (C, A) is detectable, the integral

() W"C’e d, O,

is bounded only if A is sgable. Since P () 0, ghe firsg assergion is
proved. To prove the second, leg in (4.a) and wrige ( go
obgain P (P) + . Hence

Since 0 ghere follows () 0; ghus ghe lasg wriggen sum is dominaged
by P, and he series of nonnegaie matrices converges. Now suppose
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(C, A) is observable. Then Q > 0, and convergence of the series with
arbitrary R >= 0 in place of Q follows by linearity of 5 and the fact that
R <= pQ for some p < . Finally, every symmetric matrix R can be written
in the form R R+ R-, where R+ >= 0, R- _>- 0.1 Since the operators
5 are linear, convergence of (4.2) for arbitrary symmetric R is established.
Uniqueness of P follows by invertibility of 5.

LEMMA 4.3 (Minimum property). Let P 0 satisfy (2.3). Let Q >- 0
and suppose that for some matrix J,

(4.5) (A BJ)’Q + Q(A BJ) + II(Q) +C’C+J’NJ O.

If C, A is detectable, then A BJ is stable, and if C, A is observable,
then P <= Q.

Proof. Let C’C + J’NJ F’F. By Lemma 4.1 (with D NI2J and
G -BN-ln), the pair (F, A BJ) is detectable. Applying Lemma
4.2, we conclude that A BJ is stable. Setting Q P V and using
(3.2) we obtain

(4.6) (A BJ)’V + V(A BJ) + II(V) + S 0

for some S >_- 0. Then

(4.7) V 5(V) + R,

where 5 is defined as in Lemma 4.2 (with A BJ in place of A, and

R e"(-B’r)’Se"(-BJ) da). Again, by Lemma 4.1, observability of

(C, A) implies observability of (F, A BJ), and then Lemma 4.2 applied
to (4.5) shows that

o

converges. Since

-! v _<_ =< Iv
there follows 5v(V) --, 0, v -- . Hence (4.7) yields

v +
k---,-O

as

Choose T so that TRT D, where D dig (d,
mx (d, 0), dc -rain (d, 0), i 1,

Then R+ TD+T, R-= TD-T.

1,2, .-.,

", dn). Define d+

.., n, D+ diag (di+), D- diag (d).
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Thus V >_- 0, and Lemma 4.3 is proved.
Turning to the proof of Theorem 4.1 we use, as before, quasi-lineariza-

tion and successive approximations. Equation (2.3) is equivalent to the
pair of equations

(4.8a) K N-B’P,
(4.8b) (A BK)’P + P(A BK) + II(P) + C’C + K’NK O.
If Ko N-1B’p and K is arbitrary, (3.2) yields the inequality

(A BKo)’P + P(A BKo) + Ko’NKo
(4..)

<= (A BK)’P + P(A BK) + K’NK
First we solve (4.8b) for a suitable fixed matrix K. If A BK is stable,

then (4.8b) is equivalent to

(4.10) P f et(’-I:)’[II(P) + C’C -t- K’NK]et(’-E:) dt.
Jo

Denote the right side of (4.10) by f(K, P). Since

--I P III(I) -<- II(P) _<_ P II(I),
condition (2.1) implies that for some K,

(4.11) f0 et(A--BK)’II(P)e(X--BK) dt

where 0 (0, 1) is independent of P. Hence for this K the function f(K, P)
is a contraction mapping in P, and so (4.10) has a unique solution. For
later reference we note that the approximating sequence P}, defined by

P() 0, t-)() f(K, P(-)), v 2, 3,
is monotone nondccreasiug.
We can now solve the pair of equations (4.8a, b). By assumption there

exists K such that A BK is stable and (4.11) is true. Let P be the
solution of P f(K, P) and define K N-B’P. Next solve the
equation

P f(K:, P)
by successive pproximations. To see that this is possible observe that
(4.9) and Lemma 4:.3 imply that A BK is stable; hence f(K, P) is
defined. Now set

P (+) () 2,P2(1) O, f(Ke, F2 1,

As before it follows that P() >= 0, 2, 3, and { ()
’2 is nondecreas-
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ing. We shall show that

(4 12) 1) ,) < P1
The inequality (4.9) (with Ko K2 and P P1) implies

f(K2, P,(’)) <= - et(a-’)’[(A BK)’P + P(A BK2)

+ n(P) H(P(’))]et(-’) dt

P et(-’K)’H(P P2())et(-nK) tit.

() < P then P(+) () 0,Thus if f(K:,
(4.12) is true. It follows by Lemma 3.1 that the limit

P lira

exists, and 0 P P.
Repeating this procedure we obtain sequences {K,}, P,} with
N-BP, and 0 P,+ P. Then

P lira P,

exists If

/ lira K, N-1B’P,

it is clear that K, P satisfy (4.8, b), and (4.10) shows that/ -> 0.
Lemma 4.3 implies that A B/- is stable. If (C, A) is obserwble,

uniqueness of P in the class P ->_- 0 is an immedite result of the mini-
mum property. Finally, Lemm 4.1 shows that ((C’C + K’NK),
A BK) is observable if (C, A) is observable; then it is clear from (4.10)
that/5 > 0. Theorem 4.1 is proved.

5. Proof of Theorem 2.1 (iv): asymptotic behavior of the solution. In
this section, we prove assertion (iv) of Theorem 2.1. As in 4, the parameter
matrices A, B, C, N and the operator H are independent of t.
LEMMA 5.1. Let (C, A) be observable, let Po >= O, and suppose P(t) satisfies

the differential equation

(5.1) dP(t) p
dt + A’P(t) + (t)A + II[P(t)]+ C’C O, <- O,

(5.1b) P(0) I’o.
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If there exists a constant matrix P* >= 0 such that

(5.2) A’P* + P*A + II(P*) + C’C O,

then

(5.3) P(t) -- P* as t-- -.
Proof. By Lemma 4.2, P* is the unique solution of (5.2). Let denote

the operator defined by

(P) A’P + PA + II(P).

From Lemma 4.2 we know that (regarded as a linear transformation on
the n X n symmetric matrices) is nonsingular, and that 2-1(Q) >= 0 if
Q=>o.

Since is linear and independent of t, it is enough to consider the
homogeneous equation

dQ(t____) _f_ 2[Q(t)] 0, =< 0,
(5.4) dt

and to show that

(5.5)

For this let

Q(0) P0,

R(t) Q(s) ds, <= O,

and let/ be the (unique) solution of

(5.6) 2(/) + P0 0.

It will be shown that 0 =< R(t) ’ / (t ). In fact, Q(t) >__ 0 by (3.5),
so that R(t) is nondecreasing as decreases. Integration of (5.4) yields

(5.7) dR(t____)
_

2[R(t)] - P0 0.
dt

Setting F(t) [ R(t), we obtain from (5.6) and (5.7),

dE(t) A- 2[F(t)] 0,

_
0,

(5.8) dt

F(0) .
Since/ -1 (p0) >= 0, it is clear from (5.8) (cf. (3.5)) that F (t) >_- 0,

__-< 0, that is, 0 _-< R (t) _<- / and R lim R (t), --, , exists.

Q(t)--+O as t----.
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Next, (5.7) shows that dR/dT is bounded and then that d2R/dt is bounded.
Since

dR t)R(-)= d,

it follows that Q(t) dR(t)/dt --) 0 as --> . The proof is complete.
Next, consider the Riccati equation

dP(t)
(5.9a) dt t- [A BK(t)]’P(t) -t- P(t)[A BK(t)]

nt- II[P(t)] + C’C -t- K(t)’N(t)K(t) O, <- O,
(5.9b) K(t) N-B’P(t),
(5.9c) P(0) P0 >= 0.

From 3 we know that (5.9a, b, c) have a unique solution P(t) => 0.
LEMMA 5.2. (i) If (A, B) i8 stabilizable and if H satisfies (2.1), then the

solution P(t) of (5.9a, b, c) is bounded on (- 0].
(ii) If Po O, then P(t) is monotone nondecreasing as decreases.
Proof. Let/ be a constant matrix such that fl A B/ is stable, and

let /(t) be the solution of (5.9a) and (5.9c) with K(t) /. By the
minimum property (Theorem 2.1 (iii)), P (t) =< ta (t). It will be shown that
/(t) is bounded for suitable/. Now

(t) e-tZ’Po e-(5.10)
+ e-(t)’’{lI[[’(s)]-k C’C-t- I’N2}e-(-)’ ds.

We solve (5.10) by successive approximation, setting Po(t) - 0. Then

fo ds, O, 1(5.11) fi,+t(t) <- ,I + e-(t-")X’II[P,(s)]e-(’-’)’ , ,..,
where
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Hence,
/3(t) lim P(t)

is a bounded function of t, nd (i) follows.
To prove (ii) set P0 0 nd let (t, s) denote the fundamental matrix

ssocited with A BK(t) (cf. (3.3)). Then

(5.12) P(t) ft ((s, t)’{II[P(s)] + C’C + K(s)’N(s)K (s)}(s, t) ds.

Let r =>_ 0 be fixed, and define

K(t) K(t- r), <= O.

If (t, s) is the fund’amentl matrix determined by A BR(t), then
clearly

,(t, s) (t , s ).

Let P(t) be the solution of (5.9) with K replaced by nd P() 0.
Again by the minimum property (Theorem 2.1(iii)), P(t) <-_ P(t), or

P(t) <- f (s, t)’[[[’(s)] + C’C + R(s)’N(s)R(s)}g(s, t) ds

(5.13)

((s + , t)’ {n.[P(. + )] + c’c

+ R(s -I- r)’N(s)(s q- r)}(s + r, t) ds

q,(s, r)’{II[P(s q- r)] q- C’C

q- K(s)’N(s)K(s)}(s, t- r) ds,

where we have set P(s) 0 for s 0. Now

P( + ) f .(,+ )’ {II[P()] + C’C + R()’N()R()la(,+ r) d
+r

( -, )’{n[P()] + c’c
+r

-+- K(o- r)’N(z)K(r r)}’(r r, s) dz

=< (a, s)’{II[P(a + r)] + C’C + K(z)’N(o’)K(r)}(r,s)

Writing Q(,) P(s) P(s q-- r) and using (5.12), we see that

(5.14) Q(s) >= f, (, s)’n[Q()](, s) &.
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Denote the right side of (5.14) by 8Q(s). Defining $ by iteration, there
results

and

Q(s) >_ $Q(s)

$Q(s) =< (f I I)/ 1, 2, ...,
for suitable constants a > 0,/ > 0 (which my depend on s). Letting-- we obtain Q(s) O, or

P(s + ) P(s), s O.

Substituting this result in (5.13) and comparing with (5.12), we conclude
that

P(t) P(t-), O, O,

and the proof is complete.
LEMMA 5.3. If (A, B) is stabilizable and (C, A is detectable, if H satisfies

(2.1), and if Po O, then the solution P(t) of (5.9a, b, c) has the property

(5.15) lira P(t) P,
t--

where P is a positive semidefinite solution of (2.3).
Proof. By Lemmas 3.1 and 5.2, the limit in (5.15) exists and is positive

semidefinite. Since P(t) is bounded, (5.9a, b, c) show that the same is
true of dP(t)/dt and dP(t)/dt; then convergence of the integral

dP(t)(5.6)
dt

shows that dP/dt 0 as . The conclusion follows by inspection of
(2.3) and (5.9a, b, c).
We turn to a proof of assertion (iv) of Theorem 2.1. Set T 0. Bounded-

hess of P(t) follows from Lemm 5.2. If (C, A) is observable, then, by
Theorem 4.1, (2.3) has unique solution 0. Set N-B’P,

A B[i; Theorem 4.1 implies that is stable. Denote by P*(t)
the solution of (5.9) and (5.9c) with K(t) t. By the minimum property
(Theorem 2.1 (iii)), the solution P(t) of (5.9a, b, c) satisfies

(5.17) p(t) p*(t), o,
and by Lemma 5.1 (with A replaced by , P* by , and C’C by C’C
+ ’N[;),

(5.1s) P*(t) P s -.
On the other hand, if P.(t) denotes the solution of (5.9a) and (5.9b)
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with P, (0) 0, then by Lemma 5.3,

(5.19) P,(t) -- P as t-- -.
Hence the desired result will follow if we show that

(5.20) P(t) >= P,(t), -<- O.

For this observe from (3.5) that

(5.21) P(t) >= ft (s, t)’lII[P(s)] + C’C + K(s)’N(s)K(s)}(s, t) ds

Denote the right side of (5.21) by Q(t). It will be shown that Q(t) >- P,(t).
Write K,(t) N-1BrP,(t) and ,(t, s) for the fundamental matrix
associated with A BK,(t); and let P(t) be the solution of (5.9a) with
K(t) as before and (0) 0. Then, by the minimum property,

(5.22) P.(t) <= [’(t)
and

(5.23) [’(t) f (s, t)’lII[P(s)] + C’C + g(s)’N(s)K(s)}(s, t) ds.

Then (5.21) and (5.23) yield

P(t) P(t) >= f ep(s, t)’II[P(s) D(s)lo(s, t) ds

and this shows, as in the proof of Lemma 5.2 (ii), that

(5.24) P(t) P(t) ->- O, <__ O.

Inequalities (5.22) and (5.24) yield (5.20). Combining (5.17) and (5.20),
we have that

(5.25) P,(t) <= P(t) <-_ P*(t), <-_ O.

Since the extreme terms of the inequMity (5.25) both tend to/5 as - ,
the desired result is established.

6. Applications.
6.1. Stochastic control. An equation of type (2.2a) arises in optimal

control of a linear system with state-dependent white noise and quadratic
cost (cf. [6], where time-invariant control was discussed, leading to (2.3)).
In this problem,

[II(t, P)]. tr ei(t)rPe(t)l, i, j 1, n,

for certain Gi. We mention that an obvious generalization to include
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control-dependent white noise leads to (2.2a) with II replaced by

(6.1) II + PB(F + N)-IF(F + N)-IB’P.
In (6.1), P F(t, P) is a function of the same type as H. This case can be
discussed in exactly the same way, if (3.1a) is replaced by

K (F -[- N)-IB’p.
6.2. Linear filtering. A well-known linear filtering scheme [7] leads to the

following equation for the covariance matrix"

(6.2)

dP AP + PA’
dt + FF’- (PC’+ FG’)(GG’)-1 (PC’ + FG’)’,

t <t<t

P(h) =-- Po >- O.

It is clear that (6.2) is equivalent to (2.2a, b) after replacing in (6.2)
t, tl, t2 by T + to t, to, T, respectively, setting II 0, and redefining
matrices. Thus Theorem 2.1 shows that (6.2) uniquely determines the
covariance matrix. If the parameter matrices are constants, then the limit
property of Theorem 2.1 (iv) holds if (A’ C’(GG’)-IGF’, C’) is stabiliz-
able and (H, A’ C’ (GG’)-IGF’) is observable, where

FF’ FG’(GG’)-IGF H’H.
In particular this is true if (C, A) is detectable, (A, F) is controllable, and

FF’- FG’(GG’)-IGF >= pFF’
for some p (0, 1]. The latter result under strengthened hypotheses
was reported in [7, 13.33].
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